Mostrar el registro sencillo del ítem

dc.contributor.authorRamírez-Malule, Howard
dc.contributor.otherQuinones-Murillo, Diego H.
dc.contributor.otherManotas-Duque, Diego
dc.date.accessioned2022-11-15T19:18:31Z
dc.date.available2022-11-15T19:18:31Z
dc.date.issued2020-05-18
dc.date.submitted2019-12-16
dc.identifier.urihttps://hdl.handle.net/20.500.12834/791
dc.description.abstractThis paper presents a bibliometric analysis of peer-reviewed scientific literature on emerging contaminants published from 2000 through 2019. A total of 4968 documents (among research articles and review papers) collected from Scopus database were analyzed using the VOSviewer 1.6.11 software. According to our results, this topic has been capturing researchers’ attention over the years and the latter five years of the analysis timespan corresponds to the period of highest scientific productivity on this subject, when a 70.4% of all analyzed documents were published. United States, China, Spain, Italy and Canada were the tope5 most productive countries in terms of number of published works, while Science of the Total Environment, Chemosphere, Environmental Science and Pollution Research, Environmental Pollution and Water Research stood out as the journals with the highest number of publications, gathering a 31% of papers and 34% of all citations. According to the frequency of author keywords, the main specific research topic assessed by the researchers are the occurrence of pharmaceuticals and personal care products in wastewater and the removal of such pollutants by the application of adsorption and advanced oxidation processes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceEmerging Contaminantsspa
dc.titleEmerging contaminants as global environmental hazards. A bibliometric analysisspa
dcterms.bibliographicCitation[1] L. Martín-Pozo, B. de Alarc on-G omez, R. Rodríguez-G omez, M.T. García- C orcoles, M. Çipa, A. Zafra-G omez, Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review, Talanta 192 (2019) 508e533, https://doi.org/10.1016/j.talanta.2018.09.056.spa
dcterms.bibliographicCitation[2] K.M. Dimpe, P.N. Nomngongo, Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices, TrAC Trends Anal. Chem. 82 (2016) 199e207, https://doi.org/10.1016/ j.trac.2016.05.023.spa
dcterms.bibliographicCitation[3] M. Taheran, M. Naghdi, S.K. Brar, M. Verma, R.Y. Surampalli, Emerging contaminants: here today, there tomorrow!, Environ. Nanotechnol. Monit. Manag. 10 (2018) 122e126, https://doi.org/10.1016/j.enmm.2018.05.010.spa
dcterms.bibliographicCitation[4] J. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field, Environ. Pollut. 231 (2017) 954e970, https://doi.org/10.1016/ j.envpol.2017.08.032.spa
dcterms.bibliographicCitation[5] C. Lodeiro, J.L. Capelo, E. Oliveira, J.F. Lodeiro, New toxic emerging contaminants: beyond the toxicological effects, Environ. Sci. Pollut. Res. 26 (2019) 1e4, https://doi.org/10.1007/s11356-018-3003-1.spa
dcterms.bibliographicCitation[6] P.J. Barroso, J.L. Santos, J. Martín, I. Aparicio, E. Alonso, Emerging contaminants in the atmosphere: analysis, occurrence and future challenges, Crit. Rev. Environ. Sci. Technol. 49 (2019) 104e171, https://doi.org/10.1080/ 10643389.2018.1540761.spa
dcterms.bibliographicCitation[7] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res. 72 (2015) 3e27, https://doi.org/10.1016/j.watres.2014.08.053spa
dcterms.bibliographicCitation[8] D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence, Environ. Pollut. 163 (2012) 287e303, https://doi.org/10.1016/j.envpol.2011.12.034spa
dcterms.bibliographicCitation[9] N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination 239 (2009) 229e246, https://doi.org/10.1016/ j.desal.2008.03.020.spa
dcterms.bibliographicCitation[10] J. Rivera-Utrilla, M. S anchez-Polo, M. A. Ferro-García, G. Prados-Joya, R. Ocampo-P erez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere 93 (2013) 1268e1287, https:// doi.org/10.1016/j.chemosphere.2013.07.059.spa
dcterms.bibliographicCitation[11] J. Yang, Y. Zhao, M. Li, M. Du, X. Li, Y. Li, A review of a class of emerging contaminants: the classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs), Int. J. Mol. Sci. 20 (2019), https://doi.org/10.3390/ijms20122874.spa
dcterms.bibliographicCitation[12] M. Bilal, M. Adeel, T. Rasheed, Y. Zhao, H.M.N. Iqbal, Emerging contaminants of high concern and their enzyme-assisted biodegradation e a review, Environ. Int. 124 (2019) 336e353, https://doi.org/10.1016/ j.envint.2019.01.011.spa
dcterms.bibliographicCitation[13] N. Das, J. Madhavan, A. Selvi, D. Das, An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern, 3 Biotech 9 (2019) 231, https://doi.org/10.1007/s13205-019-1766-9.spa
dcterms.bibliographicCitation[14] M. Petrovic, E. Eljarrat, M.J. Lopez de Alda, D. Barcel o, Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data, Anal. Bioanal. Chem. 378 (2004) 549e562, https://doi.org/10.1007/s00216-003-2184-7.spa
dcterms.bibliographicCitation[15] S. Rodriguez-Mozaz, M.J. Lopez de Alda, D. Barcel o, Advantages and limitations of on-line solid phase extraction coupled to liquid chromatographyemass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water, J. Chromatogr., A 1152 (2007) 97e115, https://doi.org/10.1016/j.chroma.2007.01.046.spa
dcterms.bibliographicCitation[16] R. Carson, Silent Spring Houghton Mifflin, Boston, MA, USA, 1962.spa
dcterms.bibliographicCitation[17] S. Sauv e, M. Desrosiers, A review of what is an emerging contaminant, Chem. Cent. J. 8 (2014) 15, https://doi.org/10.1186/1752-153X-8-15.spa
dcterms.bibliographicCitation[18] I.J. Selikoff, W.J. Nicholson, A.M. Langer, Asbestos air pollution, Arch. Environ. Health 25 (1972) 1e13, https://doi.org/10.1080/00039896.1972.10666125.spa
dcterms.bibliographicCitation[19] D. G omez-Ríos, H. Ramírez-Malule, Bibliometric analysis of recent research on multidrug and antibiotics resistance (2017e2018), J. Appl. Pharmaceut. Sci. 9 (2019) 112e116, https://doi.org/10.7324/JAPS.2019.90515.spa
dcterms.bibliographicCitation[20] H. Ramirez-Malule, Bibliometric analysis of global research on clavulanic acid, Antibiotics 7 (2018) 102, https://doi.org/10.3390/antibiotics7040102.spa
dcterms.bibliographicCitation[21] K. Yang, L.I. Meho, Citation analysis: a comparison of google scholar, Scopus, and web of science, Proc. Am. Soc. Inf. Sci. Technol. 43 (2007) 1e15, https:// doi.org/10.1002/meet.14504301185.spa
dcterms.bibliographicCitation[22] N.J. van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics 84 (2010) 523e538, https:// doi.org/10.1007/s11192-009-0146-3.spa
dcterms.bibliographicCitation[23] B.K. Schaule, C.C. Patterson, Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations, Earth Planet Sci. Lett. 54 (1981) 97e116, https://doi.org/10.1016/0012-821X(81)90072-8.spa
dcterms.bibliographicCitation[24] I. Renberg, M.W. Persson, O. Emteryd, Pre-industrial atmospheric lead contamination detected in Swedish lake sediments, Nature 368 (1994) 323e326, https://doi.org/10.1038/368323a0.spa
dcterms.bibliographicCitation[25] Q. Wang, D. Kim, D.D. Dionysiou, G.A. Sorial, D. Timberlake, Sources and remediation for mercury contamination in aquatic systemsda literature review, Environ. Pollut. 131 (2004) 323e336, https://doi.org/10.1016/ j.envpol.2004.01.010.spa
dcterms.bibliographicCitation[26] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999 2000: a national reconnaissance, Environ. Sci. Technol. 36 (2002) 1202e1211, https://doi.org/10.1021/ es011055j.spa
dcterms.bibliographicCitation[27] J.T. Kretchik, Ucmr 2, J. Chem. Health Saf. 13 (2006) 43, https://doi.org/ 10.1016/j.jchas.2005.11.009.spa
dcterms.bibliographicCitation[28] L. Lamastra, M. Balderacchi, M. Trevisan, Inclusion of emerging organic contaminants in groundwater monitoring plans, MethodsX 3 (2016) 459e476, https://doi.org/10.1016/j.mex.2016.05.008.spa
dcterms.bibliographicCitation[29] European Union, Directive 23 October 2000 n. 60. Establishing a framework forcommunity action in the field of water policy 327, Off J Eur Union L, Luxembourg, 2000.spa
dcterms.bibliographicCitation[30] R.N. Carvalho, L. Ceriani, A. Ippolito, Development of the First Watch List under the Environmental Quality Standards Directive Water Policy, 2015, https://doi.org/10.2788/101376.spa
dcterms.bibliographicCitation[31] M. Carere, S. Polesello, R. Kase, B.M. Gawlik, The emerging contaminants in the context of the EU water framework directive, in: M. Petrovic, S. Sabater, A. Elosegi, D. Barcel o (Eds.), Emerg. Contam. River Ecosyst. Occur. Eff. Under Mult. Stress Cond., Springer International Publishing, Cham, 2015, pp. 197e215, https://doi.org/10.1007/698_2015_5011.spa
dcterms.bibliographicCitation[32] M. Khan, Y. Chang, Environmental challenges and current practices in Chinada thorough analysis, Sustainability 10 (2018) 2547, https://doi.org/ 10.3390/su10072547.spa
dcterms.bibliographicCitation[33] A.-G. Hu, The Five-Year Plan: a new tool for energy saving and emissions reduction in China, Adv. Clim. Change Res. 7 (2016) 222e228, https:// doi.org/10.1016/j.accre.2016.12.005.spa
dcterms.bibliographicCitation[34] Unesco, International Iniciative on Water Quality, France, 2015. https:// unesdoc.unesco.org/ark:/48223/pf0000243651. (Accessed 11 November 2019).spa
dcterms.bibliographicCitation[35] E. Felis, J. Kalka, A. Sochacki, K. Kowalska, S. Bajkacz, M. Harnisz, E. Korzeniewska, Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications, Eur. J. Pharmacol. (2019) 172813, https://doi.org/10.1016/j.ejphar.2019.172813.spa
dcterms.bibliographicCitation[36] Y. Li, L. Zhang, J. Ding, X. Liu, Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals, J. Environ. Manag. 253 (2020) 109732, https:// doi.org/10.1016/j.jenvman.2019.109732.spa
dcterms.bibliographicCitation[37] M. la Farr e, S. P erez, L. Kantiani, D. Barcel o, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, TrAC Trends Anal. Chem. 27 (2008) 991e1007, https://doi.org/ 10.1016/j.trac.2008.09.010.spa
dcterms.bibliographicCitation[38] P. Bottoni, S. Caroli, A.B. Caracciolo, Pharmaceuticals as priority water contaminants, Toxicol. Environ. Chem. 92 (2010) 549e565, https://doi.org/ 10.1080/02772241003614320.spa
dcterms.bibliographicCitation[39] Department of Economic and Social Affairs Population, United Nations, World Population Prospects 2019, 2019. https://population.un.org/wpp/. (Accessed 13 December 2019).spa
dcterms.bibliographicCitation[40] C. Gadipelly, A. P erez-Gonz alez, G.D. Yadav, I. Ortiz, R. Ib a~nez, V.K. Rathod, K.V. Marathe, Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse, Ind. Eng. Chem. Res. 53 (2014) 11571e11592, https://doi.org/10.1021/ie501210j.spa
dcterms.bibliographicCitation[41] B.H. Diya’uddeen, W.M.A.W. Daud, A.R. Abdul Aziz, Treatment technologies for petroleum refinery effluents: a review, Process Saf. Environ. Protect. 89 (2011) 95e105, https://doi.org/10.1016/j.psep.2010.11.003.spa
dcterms.bibliographicCitation[42] X. Wei, X. Kong, S. Wang, H. Xiang, J. Wang, J. Chen, Removal of heavy metals from electroplating wastewater by thin-film composite nanofiltration hollow-fiber membranes, Ind. Eng. Chem. Res. 52 (2013) 17583e17590, https://doi.org/10.1021/ie402387u.spa
dcterms.bibliographicCitation[43] N.A. Khan, S.U. Khan, D.T. Islam, S. Ahmed, I.H. Farooqi, M.H. Isa, A. Hussain, F. Changani, A. Dhingra, Performance evaluation of column-SBR in paper and pulp wastewater treatment: optimization and bio-kinetics, Desalin. Water Treat. 156 (2019) 204e219, https://doi.org/10.5004/dwt.2019.23775.spa
dcterms.bibliographicCitation[44] L. Rizzo, S. Malato, D. Antakyali, V.G. Beretsou, M.B. Ðoli c, W. Gernjak, E. Heath, I. Ivancev-Tumbas, P. Karaolia, A.R. Lado Ribeiro, G. Mascolo, C.S. McArdell, H. Schaar, A.M.T. Silva, D. Fatta-Kassinos, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ. 655 (2019) 986e1008, https://doi.org/10.1016/j.scitotenv.2018.11.265.spa
dcterms.bibliographicCitation[45] O.M. Rodriguez-Narvaez, J.M. Peralta-Hernandez, A. Goonetilleke, E.R. Bandala, Treatment technologies for emerging contaminants in water: a review, Chem. Eng. J. 323 (2017) 361e380, https://doi.org/10.1016/ j.cej.2017.04.106.spa
dcterms.bibliographicCitation[46] D.H. Qui~nones, P.M. Alvarez, A. Rey, F.J. Beltr an, Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study, Separ. Purif. Technol. 149 (2015) 132e139, https://doi.org/10.1016/j.seppur.2015.05.033.spa
dcterms.bibliographicCitation[47] D.S. Babu, V. Srivastava, P.V. Nidheesh, M.S. Kumar, Detoxification of water and wastewater by advanced oxidation processes, Sci. Total Environ. 696 (2019) 133961, https://doi.org/10.1016/j.scitotenv.2019.133961.spa
dcterms.bibliographicCitation[48] L.K. Wang, Y.-T. Hung, H.H. Lo, C. Yapijakis, Handbook of Industrial and Hazardous Wastes Treatment, CRC Press, 2004.spa
dcterms.bibliographicCitation[49] W.R. Haag, C.C.D. Yao, Rate constants for reaction of hydroxyl radicals with several drinking water contaminants, Environ. Sci. Technol. 26 (1992) 1005e1013, https://doi.org/10.1021/es00029a021.spa
dcterms.bibliographicCitation[50] D. Kanakaraju, B.D. Glass, M. Oelgem€oller, Advanced oxidation processmediated removal of pharmaceuticals from water: a review, J. Environ. Manag. 219 (2018) 189e207, https://doi.org/10.1016/ j.jenvman.2018.04.103.spa
dcterms.bibliographicCitation[51] P. Bansal, A. Verma, S. Talwar, Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode, Chem. Eng. J. 349 (2018) 838e848, https://doi.org/10.1016/j.cej.2018.05.140.spa
dcterms.bibliographicCitation[52] K. Sivagami, K.P. Sakthivel, I.M. Nambi, Advanced oxidation processes for the treatment of tannery wastewater, J. Environ. Chem. Eng. 6 (2018) 3656e3663, https://doi.org/10.1016/j.jece.2017.06.004.spa
dcterms.bibliographicCitation[53] G. Ferro, A. Fiorentino, M.C. Alferez, M.I. Polo-L opez, L. Rizzo, P. Fern andez- Ib a~nez, Urban wastewater disinfection for agricultural reuse: effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain, Appl. Catal. B Environ. 178 (2015) 65e73, https://doi.org/10.1016/ j.apcatb.2014.10.043.spa
dcterms.bibliographicCitation[54] V.J.P. Vilar, L.X. Pinho, A.M.A. Pintor, R.A.R. Boaventura, Treatment of textile wastewaters by solar-driven advanced oxidation processes, Sol. Energy 85 (2011) 1927e1934, https://doi.org/10.1016/j.solener.2011.04.033.spa
dcterms.bibliographicCitation[55] C.T. Benatti, C.R.G. Tavares, T.A. Guedes, Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology, J. Environ. Manag. 80 (2006) 66e74, https://doi.org/10.1016/ j.jenvman.2005.08.014.spa
dcterms.bibliographicCitation[56] G. Mascolo, R. Ciannarella, L. Balest, A. Lopez, Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation, J. Hazard Mater. 152 (2008) 1138e1145, https://doi.org/10.1016/j.jhazmat.2007.07.120.spa
dcterms.bibliographicCitation[57] H. Einaga, Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst, Appl. Catal. B Environ. 38 (2002) 215e225, https://doi.org/10.1016/S0926-3373(02)00056-5.spa
dcterms.bibliographicCitation[58] V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, Modified TiO 2 based photocatalysts for improved air and health quality, J. Mater. 3 (2017) 3e16, https:// doi.org/10.1016/j.jmat.2016.11.002.spa
dcterms.bibliographicCitation[59] B.M. da Costa Filho, G. V Silva, R.A.R. Boaventura, M.M. Dias, J.C.B. Lopes, V.J.P. Vilar, Ozonation and ozone-enhanced photocatalysis for VOC removal from air streams: process optimization, synergy and mechanism assessment, Sci. Total Environ. 687 (2019) 1357e1368, https://doi.org/10.1016/ j.scitotenv.2019.05.365.spa
dcterms.bibliographicCitation[60] I. Michael, Z. Frontistis, D. Fatta-Kassinos, Removal of pharmaceuticals from environmentally relevant matrices by advanced oxidation processes (AOPs), in: M. Petrovic, D. Barcelo, S.B.T.-C.A.C. P erez (Eds.), Anal. Removal, Eff. Risk Pharm. Water Cycle, Elsevier, 2013, pp. 345e407, https://doi.org/10.1016/ B978-0-444-62657-8.00011-2.spa
dcterms.bibliographicCitation[61] L. Sbardella, I. Velo-Gala, J. Comas, I. Rodríguez-Roda Layret, A. Fenu, W. Gernjak, The impact of wastewater matrix on the degradation of pharmaceutically active compounds by oxidation processes including ultraviolet radiation and sulfate radicals, J. Hazard Mater. 380 (2019) 120869, https:// doi.org/10.1016/j.jhazmat.2019.120869.spa
dcterms.bibliographicCitation[62] J.M. Coronado, M.D. Hern andez-Alonso, in: J.M. Coronado, F. Fresno, M.D. Hern andez-Alonso, R. Portela (Eds.), The Keys of Success: TiO2 as a Benchmark Photocatalyst, Springer London, London, 2013, pp. 85e101, https://doi.org/10.1007/978-1-4471-5061-9_5.spa
dcterms.bibliographicCitation[63] A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal. Today 58 (2000) 167e197, https:// doi.org/10.1016/S0920-5861(00)00251-0.spa
dcterms.bibliographicCitation[64] M.A. Mohd Adnan, N. Muhd Julkapli, M.N.I. Amir, A. Maamor, Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review, Int. J. Environ. Sci. Technol. 16 (2019) 547e566, https:// doi.org/10.1007/s13762-018-1857-x.spa
dcterms.bibliographicCitation[65] A. Rey, D.H. Qui~nones, P.M. Alvarez, F.J. Beltr an, P.K. Plucinski, Simulated solar-light assisted photocatalytic ozonation of metoprolol over titaniacoated magnetic activated carbon, Appl. Catal. B Environ. 111e112 (2012) 246e253, https://doi.org/10.1016/j.apcatb.2011.10.005.spa
dcterms.bibliographicCitation[66] M. Mehrjouei, S. Müller, D. M€oller, Degradation of oxalic acid in a photocatalytic ozonation system by means of Pilkington ActiveTM glass, J. Photochem. Photobiol. Chem. 217 (2011) 417e424, https://doi.org/ 10.1016/j.jphotochem.2010.11.016.spa
dcterms.bibliographicCitation[67] D.H. Qui~nones-Murillo, A.A. Ariza-Reyes, L.J. Ardila-V elez, Some kinetic and synergistic considerations on the oxidation of the azo compound Ponceau 4R by solaremediated heterogeneous photocatalytic ozonation, Desalin. Water Treat. 170 (2019) 61e74, https://doi.org/10.5004/dwt.2019.24711.spa
dcterms.bibliographicCitation[68] P. Ca~nizares, R. Paz, C. S aez, M.A. Rodrigo, Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes, J. Environ. Manag. 90 (2009) 410e420, https://doi.org/ 10.1016/j.jenvman.2007.10.010.spa
dcterms.bibliographicCitation[69] A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes e a review, Chemosphere 174 (2017) 665e688, https://doi.org/10.1016/ j.chemosphere.2017.02.019.spa
dcterms.bibliographicCitation[70] G. Pliego, J.A. Zazo, P. Garcia-Mu~noz, M. Munoz, J.A. Casas, J.J. Rodriguez, Trends in the intensification of the Fenton process for wastewater treatment: an overview, Crit. Rev. Environ. Sci. Technol. 45 (2015) 2611e2692, https:// doi.org/10.1080/10643389.2015.1025646.spa
dcterms.bibliographicCitation[71] Z. Zhou, X. Liu, K. Sun, C. Lin, J. Ma, M. He, W. Ouyang, Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review, Chem. Eng. J. 372 (2019) 836e851, https://doi.org/ 10.1016/j.cej.2019.04.213.spa
dcterms.bibliographicCitation[72] M. Brienza, I. Katsoyiannis, Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater, Sustainability 9 (2017) 1604, https://doi.org/10.3390/su9091604.spa
dcterms.bibliographicCitation[73] S. Guerra-Rodríguez, E. Rodríguez, D. Singh, J. Rodríguez-Chueca, Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review, Water 10 (2018) 1828, https://doi.org/10.3390/ w10121828.spa
dcterms.bibliographicCitation[74] S. Yang, P. Wang, X. Yang, G. Wei, W. Zhang, L. Shan, A novel advanced oxidation process to degrade organic pollutants in wastewater: microwaveactivated persulfate oxidation, J. Environ. Sci. 21 (2009) 1175e1180, https:// doi.org/10.1016/S1001-0742(08)62399-2.spa
dcterms.bibliographicCitation[75] C. Tan, N. Gao, Y. Deng, N. An, J. Deng, Heat-activated persulfate oxidation of diuron in water, Chem. Eng. J. 203 (2012) 294e300, https://doi.org/10.1016/ j.cej.2012.07.005.spa
dcterms.bibliographicCitation[76] R.A. Torres-Palma, E.A. Serna-Galvis, Sonolysis, in: S.C. Ameta (Ed.), Adv. Oxid. Process. Waste Water Treat., Elsevier, 2018, pp. 177e213, https:// doi.org/10.1016/B978-0-12-810499-6.00007-3. R.B.T.-A.O.P. for W.W.T. Ameta.spa
dcterms.bibliographicCitation[77] O. Tunay, I. Kabdasli, I. Arslan-Alaton, T. Olmez-Hanci, Chemical Oxidation Applications for Industrial Wastewaters, Iwa publishing, 2010.spa
dcterms.bibliographicCitation[78] C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev. 35 (2006) 1324e1340, https://doi.org/10.1039/B517632Hspa
dcterms.bibliographicCitation[79] A. Kraft, M. Stadelmann, M. Blaschke, Anodic oxidation with doped diamond electrodes: a new advanced oxidation process, J. Hazard Mater. 103 (2003) 247e261, https://doi.org/10.1016/j.jhazmat.2003.07.006.spa
dcterms.bibliographicCitation[80] Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap, S. Gibb, Utilizing lowcost natural waste for the removal of pharmaceuticals from water: mechanisms, isotherms and kinetics at low concentrations, J. Clean. Prod. 227 (2019) 88e97, https://doi.org/10.1016/j.jclepro.2019.04.081.spa
dcterms.bibliographicCitation[81] A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani, M.P. McHenry, Potential use of algae for heavy metal bioremediation, a critical review, J. Environ. Manag. 181 (2016) 817e831, https://doi.org/10.1016/ j.jenvman.2016.06.059.spa
dcterms.bibliographicCitation[82] C. Sophia A, E.C. Lima, Removal of emerging contaminants from the environment by adsorption, Ecotoxicol. Environ. Saf. 150 (2018) 1e17, https:// doi.org/10.1016/j.ecoenv.2017.12.026.spa
dcterms.bibliographicCitation[83] Y.-C. Chiang, R.-S. Juang, Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review, J. Taiwan Inst. Chem. Eng. 71 (2017) 214e234, https://doi.org/10.1016/j.jtice.2016.12.014.spa
dcterms.bibliographicCitation[84] Y. Xiang, Z. Xu, Y. Wei, Y. Zhou, X. Yang, Y. Yang, J. Yang, J. Zhang, L. Luo, Z. Zhou, Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors, J. Environ. Manag. 237 (2019) 128e138, https://doi.org/10.1016/j.jenvman.2019.02.068.spa
dcterms.bibliographicCitation[85] S.C.R. Marques, J.M. Marcuzzo, M.R. Baldan, A.S. Mestre, A.P. Carvalho, Pharmaceuticals removal by activated carbons: role of morphology on cyclic thermal regeneration, Chem. Eng. J. 321 (2017) 233e244, https://doi.org/ 10.1016/j.cej.2017.03.101.spa
dcterms.bibliographicCitation[86] G. San Miguel, S.D. Lambert, N.J.D. Graham, A practical review of the performance of organic and inorganic adsorbents for the treatment of contaminated waters, J. Chem. Technol. Biotechnol. 81 (2006) 1685e1696, https://doi.org/10.1002/jctb.1600.spa
dcterms.bibliographicCitation[87] P.N.E. Diagboya, E.D. Dikio, Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment, Microporous Mesoporous Mater. 266 (2018) 252e267, https://doi.org/ 10.1016/j.micromeso.2018.03.008.spa
dcterms.bibliographicCitation[88] A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Separ. Purif. Technol. 228 (2019) 115719, https:// doi.org/10.1016/j.seppur.2019.115719.spa
dcterms.bibliographicCitation[89] N. Chaukura, W. Gwenzi, N. Tavengwa, M.M. Manyuchi, Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries, Environ. Dev. 19 (2016) 84e89, https:// doi.org/10.1016/j.envdev.2016.05.002.spa
dcterms.bibliographicCitation[90] S.A. Sadeek, N.A. Negm, H.H.H. Hefni, M.M.A. Wahab, Metal adsorption by agricultural biosorbents: adsorption isotherm, kinetic and biosorbents chemical structures, Int. J. Biol. Macromol. 81 (2015) 400e409, https:// doi.org/10.1016/j.ijbiomac.2015.08.031.spa
dcterms.bibliographicCitation[91] J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195e226, https://doi.org/10.1016/ j.biotechadv.2008.11.002.spa
dcterms.bibliographicCitation[92] M. Kamali, D.P. Suhas, M.E. Costa, I. Capela, T.M. Aminabhavi, Sustainability considerations in membrane-based technologies for industrial effluents treatment, Chem. Eng. J. 368 (2019) 474e494, https://doi.org/10.1016/ j.cej.2019.02.075.spa
dcterms.bibliographicCitation[93] M.F.A. Goosen, W.H. Shayya, Water management, purification, and conservation in arid climates, in: Water Purification, ume 2, Univ. of Sultan Qaboos Univ.(OM), 1999.spa
dcterms.bibliographicCitation[94] S. Kim, K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, M. Jang, D.-H. Kim, M. Yu, J. Heo, Y. Yoon, Removal of contaminants of emerging concern by membranes in water and wastewater: a review, Chem. Eng. J. 335 (2018) 896e914, https://doi.org/10.1016/j.cej.2017.11.044.spa
dcterms.bibliographicCitation[95] W.J.T. Lewis, T. Mattsson, Y.M.J. Chew, M.R. Bird, Investigation of cake fouling and pore blocking phenomena using fluid dynamic gauging and critical flux models, J. Membr. Sci. 533 (2017) 38e47, https://doi.org/10.1016/ j.memsci.2017.03.020.spa
dcterms.bibliographicCitation[96] B. Van der Bruggen, M. M€antt€ari, M. Nystr€om, Drawbacks of applying nanofiltration and how to avoid them: a review, Separ. Purif. Technol. 63 (2008) 251e263, https://doi.org/10.1016/j.seppur.2008.05.010.spa
dcterms.bibliographicCitation[97] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331e349, https://doi.org/10.1016/j.apcatb.2012.05.036.spa
dcterms.bibliographicCitation[98] C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal. B Environ. 87 (2009) 105e145, https://doi.org/10.1016/ j.apcatb.2008.09.017.spa
dcterms.bibliographicCitation[99] Y.-G. Zhu, T.A. Johnson, J.-Q. Su, M. Qiao, G.-X. Guo, R.D. Stedtfeld, S.A. Hashsham, J.M. Tiedje, Diverse and abundant antibiotic resistance genes in Chinese swine farms, Proc. Natl. Acad. Sci. Unit. States Am. 110 (2013) 3435e3440, https://doi.org/10.1073/pnas.1222743110.spa
dcterms.bibliographicCitation[100] A. Pruden, R. Pei, H. Storteboom, K.H. Carlson, Antibiotic resistance genes as emerging contaminants: studies in northern Colorado y, Environ. Sci. Technol. 40 (2006) 7445e7450, https://doi.org/10.1021/es060413l.spa
dcterms.bibliographicCitation[101] B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK, Water Res. 42 (2008) 3498e3518, https:// doi.org/10.1016/j.watres.2008.04.026.spa
dcterms.bibliographicCitation[102] S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. DeCarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination 202 (2007) 156e181, https://doi.org/10.1016/j.desal.2005.12.052.spa
dcterms.bibliographicCitation[103] V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices e a review, J. Environ. Manag. 92 (2011) 2304e2347, https://doi.org/10.1016/j.jenvman.2011.05.023.spa
dcterms.bibliographicCitation[104] M.J. Focazio, D.W. Kolpin, K.K. Barnes, E.T. Furlong, M.T. Meyer, S.D. Zaugg, L.B. Barber, M.E. Thurman, A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States d II) Untreated drinking water sources, Sci. Total Environ. 402 (2008) 201e216, https://doi.org/10.1016/j.scitotenv.2008.02.021.spa
dcterms.bibliographicCitation[105] L. Liu, M. Bilal, X. Duan, H.M.N. Iqbal, Mitigation of environmental pollution by genetically engineered bacteria d current challenges and future perspectives, Sci. Total Environ. 667 (2019) 444e454, https://doi.org/10.1016/ j.scitotenv.2019.02.390spa
dcterms.bibliographicCitation[106] C. Arguedas, Pollution standards, technology investment and fines for noncompliance, J. Regul. Econ. 44 (2013) 156e176, https://doi.org/10.1007/ s11149-013-9217-8.spa
dcterms.bibliographicCitation[107] G. Hernandez-Vargas, J. Sosa-Hern andez, S. Saldarriaga-Hernandez, A. Villalba-Rodríguez, R. Parra-Saldivar, H. Iqbal, Electrochemical biosensors: a solution to pollution detection with reference to environmental contaminants, Biosensors 8 (2018) 29, https://doi.org/10.3390/bios8020029.spa
dcterms.bibliographicCitation[108] S. Jarque, M. Bittner, L. Blaha, K. Hilscherova, Yeast biosensors for detection of environmental pollutants: current state and limitations, Trends Biotechnol. 34 (2016) 408e419, https://doi.org/10.1016/j.tibtech.2016.01.007.spa
dcterms.bibliographicCitation[109] A. Sharfalddin, E. Alzahrani, M. Alamoudi, Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes, Res. Chem. Intermed. 43 (2017) 2587e2601, https://doi.org/ 10.1007/s11164-016-2781-7.spa
dcterms.bibliographicCitation[110] M.P. Johansen, T. Cresswell, J. Davis, D.L. Howard, N.R. Howell, E. Prentice, Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods, Water Res. 158 (2019) 392e400, https://doi.org/10.1016/ j.watres.2019.04.029.spa
dcterms.bibliographicCitation[111] A. Bhatnagar, M. Sillanp€a€a, A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification e a review, Chem. Eng. J. 270 (2015) 244e271, https://doi.org/10.1016/j.cej.2015.01.135.spa
dcterms.bibliographicCitation[112] D G omez-Ríos, VA L opez-agudelo, H Ramírez-Malule, Repurposing antivirals as potential treatments for SARS-CoV-2: From SARS to COVID-19, J Appl Pharm Sci 10 (5) (2020) 1e9, https://doi.org/10.7324/JAPS.2020.10501spa
dcterms.bibliographicCitation[113] H Ramirez-Malule, VA L opez-Agudelo, D G omez-Ríos, Candida auris: a bibliometric analysis of the first ten years of research (2009e2018), J Appl Pharm Sci 10 (3) (2020) 12e21, https://doi.org/10.7324/JAPS.2020.103002.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.emcon.2020.05.001
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsEmerging contaminants Bibliometric analysis Pharmaceuticals Water pollution Advanced oxidation process Adsorption processes Scientific outputspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por