Mostrar el registro sencillo del ítem

dc.contributor.authorLoaiza-Campiño, Iván
dc.contributor.otherVillegas-Hincapié, Andrés
dc.contributor.otherArana, Victoria
dc.contributor.otherPosada, Húver
dc.date.accessioned2022-11-15T19:18:55Z
dc.date.available2022-11-15T19:18:55Z
dc.date.issued2020-04-13
dc.date.submitted2019-08-19
dc.identifier.urihttps://hdl.handle.net/20.500.12834/793
dc.description.abstractABSTRACT Chlorogenic acids (CGA) and their isomers have been associated with sensory attributes of the coffee beverage such as acidity, astringency, and bitterness. They have been linked to coffee rust resistance and acknowledged as bioactive compounds due to their antioxidant power with benefits for human health. The total chlorogenic acids (TCGA) and nine isomers of three groups, caffeoylquinic acid or CQA (5-CQA, 4-CQA, 3-CQA), dicaffeoylquinic acid or diCQA (3,4-diCQA; 3,5-diCQA, 4,5-diCQA) and feruloylquinic acid or FQA (5-FQA, 4-FQA, 3-FQA) were determined in an F2 population of Coffea arabica from the crossbreed (Bourbon x Maragogype) x Timor Hybrid. TCGA contents were quantified by UV-VIS spectrophotometry and High-Resolution Liquid Chromatography - HPLC. The group of caffeoylquinic acids (CQA) represented 82% of the TCGA. From the diCQA, 4,5-diCQA showed lower contents, whereas the highest isomer was 3,5-diCQA. Results per quartile for TCGA-UV and for every isomer showed statistical differences among group averages per isomer. The population behaved as a parental Maragogype according to contents of 5-CQA, 3,5-diCQA, and TCGA-UV. TCGA contents were higher in the parental GQ956 derived from the Timor hybrid 832-1, with resistance to coffee rust. From the three groups, the first characteristic of parental Bourbon showed a higher concentration of diCQA and FQA; the second one showed a lower concentration of TCGA and CQA isomers and the third group higher TCGA and 5-CQA concentrations. This research allowed establishing the basis for plant selection in the F2 generation of C. arabica due to the TCGA content and isomers derived from CQA, diCQA, and FQA.spa
dc.description.abstractRESUMEN Los ácidos clorogénicos (ACG) y sus isómeros han sido asociados a los atributos en la bebida del café especialmente la acidez, astringencia y el amargo. Estos compuestos han sido reportados como relacionados a la resistencia a la roya del café y reconocidos como compuestos bioactivos en la salud humana por su capacidad antioxidante. Se determinó la distribución de ácidos clorogénicos totales (ACGT) y nueve isómeros pertenecientes a tres grupos, los ácidos cafeoilquínicos o CQA (5-CQA, 4-CQA y 3-CQA), los ácidos dicafeoilquínicos o diCQA (3,4-diCQA; 3,5-diCQA y 4,5-diCQA) y los ácidos feruloilquínicos o FQA (5-FQA, 4-FQA y 3-FQA) en una población F2 de Coffea arabica proveniente del cruce de (Bourbon x Marapagogype) x Híbrido de Timor. Se cuantificó el contenido de ACGT mediante espectrofotometría UV-VIS y cromatografía líquida de alta resolución - HPLC. El grupo de los ácidos cafeoilquínicos (CQA) representó el 82% de los ACGT. De los diCQA, el 4,5-diCQA mostró los menores contenidos, mientras que el isómero mayoritario fue el 3,5-diCQA. Los resultados por cuartil para ACGT-UV y cada isómero indicaron diferencias estadísticas entre los promedios de los grupos por cada isómero. La población se comportó como el padre Maragogype según los contenidos de 5-CQA, 3,5-diCQA, y los ACGT-UV. Los contenidos de ACGT fueron mayores en el parental GQ956 derivado del híbrido de Timor 832-1, cuya característica principal es la resistencia a roya. Se formaron tres grupos de plantas de acuerdo a los isómeros analizados. El grupo uno fue característico del parental Bourbon al presentar mayor concentración de diCQA y FQA; el grupo dos presentó menor concentración de ACGT y de isómeros del CQA; y el grupo tres estuvo caracterizado por presentar mayor concentración de ACGT y 5-CQA. Este trabajo permitió establecer las bases para la selección de plantas en una generación F2 de C. arabica por el contenido total de ácidos clorogénicos y los isómeros derivados de CQA, diCQA y FQA.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceAgronomía Colombianaspa
dc.titleCharacterization of chlorogenic acids (CGA) and nine isomers in an F2 population derived from Coffea arabica L.spa
dc.title.alternativeCaracterización de ácidos clorogénicos (ACG) y nueve isómeros en una población F2 derivada de Coffea arabica L.spa
dcterms.bibliographicCitationBarbosa, M.S.G., M.B.D.S. Scholz, C.S.G. Kitzberger, and M.T. Benassi. 2019. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem. 292, 275-280. Doi: 10.1016/j.foodchem.2019.04.072spa
dcterms.bibliographicCitationBertrand, B., D. Villarreal, A. Laffargue, H. Posada, P. Lashermes, and S. Dussert. 2008. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. J. Agric. Food Chem. 56(6), 2273-2280. Doi: 10.1021/jf073314fspa
dcterms.bibliographicCitationBicchi, C.P., A.E. Binello, G.M. Pellegrino, and A.C. Vanni. 1995. Characterization of green and roasted coffees through the chlorogenic acid fraction by HPLC-UV and principal component analysis. J. Agric. Food Chem. 43,1549-1555. Doi: 10.1021/jf00054a025spa
dcterms.bibliographicCitationBrighenti, V., F. Pellati, M. Steinbach, D. Maran, and S. Benvenuti. 2017. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fiber-type Cannabis sativa L. (hemp). J. Pharm. Biomed. Anal. 143, 228-236. Doi: 10.1016/j.jpba.2017.05.049spa
dcterms.bibliographicCitationCheng, B., A. Furtado, H.E. Smyth, and R.J. Henry. 2016. Influence of genotype and environment on coffee quality. Trends Food. Sci. Tech. 57, 20-30. Doi: 10.1016/j.tifs.2016.09.003spa
dcterms.bibliographicCitationCheng, B., A. Furtado, and R.J. Henry. 2018. The coffee bean transcriptome explains the accumulation of the major bean components through ripening. Sci. Rep. 8(1). Doi: 10.1038/ s41598-018-29842-4spa
dcterms.bibliographicCitationDe Maria, C.A.B. and R.F. Alves Moreira. 2004. Analytical methods for chlorogenic acid. Quím. Nova 27(4), 586-592. Doi: 10.1590/ S0100-40422004000400013spa
dcterms.bibliographicCitationEtienne, H., D. Breton, J.C. Breitler, B. Bertrand, E. Déchamp, R. Awada, and J.P. Ducos. 2018. Coffee somatic embryogenesis: how did research, experience gained and innovations promote the commercial propagation of elite clones from the two cultivated species? Front. Plant Sci. 9, 1630. Doi: 10.3389/ fpls.2018.01630spa
dcterms.bibliographicCitationFarah, A. and C.M. Donangelo. 2006. Phenolic compounds in coffee. Braz. J. Plant Physiol. 18(1), 23-36. Doi: 10.1590/ S1677-04202006000100003spa
dcterms.bibliographicCitationGuerra-Guimarães, L., R. Tenente, C. Pinheiro, I. Chaves, Mdo C. Silva, F.M. Cardoso, S. Planchon, D.R. Barros, J. Renaut, and C.P. Ricardo. 2015. Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix. Front. Plant Sci. 6, 478. Doi: 10.3389/fpls.2015.00478spa
dcterms.bibliographicCitationGuerrero, G., M. Suárez, and G. Moreno. 2001. Chlorogenic acids as a potential criterion in coffee genotype selections. J. Agric. Food Chem. 49(5), 2454-2458. Doi: 10.1021/jf001286uspa
dcterms.bibliographicCitationHerrera, J.C. and C. Lambot. 2018. Disseminating improved coffee varieties for sustainable production. pp. 173-194. In: Lashermes, P. (ed.). Achieving sustainable cultivation of coffee: breeding and quality traits. Burleigh Dodds Science Publishing, Cambridge, UK. Doi: 10.19103/AS.2017.0022.10spa
dcterms.bibliographicCitationKy, C.L., J. Louarn, S. Dussert, B. Guyot, S. Hamon, and M. Noirot. 2001. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem. 75(2), 223-230. Doi: 10.1016/ S0308-8146(01)00204-7spa
dcterms.bibliographicCitationMazzafera, P. and G.A. Melo. 2004. Control of chlorogenic acid formation in leaves and endosperm of coffee fruit of Coffea arabica. In: Proceedings of the 20th International Scientific Colloquium on Coffee. 2004, October 15, Bangalore, India. URL: https://www.asic-cafe.org/conference/20th-international- scientific-colloquium-coffee/control-chlorogenic-acidformation (accessed 13 June 2016).spa
dcterms.bibliographicCitationPerrone, D., A. Farah, C.M. Donangelo, T. De Paulis, and P.R. Martin. 2008. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem. 106(2), 859-867. Doi: 10.1016/j. foodchem.2007.06.053spa
dcterms.bibliographicCitationScholz, M.B.S., C.S.G. Kitzberger, N.F. Pagiatto, L.F.P. Pereira, F. Davrieux, D. Pot, and T. Leroy. 2016. Chemical composition in wild Ethiopian Arabica coffee accessions. Euphytica 209(2), 429-438. Doi: 10.1007/s10681-016-1653-yspa
dcterms.bibliographicCitationVan Der Vossen, H.A.M. 2009. The cup quality of disease-resistant cultivars of arabica coffee (Coffea arabica L). Exp. Agric. 45(03), 323-332. Doi: 10.1017/S0014479709007595spa
dcterms.bibliographicCitationVan Der Vossen, H., B. Bertrand, and A. Charrier. 2015. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204(2), 243-256. Doi: 10.1007/s10681-015-1398-zspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.15446/agron.colomb.v38n1.74338
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsKey words: distribution, caffeoylquinic acids, introgression, coffee quality, Timor hybrid, plant breeding.spa
dc.subject.keywordsPalabras clave: distribución, ácidos cafeolquínicos, introgresión, calidad de café, híbrido de Timor, fitomejoramiento.spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por