Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez, Arnaldo
dc.contributor.otherMeriño, Lourdes
dc.contributor.otherAlbis, Alberto
dc.contributor.otherOrtega, Jorge
dc.date.accessioned2022-11-15T19:21:34Z
dc.date.available2022-11-15T19:21:34Z
dc.date.issued2021-03-01
dc.date.submitted2020-10-08
dc.identifier.urihttps://hdl.handle.net/20.500.12834/799
dc.description.abstractKinetic analysis for the combustion of three agro-industrial biomass residues (coconut husk, corn husk, and rice husk) was carried out in order to provide information for the generation of energy from them. The analysis was performed using the results of the data obtained by thermogravimetric analysis (TGA) at three heating rates (10, 20, and 30 K/min). The biomass residues were characterized in terms of proximate analysis, elemental analysis, calorific value, lignin content, α-cellulose content, hemicellulose content, and holocellulose content. The biomass fuels were thermally degraded in an oxidative atmosphere. The results showed that the biomass thermal degradation process is comprised of the combustion of hemicellulose, cellulose, and lignin. The kinetic parameters of the distributed activation energy model indicated that the activation energy distribution for the pseudocomponents follows lignin, cellulose, and hemicellulose in descending order. The activation energy values for each set of reactions are similar between the heating rates, which suggests that it is independent of the heating rate between 10 K/min and 30 K/min. For all the biomass samples, the increased heating rate resulted in the overlap of the hemicellulose and cellulose degradation eventsspa
dc.description.sponsorshipBioresourcesspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.titleComparative Study of the Reaction Kinetics of Three Residual Biomassesspa
dcterms.bibliographicCitationArango-Muñoz, M., Arenas-Castiblanco, E., and Cortés-Correa, F. (2015). “Determinación de parámetros cinéticos para la pirólisis rápida de aserrín de pino pátula [Determination of kinetic parameters for the rapid pyrolysis of paddle pine sawdust],” Boletín del Grupo Español del Carbón 38, 9-11.spa
dcterms.bibliographicCitationASTM D 3173. (2017). “Standard test method for moisture in the analysis sample of coal and coke,” American Society for Testing and Materials, West Conshohocken, PAspa
dcterms.bibliographicCitationASTM D 3174. (2002). “Standard test method for ash in the analysis sample of coal and coke from coal,” American Society for Testing and Materials, West Conshohocken, PA.spa
dcterms.bibliographicCitationASTM D 3175. (2017). “Standard test method for volatile matter in the analysis sample of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA.spa
dcterms.bibliographicCitationASTM D 4239. (2017). “Standard test method for sulfur in the analysis sample of coal and coke using high-temperature tube furnace combustion,” American Society for Testing and Materials, West Conshohocken, PA.spa
dcterms.bibliographicCitationASTM D 5373. (2016). “Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA.spa
dcterms.bibliographicCitationASTM D 5865. (2013). “Standard test method for gross calorific value of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA.spa
dcterms.bibliographicCitationBhavanam, A., and Sastry, R. C. (2015). “Kinetic study of solid waste pyrolysis using distributed activation energy model,” Bioresource Technology 178, 126-131. DOI: 10.1016/j.biortech.2014.10.028spa
dcterms.bibliographicCitationCarrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.-M., Ham-Pichavant, F., Cansell, F., and Aymonier, C. (2011). “Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass,” Biomass and Bioenergy 35(1), 298-307. DOI: 10.1016/j.biombioe.2010.08.067spa
dcterms.bibliographicCitationDemirbaş, A. (2001). “Biomass resource facilities and biomass conversion processing for fuels and chemicals,” Energy Conversion and Management 42(11), 1357-1378. DOI: 10.1016/S0196-8904(00)00137-0spa
dcterms.bibliographicCitationDonskoi, E., and McElwain, D. L. S. (2000). “Optimization of coal pyrolysis modeling,” Combustion and Flame 122(3) 359-367. DOI: 10.1016/S0010-2180(00)00115-2spa
dcterms.bibliographicCitationFlores, J. J. A., and Quiñones, J. G. R. (2018). “Study of kinetics in thermogravimetric processes of lignocellulosic materials,” Maderas: Ciencia y Tecnología 20(2) 221- 238. DOI: 10.4067/S0718-221X2018005002601spa
dcterms.bibliographicCitationHalim, N. A. A., Ngadi, N., Ibrahim, M. N. M., and Ansari, S. M. (2016). “Monomeric structure characterization of different sources biomass lignin,” Key Engineering Materials 700, 42-49. DOI: 10.4028/www.scientific.net/KEM.700.42spa
dcterms.bibliographicCitationHu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B. (2016). “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method,” Energy Conversion and Management 118, 1-11. DOI: 10.1016/j.enconman.2016.03.058spa
dcterms.bibliographicCitationHu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B. (2016). “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method,” Energy Conversion and Management 118, 1-11. DOI: 10.1016/j.enconman.2016.03.058spa
dcterms.bibliographicCitationMarafon, A. C., Amaral, A. F. C., and de Lemos, E. E. P. (2019). “Characterization of bamboo species and other biomasses with potential for thermal energy generation;” Pesquisa Agropecuária Tropical 49, 1-5. DOI: 10.1590/1983-40632019v4955282spa
dcterms.bibliographicCitationLozano, S.-M. (2009). Evaluación de la Biomasa Como Recurso Energético Renovable en Cataluña [Evaluation of Biomass as a Renewable Resource in Catalonia], Ph.D. Dissertation, University of Girona, Catalonia, Spain.spa
dcterms.bibliographicCitationMelgar, A., Borge, D., and Pérez, J. F. (2008). “Kinetic study of the lignocellulosic biomass devolatilization process by thermogravimetric analysis for particles sizes from 2 to 19 mm,” DYNA 75(155), 123-131.spa
dcterms.bibliographicCitationMlonka-Mędrala, A., Magdziarz, A., Dziok, T., Sieradzka, M., and Nowak, W. (2019). “Laboratory studies on the influence of biomass particle size on pyrolysis and combustion using TG GC/MS,” Fuel 252, 635-645. DOI: 10.1016/j.fuel.2019.04.091spa
dcterms.bibliographicCitationNinduangdee, P., and Kuprianov, V. I. (2014). “Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions,” Energy Conversion and Management 85, 800-808. DOI: 10.1016/j.enconman.2014.01.054spa
dcterms.bibliographicCitationOna, T., Sonoda, T., Shibata, M., and Fukazawa, K. (1995). “Small-scale method to determine the content of wood components from multiple eucalypt samples,” TAPPI Journal 78(3), 121-126.spa
dcterms.bibliographicCitationOliveros, A. L. S., Muñoz, E. O., Ariza, I. E. P., Barazza, C. S. K., and Arietta, A. R. A. (2019). “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma glandiflorum) [TG-MS study of the gasification of the carbonized shell of Copoazú (Theobroma glandiflorum)],” INGE CUC 15(1), 25-35. DOI: 10.17981/ingecuc.15.1.2019.03spa
dcterms.bibliographicCitationRambo, M. K. D., Schmidt, F. L., and Ferreira, M. M. C. (2015). “Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities,” Talanta 144, 696-703. DOI: 10.1016/j.talanta.2015.06.045spa
dcterms.bibliographicCitationRaveendran, K., and Ganesh, A. (1996). “Heating value of biomass and biomass pyrolysis products,” Fuel 75(15), 1715-1720. DOI: 10.1016/S0016-2361(96)00158-5spa
dcterms.bibliographicCitationRen, X., Chen, J., Li, G., Wang, Y., Lang, X., and Fan, S. (2018). “Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model,” Bioresource Technology 261, 403-411. DOI: 10.1016/j.biortech.2018.04.047spa
dcterms.bibliographicCitationSantander Oliveros, A., Ortiz Muñoz E., Piñeres Ariza I., Ariza Barraza C., and Albis Arrieta A. (2019), “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma glandiflorum),” Inge. Cuc. 15(1), 25-35. DOI: https://doi.org/10.17981/ingecuc.15.1.2019.03spa
dcterms.bibliographicCitationSher, F., Iqbal, S. Z., Liu, H., Imran, M., and Snape, C. E. (2020). “Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources,” Energy Conversion and Management 203, 112266. DOI: 10.1016/j.enconman.2019.112266spa
dcterms.bibliographicCitationSong, C., Hu, H., Zhu, S., Wang, G., and Chen, G. (2004). “Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water,” Energy & Fuels 18(1), 90-96. DOI: 10.1021/ef0300141spa
dcterms.bibliographicCitationVárhegyi, G. (2007). “Aims and methods in non-isothermal reaction kinetics,” Journal of Analytical and Applied Pyrolysis 79(1-2), 278-288. DOI: 10.1016/j.jaap.2007.01.007spa
dcterms.bibliographicCitationVárhegyi, G., Szabó, P., and Antal, M. J. (2002). “Kinetics of charcoal devolatilization,” Energy & Fuels 16(3), 724-731. DOI: 10.1021/ef010227vspa
dcterms.bibliographicCitationWilk, M., Magdziarz, A., Jayaraman, K., Szymańska-Chargot, M., and Gökalp, I. (2019). “Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study,” Biomass and Bioenergy 120, 166-175. DOI: 10.1016/j.biombioe.2018.11.016spa
dcterms.bibliographicCitationXiao, B., Sun, X.-F., and Sun, R.-C. (2001). “Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw,” Polymer Degradation and Stability 74(2), 307-319. DOI: 10.1016/S0141-3910(01)00163-Xspa
dcterms.bibliographicCitationYaman, S. (2004). “Pyrolysis of biomass to produce fuels and chemical feedstocks,” Energy Conversion and Management 45(5), 651-671. DOI: 10.1016/S0196- 8904(03)00177-8spa
dcterms.bibliographicCitationYao, F., Wu, Q., Lei, Y., Guo, W., and Xu, Y. (2008). “Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis,” Polymer Degradation and Stability 93(1), 90-98. DOI: 10.1016/j.polymdegradstab.2007.10.012spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.15376/biores.16.2.2891-2905
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.subject.keywordsBiomass; Combustion; Kinetic parameters; DAEMspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Agroindustrialspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por