Mostrar el registro sencillo del ítem
Comparative Study of the Reaction Kinetics of Three Residual Biomasses
dc.contributor.author | Martinez, Arnaldo | |
dc.contributor.other | Meriño, Lourdes | |
dc.contributor.other | Albis, Alberto | |
dc.contributor.other | Ortega, Jorge | |
dc.date.accessioned | 2022-11-15T19:21:34Z | |
dc.date.available | 2022-11-15T19:21:34Z | |
dc.date.issued | 2021-03-01 | |
dc.date.submitted | 2020-10-08 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/799 | |
dc.description.abstract | Kinetic analysis for the combustion of three agro-industrial biomass residues (coconut husk, corn husk, and rice husk) was carried out in order to provide information for the generation of energy from them. The analysis was performed using the results of the data obtained by thermogravimetric analysis (TGA) at three heating rates (10, 20, and 30 K/min). The biomass residues were characterized in terms of proximate analysis, elemental analysis, calorific value, lignin content, α-cellulose content, hemicellulose content, and holocellulose content. The biomass fuels were thermally degraded in an oxidative atmosphere. The results showed that the biomass thermal degradation process is comprised of the combustion of hemicellulose, cellulose, and lignin. The kinetic parameters of the distributed activation energy model indicated that the activation energy distribution for the pseudocomponents follows lignin, cellulose, and hemicellulose in descending order. The activation energy values for each set of reactions are similar between the heating rates, which suggests that it is independent of the heating rate between 10 K/min and 30 K/min. For all the biomass samples, the increased heating rate resulted in the overlap of the hemicellulose and cellulose degradation events | spa |
dc.description.sponsorship | Bioresources | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.title | Comparative Study of the Reaction Kinetics of Three Residual Biomasses | spa |
dcterms.bibliographicCitation | Arango-Muñoz, M., Arenas-Castiblanco, E., and Cortés-Correa, F. (2015). “Determinación de parámetros cinéticos para la pirólisis rápida de aserrín de pino pátula [Determination of kinetic parameters for the rapid pyrolysis of paddle pine sawdust],” Boletín del Grupo Español del Carbón 38, 9-11. | spa |
dcterms.bibliographicCitation | ASTM D 3173. (2017). “Standard test method for moisture in the analysis sample of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA | spa |
dcterms.bibliographicCitation | ASTM D 3174. (2002). “Standard test method for ash in the analysis sample of coal and coke from coal,” American Society for Testing and Materials, West Conshohocken, PA. | spa |
dcterms.bibliographicCitation | ASTM D 3175. (2017). “Standard test method for volatile matter in the analysis sample of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA. | spa |
dcterms.bibliographicCitation | ASTM D 4239. (2017). “Standard test method for sulfur in the analysis sample of coal and coke using high-temperature tube furnace combustion,” American Society for Testing and Materials, West Conshohocken, PA. | spa |
dcterms.bibliographicCitation | ASTM D 5373. (2016). “Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA. | spa |
dcterms.bibliographicCitation | ASTM D 5865. (2013). “Standard test method for gross calorific value of coal and coke,” American Society for Testing and Materials, West Conshohocken, PA. | spa |
dcterms.bibliographicCitation | Bhavanam, A., and Sastry, R. C. (2015). “Kinetic study of solid waste pyrolysis using distributed activation energy model,” Bioresource Technology 178, 126-131. DOI: 10.1016/j.biortech.2014.10.028 | spa |
dcterms.bibliographicCitation | Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.-M., Ham-Pichavant, F., Cansell, F., and Aymonier, C. (2011). “Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass,” Biomass and Bioenergy 35(1), 298-307. DOI: 10.1016/j.biombioe.2010.08.067 | spa |
dcterms.bibliographicCitation | Demirbaş, A. (2001). “Biomass resource facilities and biomass conversion processing for fuels and chemicals,” Energy Conversion and Management 42(11), 1357-1378. DOI: 10.1016/S0196-8904(00)00137-0 | spa |
dcterms.bibliographicCitation | Donskoi, E., and McElwain, D. L. S. (2000). “Optimization of coal pyrolysis modeling,” Combustion and Flame 122(3) 359-367. DOI: 10.1016/S0010-2180(00)00115-2 | spa |
dcterms.bibliographicCitation | Flores, J. J. A., and Quiñones, J. G. R. (2018). “Study of kinetics in thermogravimetric processes of lignocellulosic materials,” Maderas: Ciencia y Tecnología 20(2) 221- 238. DOI: 10.4067/S0718-221X2018005002601 | spa |
dcterms.bibliographicCitation | Halim, N. A. A., Ngadi, N., Ibrahim, M. N. M., and Ansari, S. M. (2016). “Monomeric structure characterization of different sources biomass lignin,” Key Engineering Materials 700, 42-49. DOI: 10.4028/www.scientific.net/KEM.700.42 | spa |
dcterms.bibliographicCitation | Hu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B. (2016). “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method,” Energy Conversion and Management 118, 1-11. DOI: 10.1016/j.enconman.2016.03.058 | spa |
dcterms.bibliographicCitation | Hu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B. (2016). “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method,” Energy Conversion and Management 118, 1-11. DOI: 10.1016/j.enconman.2016.03.058 | spa |
dcterms.bibliographicCitation | Marafon, A. C., Amaral, A. F. C., and de Lemos, E. E. P. (2019). “Characterization of bamboo species and other biomasses with potential for thermal energy generation;” Pesquisa Agropecuária Tropical 49, 1-5. DOI: 10.1590/1983-40632019v4955282 | spa |
dcterms.bibliographicCitation | Lozano, S.-M. (2009). Evaluación de la Biomasa Como Recurso Energético Renovable en Cataluña [Evaluation of Biomass as a Renewable Resource in Catalonia], Ph.D. Dissertation, University of Girona, Catalonia, Spain. | spa |
dcterms.bibliographicCitation | Melgar, A., Borge, D., and Pérez, J. F. (2008). “Kinetic study of the lignocellulosic biomass devolatilization process by thermogravimetric analysis for particles sizes from 2 to 19 mm,” DYNA 75(155), 123-131. | spa |
dcterms.bibliographicCitation | Mlonka-Mędrala, A., Magdziarz, A., Dziok, T., Sieradzka, M., and Nowak, W. (2019). “Laboratory studies on the influence of biomass particle size on pyrolysis and combustion using TG GC/MS,” Fuel 252, 635-645. DOI: 10.1016/j.fuel.2019.04.091 | spa |
dcterms.bibliographicCitation | Ninduangdee, P., and Kuprianov, V. I. (2014). “Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions,” Energy Conversion and Management 85, 800-808. DOI: 10.1016/j.enconman.2014.01.054 | spa |
dcterms.bibliographicCitation | Ona, T., Sonoda, T., Shibata, M., and Fukazawa, K. (1995). “Small-scale method to determine the content of wood components from multiple eucalypt samples,” TAPPI Journal 78(3), 121-126. | spa |
dcterms.bibliographicCitation | Oliveros, A. L. S., Muñoz, E. O., Ariza, I. E. P., Barazza, C. S. K., and Arietta, A. R. A. (2019). “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma glandiflorum) [TG-MS study of the gasification of the carbonized shell of Copoazú (Theobroma glandiflorum)],” INGE CUC 15(1), 25-35. DOI: 10.17981/ingecuc.15.1.2019.03 | spa |
dcterms.bibliographicCitation | Rambo, M. K. D., Schmidt, F. L., and Ferreira, M. M. C. (2015). “Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities,” Talanta 144, 696-703. DOI: 10.1016/j.talanta.2015.06.045 | spa |
dcterms.bibliographicCitation | Raveendran, K., and Ganesh, A. (1996). “Heating value of biomass and biomass pyrolysis products,” Fuel 75(15), 1715-1720. DOI: 10.1016/S0016-2361(96)00158-5 | spa |
dcterms.bibliographicCitation | Ren, X., Chen, J., Li, G., Wang, Y., Lang, X., and Fan, S. (2018). “Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model,” Bioresource Technology 261, 403-411. DOI: 10.1016/j.biortech.2018.04.047 | spa |
dcterms.bibliographicCitation | Santander Oliveros, A., Ortiz Muñoz E., Piñeres Ariza I., Ariza Barraza C., and Albis Arrieta A. (2019), “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma glandiflorum),” Inge. Cuc. 15(1), 25-35. DOI: https://doi.org/10.17981/ingecuc.15.1.2019.03 | spa |
dcterms.bibliographicCitation | Sher, F., Iqbal, S. Z., Liu, H., Imran, M., and Snape, C. E. (2020). “Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources,” Energy Conversion and Management 203, 112266. DOI: 10.1016/j.enconman.2019.112266 | spa |
dcterms.bibliographicCitation | Song, C., Hu, H., Zhu, S., Wang, G., and Chen, G. (2004). “Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water,” Energy & Fuels 18(1), 90-96. DOI: 10.1021/ef0300141 | spa |
dcterms.bibliographicCitation | Várhegyi, G. (2007). “Aims and methods in non-isothermal reaction kinetics,” Journal of Analytical and Applied Pyrolysis 79(1-2), 278-288. DOI: 10.1016/j.jaap.2007.01.007 | spa |
dcterms.bibliographicCitation | Várhegyi, G., Szabó, P., and Antal, M. J. (2002). “Kinetics of charcoal devolatilization,” Energy & Fuels 16(3), 724-731. DOI: 10.1021/ef010227v | spa |
dcterms.bibliographicCitation | Wilk, M., Magdziarz, A., Jayaraman, K., Szymańska-Chargot, M., and Gökalp, I. (2019). “Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study,” Biomass and Bioenergy 120, 166-175. DOI: 10.1016/j.biombioe.2018.11.016 | spa |
dcterms.bibliographicCitation | Xiao, B., Sun, X.-F., and Sun, R.-C. (2001). “Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw,” Polymer Degradation and Stability 74(2), 307-319. DOI: 10.1016/S0141-3910(01)00163-X | spa |
dcterms.bibliographicCitation | Yaman, S. (2004). “Pyrolysis of biomass to produce fuels and chemical feedstocks,” Energy Conversion and Management 45(5), 651-671. DOI: 10.1016/S0196- 8904(03)00177-8 | spa |
dcterms.bibliographicCitation | Yao, F., Wu, Q., Lei, Y., Guo, W., and Xu, Y. (2008). “Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis,” Polymer Degradation and Stability 93(1), 90-98. DOI: 10.1016/j.polymdegradstab.2007.10.012 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.15376/biores.16.2.2891-2905 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.subject.keywords | Biomass; Combustion; Kinetic parameters; DAEM | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Agroindustrial | spa |
dc.publisher.sede | Sede Norte | spa |