Mostrar el registro sencillo del ítem
Characterization of chlorogenic acids (CGA) and nine isomers in an F2 population derived from Coffea arabica L.
dc.contributor.author | Loaiza-Campiño, Iván | |
dc.contributor.other | Villegas-Hincapié, Andrés | |
dc.contributor.other | Arana, Victoria | |
dc.contributor.other | Posada, Húver | |
dc.date.accessioned | 2022-11-15T19:18:55Z | |
dc.date.available | 2022-11-15T19:18:55Z | |
dc.date.issued | 2020-04-13 | |
dc.date.submitted | 2019-08-19 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/793 | |
dc.description.abstract | ABSTRACT Chlorogenic acids (CGA) and their isomers have been associated with sensory attributes of the coffee beverage such as acidity, astringency, and bitterness. They have been linked to coffee rust resistance and acknowledged as bioactive compounds due to their antioxidant power with benefits for human health. The total chlorogenic acids (TCGA) and nine isomers of three groups, caffeoylquinic acid or CQA (5-CQA, 4-CQA, 3-CQA), dicaffeoylquinic acid or diCQA (3,4-diCQA; 3,5-diCQA, 4,5-diCQA) and feruloylquinic acid or FQA (5-FQA, 4-FQA, 3-FQA) were determined in an F2 population of Coffea arabica from the crossbreed (Bourbon x Maragogype) x Timor Hybrid. TCGA contents were quantified by UV-VIS spectrophotometry and High-Resolution Liquid Chromatography - HPLC. The group of caffeoylquinic acids (CQA) represented 82% of the TCGA. From the diCQA, 4,5-diCQA showed lower contents, whereas the highest isomer was 3,5-diCQA. Results per quartile for TCGA-UV and for every isomer showed statistical differences among group averages per isomer. The population behaved as a parental Maragogype according to contents of 5-CQA, 3,5-diCQA, and TCGA-UV. TCGA contents were higher in the parental GQ956 derived from the Timor hybrid 832-1, with resistance to coffee rust. From the three groups, the first characteristic of parental Bourbon showed a higher concentration of diCQA and FQA; the second one showed a lower concentration of TCGA and CQA isomers and the third group higher TCGA and 5-CQA concentrations. This research allowed establishing the basis for plant selection in the F2 generation of C. arabica due to the TCGA content and isomers derived from CQA, diCQA, and FQA. | spa |
dc.description.abstract | RESUMEN Los ácidos clorogénicos (ACG) y sus isómeros han sido asociados a los atributos en la bebida del café especialmente la acidez, astringencia y el amargo. Estos compuestos han sido reportados como relacionados a la resistencia a la roya del café y reconocidos como compuestos bioactivos en la salud humana por su capacidad antioxidante. Se determinó la distribución de ácidos clorogénicos totales (ACGT) y nueve isómeros pertenecientes a tres grupos, los ácidos cafeoilquínicos o CQA (5-CQA, 4-CQA y 3-CQA), los ácidos dicafeoilquínicos o diCQA (3,4-diCQA; 3,5-diCQA y 4,5-diCQA) y los ácidos feruloilquínicos o FQA (5-FQA, 4-FQA y 3-FQA) en una población F2 de Coffea arabica proveniente del cruce de (Bourbon x Marapagogype) x Híbrido de Timor. Se cuantificó el contenido de ACGT mediante espectrofotometría UV-VIS y cromatografía líquida de alta resolución - HPLC. El grupo de los ácidos cafeoilquínicos (CQA) representó el 82% de los ACGT. De los diCQA, el 4,5-diCQA mostró los menores contenidos, mientras que el isómero mayoritario fue el 3,5-diCQA. Los resultados por cuartil para ACGT-UV y cada isómero indicaron diferencias estadísticas entre los promedios de los grupos por cada isómero. La población se comportó como el padre Maragogype según los contenidos de 5-CQA, 3,5-diCQA, y los ACGT-UV. Los contenidos de ACGT fueron mayores en el parental GQ956 derivado del híbrido de Timor 832-1, cuya característica principal es la resistencia a roya. Se formaron tres grupos de plantas de acuerdo a los isómeros analizados. El grupo uno fue característico del parental Bourbon al presentar mayor concentración de diCQA y FQA; el grupo dos presentó menor concentración de ACGT y de isómeros del CQA; y el grupo tres estuvo caracterizado por presentar mayor concentración de ACGT y 5-CQA. Este trabajo permitió establecer las bases para la selección de plantas en una generación F2 de C. arabica por el contenido total de ácidos clorogénicos y los isómeros derivados de CQA, diCQA y FQA. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Agronomía Colombiana | spa |
dc.title | Characterization of chlorogenic acids (CGA) and nine isomers in an F2 population derived from Coffea arabica L. | spa |
dc.title.alternative | Caracterización de ácidos clorogénicos (ACG) y nueve isómeros en una población F2 derivada de Coffea arabica L. | spa |
dcterms.bibliographicCitation | Barbosa, M.S.G., M.B.D.S. Scholz, C.S.G. Kitzberger, and M.T. Benassi. 2019. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem. 292, 275-280. Doi: 10.1016/j.foodchem.2019.04.072 | spa |
dcterms.bibliographicCitation | Bertrand, B., D. Villarreal, A. Laffargue, H. Posada, P. Lashermes, and S. Dussert. 2008. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. J. Agric. Food Chem. 56(6), 2273-2280. Doi: 10.1021/jf073314f | spa |
dcterms.bibliographicCitation | Bicchi, C.P., A.E. Binello, G.M. Pellegrino, and A.C. Vanni. 1995. Characterization of green and roasted coffees through the chlorogenic acid fraction by HPLC-UV and principal component analysis. J. Agric. Food Chem. 43,1549-1555. Doi: 10.1021/jf00054a025 | spa |
dcterms.bibliographicCitation | Brighenti, V., F. Pellati, M. Steinbach, D. Maran, and S. Benvenuti. 2017. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fiber-type Cannabis sativa L. (hemp). J. Pharm. Biomed. Anal. 143, 228-236. Doi: 10.1016/j.jpba.2017.05.049 | spa |
dcterms.bibliographicCitation | Cheng, B., A. Furtado, H.E. Smyth, and R.J. Henry. 2016. Influence of genotype and environment on coffee quality. Trends Food. Sci. Tech. 57, 20-30. Doi: 10.1016/j.tifs.2016.09.003 | spa |
dcterms.bibliographicCitation | Cheng, B., A. Furtado, and R.J. Henry. 2018. The coffee bean transcriptome explains the accumulation of the major bean components through ripening. Sci. Rep. 8(1). Doi: 10.1038/ s41598-018-29842-4 | spa |
dcterms.bibliographicCitation | De Maria, C.A.B. and R.F. Alves Moreira. 2004. Analytical methods for chlorogenic acid. Quím. Nova 27(4), 586-592. Doi: 10.1590/ S0100-40422004000400013 | spa |
dcterms.bibliographicCitation | Etienne, H., D. Breton, J.C. Breitler, B. Bertrand, E. Déchamp, R. Awada, and J.P. Ducos. 2018. Coffee somatic embryogenesis: how did research, experience gained and innovations promote the commercial propagation of elite clones from the two cultivated species? Front. Plant Sci. 9, 1630. Doi: 10.3389/ fpls.2018.01630 | spa |
dcterms.bibliographicCitation | Farah, A. and C.M. Donangelo. 2006. Phenolic compounds in coffee. Braz. J. Plant Physiol. 18(1), 23-36. Doi: 10.1590/ S1677-04202006000100003 | spa |
dcterms.bibliographicCitation | Guerra-Guimarães, L., R. Tenente, C. Pinheiro, I. Chaves, Mdo C. Silva, F.M. Cardoso, S. Planchon, D.R. Barros, J. Renaut, and C.P. Ricardo. 2015. Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix. Front. Plant Sci. 6, 478. Doi: 10.3389/fpls.2015.00478 | spa |
dcterms.bibliographicCitation | Guerrero, G., M. Suárez, and G. Moreno. 2001. Chlorogenic acids as a potential criterion in coffee genotype selections. J. Agric. Food Chem. 49(5), 2454-2458. Doi: 10.1021/jf001286u | spa |
dcterms.bibliographicCitation | Herrera, J.C. and C. Lambot. 2018. Disseminating improved coffee varieties for sustainable production. pp. 173-194. In: Lashermes, P. (ed.). Achieving sustainable cultivation of coffee: breeding and quality traits. Burleigh Dodds Science Publishing, Cambridge, UK. Doi: 10.19103/AS.2017.0022.10 | spa |
dcterms.bibliographicCitation | Ky, C.L., J. Louarn, S. Dussert, B. Guyot, S. Hamon, and M. Noirot. 2001. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem. 75(2), 223-230. Doi: 10.1016/ S0308-8146(01)00204-7 | spa |
dcterms.bibliographicCitation | Mazzafera, P. and G.A. Melo. 2004. Control of chlorogenic acid formation in leaves and endosperm of coffee fruit of Coffea arabica. In: Proceedings of the 20th International Scientific Colloquium on Coffee. 2004, October 15, Bangalore, India. URL: https://www.asic-cafe.org/conference/20th-international- scientific-colloquium-coffee/control-chlorogenic-acidformation (accessed 13 June 2016). | spa |
dcterms.bibliographicCitation | Perrone, D., A. Farah, C.M. Donangelo, T. De Paulis, and P.R. Martin. 2008. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem. 106(2), 859-867. Doi: 10.1016/j. foodchem.2007.06.053 | spa |
dcterms.bibliographicCitation | Scholz, M.B.S., C.S.G. Kitzberger, N.F. Pagiatto, L.F.P. Pereira, F. Davrieux, D. Pot, and T. Leroy. 2016. Chemical composition in wild Ethiopian Arabica coffee accessions. Euphytica 209(2), 429-438. Doi: 10.1007/s10681-016-1653-y | spa |
dcterms.bibliographicCitation | Van Der Vossen, H.A.M. 2009. The cup quality of disease-resistant cultivars of arabica coffee (Coffea arabica L). Exp. Agric. 45(03), 323-332. Doi: 10.1017/S0014479709007595 | spa |
dcterms.bibliographicCitation | Van Der Vossen, H., B. Bertrand, and A. Charrier. 2015. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204(2), 243-256. Doi: 10.1007/s10681-015-1398-z | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.15446/agron.colomb.v38n1.74338 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Key words: distribution, caffeoylquinic acids, introgression, coffee quality, Timor hybrid, plant breeding. | spa |
dc.subject.keywords | Palabras clave: distribución, ácidos cafeolquínicos, introgresión, calidad de café, híbrido de Timor, fitomejoramiento. | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |