Mostrar el registro sencillo del ítem

dc.contributor.authorPalomino, Kevin
dc.contributor.otherReyes, Fabiola
dc.contributor.otherNúñez, José
dc.contributor.otherValencia, Guillermo
dc.contributor.otherHerrera Acosta, Roberto
dc.date.accessioned2022-11-15T19:19:41Z
dc.date.available2022-11-15T19:19:41Z
dc.date.issued2020-06-10
dc.date.submitted2020-01-10
dc.identifier.urihttps://hdl.handle.net/20.500.12834/796
dc.description.abstracttechniques for wind speed forecasting. However, although there are multiple studies, none are set up for the Colombia Caribbean coast. This is a disadvantage because the potential of wind resources in this region is greater than the hydroelectric potential of the whole country, but all this potential has yet to be developed. In this paper, based on time series, Autoregressive Integrated Moving Average (ARIMA), and Multiple Regression with Ordinary Least Squares (OLS) in the study, two models are proposed and their performance for wind speed prediction is compared. The data were collected in the meteorological station located in the experimental farm of the Atlantic University, in Barranquilla, Colombia, and variables analyzed included wind speed, wind direction, temperature, relative humidity, solar radiation, and pressure. The results of the two approaches indicated that among all the involved models, the ARIMA model has the best predicting performance. Also, it is essential to highlight that through this work, decision-makers would explore the local wind potential, allowing for the possibility of predicting future wind speed, and thus giving them the ability to plan the production and the interaction of other sources of energy.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourcejestrspa
dc.titleWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coastspa
dcterms.bibliographicCitation[1] Taner, T. and Demirci, K.O., “Energy and economic analysis of the wind turbine plant’s draft for the Aksaray City”, Applied Ecology and Environmental Sciences, Vol. 2, No. 3, (2015), 82–85.spa
dcterms.bibliographicCitation[2] Boutoubat, M., Mokrani, L., Machmoum, M., “Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement”, Renewable Energy, Vol. 50, (2013), 378–386.spa
dcterms.bibliographicCitation[3] Brown, S.P.A. and Huntington, H.G., “Energy security and climate change protection: Complementarity or tradeoff?” Energy Policy, Vol. 36, No. 9, (2008), 3510– 3513.spa
dcterms.bibliographicCitation[4] Congress of the Republic of Colombia: Law 1715 - 2014.spa
dcterms.bibliographicCitation[5] Valencia, G., Vanegas, M. and Polo, J., "Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 150.spa
dcterms.bibliographicCitation[6] Valencia, G. and Vanegas, M., “Atlas Eólico de la Región Caribe Colombiana”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 1-45.spa
dcterms.bibliographicCitation[7] Ouyang, T., Zha, X., Qin, L., Xiong, Y. and Xia, T., “Wind power prediction method based on regime of switching kernel functions”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 153, (2016), 26–33.spa
dcterms.bibliographicCitation[8] Cadenas, E. and Rivera, W., “Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model”, Renewable Energy, Vol. 35, No. 12, (2010), 2732–2738.spa
dcterms.bibliographicCitation[9] Lawrie, L.K. al., “ENERGYPLUS, a new-generation building energy simulation program”. Proceedings of Building Simulation 1999, Kyoto, Japan, (Aug. 1999), 1999.spa
dcterms.bibliographicCitation[10] Liu, H., Erdem, E. and Shi, J., “Comprehensive evaluation of ARMA–GARCH(-M) approach hes for modeling the mean and volatility of wind speed”, Applied Energy, Vol. 88, No. 3, (2011), 724–732.spa
dcterms.bibliographicCitation[11] Kavasseri, R.G. and Seetharaman, K., “Day-ahead wind speed forecasting using f-ARIMA models”, Renewable Energy, Vol. 34, No. 5, (2009), 1388–1393.spa
dcterms.bibliographicCitation[12] Ariza, A.M., “Métodos utilizados para el pronóstico de demanda de energía eléctrica en sistemas de distribución”, Vol. 1, 1st ed., Universidad Tecnológica de Pereira, Pereira, (2013), 15-145.spa
dcterms.bibliographicCitation[13] Wang, X., Guo, P. and Huang, X., “A Review of Wind Power Forecasting Models”, Energy Procedia, Vol. 12, (2011), 770–778.spa
dcterms.bibliographicCitation[14] Barrozo, F., Valencia, G. and Escorcia, Y.C., “Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost”, Contemporary Engineering Sciences, Vol. 10, No. 26, (2017), 1269-1278.spa
dcterms.bibliographicCitation[15] Haque, A.U., Mandal, P., Meng, J. and Negnevitsky, M., “Wind speed forecast model for wind farm based on a hybrid machine learning algorithm”, International Journal of Sustainable Energy, Vol. 34, No. 1, (2015), 38–51.spa
dcterms.bibliographicCitation[16] Cassola, F. and Burlando, M., “Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output”, Applied Energy, Vol. 99, (2012), 154–166.spa
dcterms.bibliographicCitation[17] Torres, J. L., García, A., De Blas, M. and De Francisco, A., “Forecast of hourly average wind speed with ARMA models in Navarre (Spain)”, Solar Energy, Vol. 79, No. 1, (2005), 65–77.spa
dcterms.bibliographicCitation[18] Box, G.E.P and Jenkins, G. M “Time Series Analysis Time series Analysis: Forecasting and control”, Vol. 1, 3rd ed., Prentice-Hall, New Jersey, (1994), 614spa
dcterms.bibliographicCitation[19] Box, G.E.P, Jenkins, G. M. and Reinsel, G., “Time series Analysis: Forecasting and control”, Vol. 1, 2nd ed., Holden-Day, New Jersey, (1976), 586spa
dcterms.bibliographicCitation[20] Makridakis, S. G., Wheelwright, S. C. and Hyndman, R. J., “Forecasting: Methods and Applications”, Vol. 1, 3rd ed., John Wiley & Sons, New York, (1998), 656spa
dcterms.bibliographicCitation[21] Aguado, J., Quevedo, A., Castro, M., Arteaga, R., Vázquez, M.A, and Zamora, B.P., “Meteorological variables prediction through ARIMA models”, Agrociencia, Vol. 50, No. 1, (2016), 1-13.spa
dcterms.bibliographicCitation[22] Rojo, J. M., “Regresión lineal multiple”, Instituto de Economía y Geografía Madrid, Madrid, (2007), 32.spa
dcterms.bibliographicCitation[23] Herrera, R., Palomino, K., Reyes, F. and Valencia, G., "Análisis Estadístico Descriptivo e Inferencial de la Velocidad y Dirección del viento en la Costa Caribe Colombiana", Revista Espacios, Vol. 39, No. 19, (2018), 3-15.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.25103/jestr.133.22
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordswind speed prediction, ARIMA, OLS, Sustainable energy.spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Industrialspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por