Mostrar el registro sencillo del ítem
Emerging contaminants as global environmental hazards. A bibliometric analysis
dc.contributor.author | Ramírez-Malule, Howard | |
dc.contributor.other | Quinones-Murillo, Diego H. | |
dc.contributor.other | Manotas-Duque, Diego | |
dc.date.accessioned | 2022-11-15T19:18:31Z | |
dc.date.available | 2022-11-15T19:18:31Z | |
dc.date.issued | 2020-05-18 | |
dc.date.submitted | 2019-12-16 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/791 | |
dc.description.abstract | This paper presents a bibliometric analysis of peer-reviewed scientific literature on emerging contaminants published from 2000 through 2019. A total of 4968 documents (among research articles and review papers) collected from Scopus database were analyzed using the VOSviewer 1.6.11 software. According to our results, this topic has been capturing researchers’ attention over the years and the latter five years of the analysis timespan corresponds to the period of highest scientific productivity on this subject, when a 70.4% of all analyzed documents were published. United States, China, Spain, Italy and Canada were the tope5 most productive countries in terms of number of published works, while Science of the Total Environment, Chemosphere, Environmental Science and Pollution Research, Environmental Pollution and Water Research stood out as the journals with the highest number of publications, gathering a 31% of papers and 34% of all citations. According to the frequency of author keywords, the main specific research topic assessed by the researchers are the occurrence of pharmaceuticals and personal care products in wastewater and the removal of such pollutants by the application of adsorption and advanced oxidation processes. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Emerging Contaminants | spa |
dc.title | Emerging contaminants as global environmental hazards. A bibliometric analysis | spa |
dcterms.bibliographicCitation | [1] L. Martín-Pozo, B. de Alarc on-G omez, R. Rodríguez-G omez, M.T. García- C orcoles, M. Çipa, A. Zafra-G omez, Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review, Talanta 192 (2019) 508e533, https://doi.org/10.1016/j.talanta.2018.09.056. | spa |
dcterms.bibliographicCitation | [2] K.M. Dimpe, P.N. Nomngongo, Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices, TrAC Trends Anal. Chem. 82 (2016) 199e207, https://doi.org/10.1016/ j.trac.2016.05.023. | spa |
dcterms.bibliographicCitation | [3] M. Taheran, M. Naghdi, S.K. Brar, M. Verma, R.Y. Surampalli, Emerging contaminants: here today, there tomorrow!, Environ. Nanotechnol. Monit. Manag. 10 (2018) 122e126, https://doi.org/10.1016/j.enmm.2018.05.010. | spa |
dcterms.bibliographicCitation | [4] J. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field, Environ. Pollut. 231 (2017) 954e970, https://doi.org/10.1016/ j.envpol.2017.08.032. | spa |
dcterms.bibliographicCitation | [5] C. Lodeiro, J.L. Capelo, E. Oliveira, J.F. Lodeiro, New toxic emerging contaminants: beyond the toxicological effects, Environ. Sci. Pollut. Res. 26 (2019) 1e4, https://doi.org/10.1007/s11356-018-3003-1. | spa |
dcterms.bibliographicCitation | [6] P.J. Barroso, J.L. Santos, J. Martín, I. Aparicio, E. Alonso, Emerging contaminants in the atmosphere: analysis, occurrence and future challenges, Crit. Rev. Environ. Sci. Technol. 49 (2019) 104e171, https://doi.org/10.1080/ 10643389.2018.1540761. | spa |
dcterms.bibliographicCitation | [7] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res. 72 (2015) 3e27, https://doi.org/10.1016/j.watres.2014.08.053 | spa |
dcterms.bibliographicCitation | [8] D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence, Environ. Pollut. 163 (2012) 287e303, https://doi.org/10.1016/j.envpol.2011.12.034 | spa |
dcterms.bibliographicCitation | [9] N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination 239 (2009) 229e246, https://doi.org/10.1016/ j.desal.2008.03.020. | spa |
dcterms.bibliographicCitation | [10] J. Rivera-Utrilla, M. S anchez-Polo, M. A. Ferro-García, G. Prados-Joya, R. Ocampo-P erez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere 93 (2013) 1268e1287, https:// doi.org/10.1016/j.chemosphere.2013.07.059. | spa |
dcterms.bibliographicCitation | [11] J. Yang, Y. Zhao, M. Li, M. Du, X. Li, Y. Li, A review of a class of emerging contaminants: the classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs), Int. J. Mol. Sci. 20 (2019), https://doi.org/10.3390/ijms20122874. | spa |
dcterms.bibliographicCitation | [12] M. Bilal, M. Adeel, T. Rasheed, Y. Zhao, H.M.N. Iqbal, Emerging contaminants of high concern and their enzyme-assisted biodegradation e a review, Environ. Int. 124 (2019) 336e353, https://doi.org/10.1016/ j.envint.2019.01.011. | spa |
dcterms.bibliographicCitation | [13] N. Das, J. Madhavan, A. Selvi, D. Das, An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern, 3 Biotech 9 (2019) 231, https://doi.org/10.1007/s13205-019-1766-9. | spa |
dcterms.bibliographicCitation | [14] M. Petrovic, E. Eljarrat, M.J. Lopez de Alda, D. Barcel o, Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data, Anal. Bioanal. Chem. 378 (2004) 549e562, https://doi.org/10.1007/s00216-003-2184-7. | spa |
dcterms.bibliographicCitation | [15] S. Rodriguez-Mozaz, M.J. Lopez de Alda, D. Barcel o, Advantages and limitations of on-line solid phase extraction coupled to liquid chromatographyemass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water, J. Chromatogr., A 1152 (2007) 97e115, https://doi.org/10.1016/j.chroma.2007.01.046. | spa |
dcterms.bibliographicCitation | [16] R. Carson, Silent Spring Houghton Mifflin, Boston, MA, USA, 1962. | spa |
dcterms.bibliographicCitation | [17] S. Sauv e, M. Desrosiers, A review of what is an emerging contaminant, Chem. Cent. J. 8 (2014) 15, https://doi.org/10.1186/1752-153X-8-15. | spa |
dcterms.bibliographicCitation | [18] I.J. Selikoff, W.J. Nicholson, A.M. Langer, Asbestos air pollution, Arch. Environ. Health 25 (1972) 1e13, https://doi.org/10.1080/00039896.1972.10666125. | spa |
dcterms.bibliographicCitation | [19] D. G omez-Ríos, H. Ramírez-Malule, Bibliometric analysis of recent research on multidrug and antibiotics resistance (2017e2018), J. Appl. Pharmaceut. Sci. 9 (2019) 112e116, https://doi.org/10.7324/JAPS.2019.90515. | spa |
dcterms.bibliographicCitation | [20] H. Ramirez-Malule, Bibliometric analysis of global research on clavulanic acid, Antibiotics 7 (2018) 102, https://doi.org/10.3390/antibiotics7040102. | spa |
dcterms.bibliographicCitation | [21] K. Yang, L.I. Meho, Citation analysis: a comparison of google scholar, Scopus, and web of science, Proc. Am. Soc. Inf. Sci. Technol. 43 (2007) 1e15, https:// doi.org/10.1002/meet.14504301185. | spa |
dcterms.bibliographicCitation | [22] N.J. van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics 84 (2010) 523e538, https:// doi.org/10.1007/s11192-009-0146-3. | spa |
dcterms.bibliographicCitation | [23] B.K. Schaule, C.C. Patterson, Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations, Earth Planet Sci. Lett. 54 (1981) 97e116, https://doi.org/10.1016/0012-821X(81)90072-8. | spa |
dcterms.bibliographicCitation | [24] I. Renberg, M.W. Persson, O. Emteryd, Pre-industrial atmospheric lead contamination detected in Swedish lake sediments, Nature 368 (1994) 323e326, https://doi.org/10.1038/368323a0. | spa |
dcterms.bibliographicCitation | [25] Q. Wang, D. Kim, D.D. Dionysiou, G.A. Sorial, D. Timberlake, Sources and remediation for mercury contamination in aquatic systemsda literature review, Environ. Pollut. 131 (2004) 323e336, https://doi.org/10.1016/ j.envpol.2004.01.010. | spa |
dcterms.bibliographicCitation | [26] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999 2000: a national reconnaissance, Environ. Sci. Technol. 36 (2002) 1202e1211, https://doi.org/10.1021/ es011055j. | spa |
dcterms.bibliographicCitation | [27] J.T. Kretchik, Ucmr 2, J. Chem. Health Saf. 13 (2006) 43, https://doi.org/ 10.1016/j.jchas.2005.11.009. | spa |
dcterms.bibliographicCitation | [28] L. Lamastra, M. Balderacchi, M. Trevisan, Inclusion of emerging organic contaminants in groundwater monitoring plans, MethodsX 3 (2016) 459e476, https://doi.org/10.1016/j.mex.2016.05.008. | spa |
dcterms.bibliographicCitation | [29] European Union, Directive 23 October 2000 n. 60. Establishing a framework forcommunity action in the field of water policy 327, Off J Eur Union L, Luxembourg, 2000. | spa |
dcterms.bibliographicCitation | [30] R.N. Carvalho, L. Ceriani, A. Ippolito, Development of the First Watch List under the Environmental Quality Standards Directive Water Policy, 2015, https://doi.org/10.2788/101376. | spa |
dcterms.bibliographicCitation | [31] M. Carere, S. Polesello, R. Kase, B.M. Gawlik, The emerging contaminants in the context of the EU water framework directive, in: M. Petrovic, S. Sabater, A. Elosegi, D. Barcel o (Eds.), Emerg. Contam. River Ecosyst. Occur. Eff. Under Mult. Stress Cond., Springer International Publishing, Cham, 2015, pp. 197e215, https://doi.org/10.1007/698_2015_5011. | spa |
dcterms.bibliographicCitation | [32] M. Khan, Y. Chang, Environmental challenges and current practices in Chinada thorough analysis, Sustainability 10 (2018) 2547, https://doi.org/ 10.3390/su10072547. | spa |
dcterms.bibliographicCitation | [33] A.-G. Hu, The Five-Year Plan: a new tool for energy saving and emissions reduction in China, Adv. Clim. Change Res. 7 (2016) 222e228, https:// doi.org/10.1016/j.accre.2016.12.005. | spa |
dcterms.bibliographicCitation | [34] Unesco, International Iniciative on Water Quality, France, 2015. https:// unesdoc.unesco.org/ark:/48223/pf0000243651. (Accessed 11 November 2019). | spa |
dcterms.bibliographicCitation | [35] E. Felis, J. Kalka, A. Sochacki, K. Kowalska, S. Bajkacz, M. Harnisz, E. Korzeniewska, Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications, Eur. J. Pharmacol. (2019) 172813, https://doi.org/10.1016/j.ejphar.2019.172813. | spa |
dcterms.bibliographicCitation | [36] Y. Li, L. Zhang, J. Ding, X. Liu, Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals, J. Environ. Manag. 253 (2020) 109732, https:// doi.org/10.1016/j.jenvman.2019.109732. | spa |
dcterms.bibliographicCitation | [37] M. la Farr e, S. P erez, L. Kantiani, D. Barcel o, Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment, TrAC Trends Anal. Chem. 27 (2008) 991e1007, https://doi.org/ 10.1016/j.trac.2008.09.010. | spa |
dcterms.bibliographicCitation | [38] P. Bottoni, S. Caroli, A.B. Caracciolo, Pharmaceuticals as priority water contaminants, Toxicol. Environ. Chem. 92 (2010) 549e565, https://doi.org/ 10.1080/02772241003614320. | spa |
dcterms.bibliographicCitation | [39] Department of Economic and Social Affairs Population, United Nations, World Population Prospects 2019, 2019. https://population.un.org/wpp/. (Accessed 13 December 2019). | spa |
dcterms.bibliographicCitation | [40] C. Gadipelly, A. P erez-Gonz alez, G.D. Yadav, I. Ortiz, R. Ib a~nez, V.K. Rathod, K.V. Marathe, Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse, Ind. Eng. Chem. Res. 53 (2014) 11571e11592, https://doi.org/10.1021/ie501210j. | spa |
dcterms.bibliographicCitation | [41] B.H. Diya’uddeen, W.M.A.W. Daud, A.R. Abdul Aziz, Treatment technologies for petroleum refinery effluents: a review, Process Saf. Environ. Protect. 89 (2011) 95e105, https://doi.org/10.1016/j.psep.2010.11.003. | spa |
dcterms.bibliographicCitation | [42] X. Wei, X. Kong, S. Wang, H. Xiang, J. Wang, J. Chen, Removal of heavy metals from electroplating wastewater by thin-film composite nanofiltration hollow-fiber membranes, Ind. Eng. Chem. Res. 52 (2013) 17583e17590, https://doi.org/10.1021/ie402387u. | spa |
dcterms.bibliographicCitation | [43] N.A. Khan, S.U. Khan, D.T. Islam, S. Ahmed, I.H. Farooqi, M.H. Isa, A. Hussain, F. Changani, A. Dhingra, Performance evaluation of column-SBR in paper and pulp wastewater treatment: optimization and bio-kinetics, Desalin. Water Treat. 156 (2019) 204e219, https://doi.org/10.5004/dwt.2019.23775. | spa |
dcterms.bibliographicCitation | [44] L. Rizzo, S. Malato, D. Antakyali, V.G. Beretsou, M.B. Ðoli c, W. Gernjak, E. Heath, I. Ivancev-Tumbas, P. Karaolia, A.R. Lado Ribeiro, G. Mascolo, C.S. McArdell, H. Schaar, A.M.T. Silva, D. Fatta-Kassinos, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ. 655 (2019) 986e1008, https://doi.org/10.1016/j.scitotenv.2018.11.265. | spa |
dcterms.bibliographicCitation | [45] O.M. Rodriguez-Narvaez, J.M. Peralta-Hernandez, A. Goonetilleke, E.R. Bandala, Treatment technologies for emerging contaminants in water: a review, Chem. Eng. J. 323 (2017) 361e380, https://doi.org/10.1016/ j.cej.2017.04.106. | spa |
dcterms.bibliographicCitation | [46] D.H. Qui~nones, P.M. Alvarez, A. Rey, F.J. Beltr an, Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study, Separ. Purif. Technol. 149 (2015) 132e139, https://doi.org/10.1016/j.seppur.2015.05.033. | spa |
dcterms.bibliographicCitation | [47] D.S. Babu, V. Srivastava, P.V. Nidheesh, M.S. Kumar, Detoxification of water and wastewater by advanced oxidation processes, Sci. Total Environ. 696 (2019) 133961, https://doi.org/10.1016/j.scitotenv.2019.133961. | spa |
dcterms.bibliographicCitation | [48] L.K. Wang, Y.-T. Hung, H.H. Lo, C. Yapijakis, Handbook of Industrial and Hazardous Wastes Treatment, CRC Press, 2004. | spa |
dcterms.bibliographicCitation | [49] W.R. Haag, C.C.D. Yao, Rate constants for reaction of hydroxyl radicals with several drinking water contaminants, Environ. Sci. Technol. 26 (1992) 1005e1013, https://doi.org/10.1021/es00029a021. | spa |
dcterms.bibliographicCitation | [50] D. Kanakaraju, B.D. Glass, M. Oelgem€oller, Advanced oxidation processmediated removal of pharmaceuticals from water: a review, J. Environ. Manag. 219 (2018) 189e207, https://doi.org/10.1016/ j.jenvman.2018.04.103. | spa |
dcterms.bibliographicCitation | [51] P. Bansal, A. Verma, S. Talwar, Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode, Chem. Eng. J. 349 (2018) 838e848, https://doi.org/10.1016/j.cej.2018.05.140. | spa |
dcterms.bibliographicCitation | [52] K. Sivagami, K.P. Sakthivel, I.M. Nambi, Advanced oxidation processes for the treatment of tannery wastewater, J. Environ. Chem. Eng. 6 (2018) 3656e3663, https://doi.org/10.1016/j.jece.2017.06.004. | spa |
dcterms.bibliographicCitation | [53] G. Ferro, A. Fiorentino, M.C. Alferez, M.I. Polo-L opez, L. Rizzo, P. Fern andez- Ib a~nez, Urban wastewater disinfection for agricultural reuse: effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain, Appl. Catal. B Environ. 178 (2015) 65e73, https://doi.org/10.1016/ j.apcatb.2014.10.043. | spa |
dcterms.bibliographicCitation | [54] V.J.P. Vilar, L.X. Pinho, A.M.A. Pintor, R.A.R. Boaventura, Treatment of textile wastewaters by solar-driven advanced oxidation processes, Sol. Energy 85 (2011) 1927e1934, https://doi.org/10.1016/j.solener.2011.04.033. | spa |
dcterms.bibliographicCitation | [55] C.T. Benatti, C.R.G. Tavares, T.A. Guedes, Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology, J. Environ. Manag. 80 (2006) 66e74, https://doi.org/10.1016/ j.jenvman.2005.08.014. | spa |
dcterms.bibliographicCitation | [56] G. Mascolo, R. Ciannarella, L. Balest, A. Lopez, Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation, J. Hazard Mater. 152 (2008) 1138e1145, https://doi.org/10.1016/j.jhazmat.2007.07.120. | spa |
dcterms.bibliographicCitation | [57] H. Einaga, Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst, Appl. Catal. B Environ. 38 (2002) 215e225, https://doi.org/10.1016/S0926-3373(02)00056-5. | spa |
dcterms.bibliographicCitation | [58] V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, Modified TiO 2 based photocatalysts for improved air and health quality, J. Mater. 3 (2017) 3e16, https:// doi.org/10.1016/j.jmat.2016.11.002. | spa |
dcterms.bibliographicCitation | [59] B.M. da Costa Filho, G. V Silva, R.A.R. Boaventura, M.M. Dias, J.C.B. Lopes, V.J.P. Vilar, Ozonation and ozone-enhanced photocatalysis for VOC removal from air streams: process optimization, synergy and mechanism assessment, Sci. Total Environ. 687 (2019) 1357e1368, https://doi.org/10.1016/ j.scitotenv.2019.05.365. | spa |
dcterms.bibliographicCitation | [60] I. Michael, Z. Frontistis, D. Fatta-Kassinos, Removal of pharmaceuticals from environmentally relevant matrices by advanced oxidation processes (AOPs), in: M. Petrovic, D. Barcelo, S.B.T.-C.A.C. P erez (Eds.), Anal. Removal, Eff. Risk Pharm. Water Cycle, Elsevier, 2013, pp. 345e407, https://doi.org/10.1016/ B978-0-444-62657-8.00011-2. | spa |
dcterms.bibliographicCitation | [61] L. Sbardella, I. Velo-Gala, J. Comas, I. Rodríguez-Roda Layret, A. Fenu, W. Gernjak, The impact of wastewater matrix on the degradation of pharmaceutically active compounds by oxidation processes including ultraviolet radiation and sulfate radicals, J. Hazard Mater. 380 (2019) 120869, https:// doi.org/10.1016/j.jhazmat.2019.120869. | spa |
dcterms.bibliographicCitation | [62] J.M. Coronado, M.D. Hern andez-Alonso, in: J.M. Coronado, F. Fresno, M.D. Hern andez-Alonso, R. Portela (Eds.), The Keys of Success: TiO2 as a Benchmark Photocatalyst, Springer London, London, 2013, pp. 85e101, https://doi.org/10.1007/978-1-4471-5061-9_5. | spa |
dcterms.bibliographicCitation | [63] A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal. Today 58 (2000) 167e197, https:// doi.org/10.1016/S0920-5861(00)00251-0. | spa |
dcterms.bibliographicCitation | [64] M.A. Mohd Adnan, N. Muhd Julkapli, M.N.I. Amir, A. Maamor, Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review, Int. J. Environ. Sci. Technol. 16 (2019) 547e566, https:// doi.org/10.1007/s13762-018-1857-x. | spa |
dcterms.bibliographicCitation | [65] A. Rey, D.H. Qui~nones, P.M. Alvarez, F.J. Beltr an, P.K. Plucinski, Simulated solar-light assisted photocatalytic ozonation of metoprolol over titaniacoated magnetic activated carbon, Appl. Catal. B Environ. 111e112 (2012) 246e253, https://doi.org/10.1016/j.apcatb.2011.10.005. | spa |
dcterms.bibliographicCitation | [66] M. Mehrjouei, S. Müller, D. M€oller, Degradation of oxalic acid in a photocatalytic ozonation system by means of Pilkington ActiveTM glass, J. Photochem. Photobiol. Chem. 217 (2011) 417e424, https://doi.org/ 10.1016/j.jphotochem.2010.11.016. | spa |
dcterms.bibliographicCitation | [67] D.H. Qui~nones-Murillo, A.A. Ariza-Reyes, L.J. Ardila-V elez, Some kinetic and synergistic considerations on the oxidation of the azo compound Ponceau 4R by solaremediated heterogeneous photocatalytic ozonation, Desalin. Water Treat. 170 (2019) 61e74, https://doi.org/10.5004/dwt.2019.24711. | spa |
dcterms.bibliographicCitation | [68] P. Ca~nizares, R. Paz, C. S aez, M.A. Rodrigo, Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes, J. Environ. Manag. 90 (2009) 410e420, https://doi.org/ 10.1016/j.jenvman.2007.10.010. | spa |
dcterms.bibliographicCitation | [69] A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes e a review, Chemosphere 174 (2017) 665e688, https://doi.org/10.1016/ j.chemosphere.2017.02.019. | spa |
dcterms.bibliographicCitation | [70] G. Pliego, J.A. Zazo, P. Garcia-Mu~noz, M. Munoz, J.A. Casas, J.J. Rodriguez, Trends in the intensification of the Fenton process for wastewater treatment: an overview, Crit. Rev. Environ. Sci. Technol. 45 (2015) 2611e2692, https:// doi.org/10.1080/10643389.2015.1025646. | spa |
dcterms.bibliographicCitation | [71] Z. Zhou, X. Liu, K. Sun, C. Lin, J. Ma, M. He, W. Ouyang, Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review, Chem. Eng. J. 372 (2019) 836e851, https://doi.org/ 10.1016/j.cej.2019.04.213. | spa |
dcterms.bibliographicCitation | [72] M. Brienza, I. Katsoyiannis, Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater, Sustainability 9 (2017) 1604, https://doi.org/10.3390/su9091604. | spa |
dcterms.bibliographicCitation | [73] S. Guerra-Rodríguez, E. Rodríguez, D. Singh, J. Rodríguez-Chueca, Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review, Water 10 (2018) 1828, https://doi.org/10.3390/ w10121828. | spa |
dcterms.bibliographicCitation | [74] S. Yang, P. Wang, X. Yang, G. Wei, W. Zhang, L. Shan, A novel advanced oxidation process to degrade organic pollutants in wastewater: microwaveactivated persulfate oxidation, J. Environ. Sci. 21 (2009) 1175e1180, https:// doi.org/10.1016/S1001-0742(08)62399-2. | spa |
dcterms.bibliographicCitation | [75] C. Tan, N. Gao, Y. Deng, N. An, J. Deng, Heat-activated persulfate oxidation of diuron in water, Chem. Eng. J. 203 (2012) 294e300, https://doi.org/10.1016/ j.cej.2012.07.005. | spa |
dcterms.bibliographicCitation | [76] R.A. Torres-Palma, E.A. Serna-Galvis, Sonolysis, in: S.C. Ameta (Ed.), Adv. Oxid. Process. Waste Water Treat., Elsevier, 2018, pp. 177e213, https:// doi.org/10.1016/B978-0-12-810499-6.00007-3. R.B.T.-A.O.P. for W.W.T. Ameta. | spa |
dcterms.bibliographicCitation | [77] O. Tunay, I. Kabdasli, I. Arslan-Alaton, T. Olmez-Hanci, Chemical Oxidation Applications for Industrial Wastewaters, Iwa publishing, 2010. | spa |
dcterms.bibliographicCitation | [78] C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev. 35 (2006) 1324e1340, https://doi.org/10.1039/B517632H | spa |
dcterms.bibliographicCitation | [79] A. Kraft, M. Stadelmann, M. Blaschke, Anodic oxidation with doped diamond electrodes: a new advanced oxidation process, J. Hazard Mater. 103 (2003) 247e261, https://doi.org/10.1016/j.jhazmat.2003.07.006. | spa |
dcterms.bibliographicCitation | [80] Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap, S. Gibb, Utilizing lowcost natural waste for the removal of pharmaceuticals from water: mechanisms, isotherms and kinetics at low concentrations, J. Clean. Prod. 227 (2019) 88e97, https://doi.org/10.1016/j.jclepro.2019.04.081. | spa |
dcterms.bibliographicCitation | [81] A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani, M.P. McHenry, Potential use of algae for heavy metal bioremediation, a critical review, J. Environ. Manag. 181 (2016) 817e831, https://doi.org/10.1016/ j.jenvman.2016.06.059. | spa |
dcterms.bibliographicCitation | [82] C. Sophia A, E.C. Lima, Removal of emerging contaminants from the environment by adsorption, Ecotoxicol. Environ. Saf. 150 (2018) 1e17, https:// doi.org/10.1016/j.ecoenv.2017.12.026. | spa |
dcterms.bibliographicCitation | [83] Y.-C. Chiang, R.-S. Juang, Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review, J. Taiwan Inst. Chem. Eng. 71 (2017) 214e234, https://doi.org/10.1016/j.jtice.2016.12.014. | spa |
dcterms.bibliographicCitation | [84] Y. Xiang, Z. Xu, Y. Wei, Y. Zhou, X. Yang, Y. Yang, J. Yang, J. Zhang, L. Luo, Z. Zhou, Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors, J. Environ. Manag. 237 (2019) 128e138, https://doi.org/10.1016/j.jenvman.2019.02.068. | spa |
dcterms.bibliographicCitation | [85] S.C.R. Marques, J.M. Marcuzzo, M.R. Baldan, A.S. Mestre, A.P. Carvalho, Pharmaceuticals removal by activated carbons: role of morphology on cyclic thermal regeneration, Chem. Eng. J. 321 (2017) 233e244, https://doi.org/ 10.1016/j.cej.2017.03.101. | spa |
dcterms.bibliographicCitation | [86] G. San Miguel, S.D. Lambert, N.J.D. Graham, A practical review of the performance of organic and inorganic adsorbents for the treatment of contaminated waters, J. Chem. Technol. Biotechnol. 81 (2006) 1685e1696, https://doi.org/10.1002/jctb.1600. | spa |
dcterms.bibliographicCitation | [87] P.N.E. Diagboya, E.D. Dikio, Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment, Microporous Mesoporous Mater. 266 (2018) 252e267, https://doi.org/ 10.1016/j.micromeso.2018.03.008. | spa |
dcterms.bibliographicCitation | [88] A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Separ. Purif. Technol. 228 (2019) 115719, https:// doi.org/10.1016/j.seppur.2019.115719. | spa |
dcterms.bibliographicCitation | [89] N. Chaukura, W. Gwenzi, N. Tavengwa, M.M. Manyuchi, Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries, Environ. Dev. 19 (2016) 84e89, https:// doi.org/10.1016/j.envdev.2016.05.002. | spa |
dcterms.bibliographicCitation | [90] S.A. Sadeek, N.A. Negm, H.H.H. Hefni, M.M.A. Wahab, Metal adsorption by agricultural biosorbents: adsorption isotherm, kinetic and biosorbents chemical structures, Int. J. Biol. Macromol. 81 (2015) 400e409, https:// doi.org/10.1016/j.ijbiomac.2015.08.031. | spa |
dcterms.bibliographicCitation | [91] J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195e226, https://doi.org/10.1016/ j.biotechadv.2008.11.002. | spa |
dcterms.bibliographicCitation | [92] M. Kamali, D.P. Suhas, M.E. Costa, I. Capela, T.M. Aminabhavi, Sustainability considerations in membrane-based technologies for industrial effluents treatment, Chem. Eng. J. 368 (2019) 474e494, https://doi.org/10.1016/ j.cej.2019.02.075. | spa |
dcterms.bibliographicCitation | [93] M.F.A. Goosen, W.H. Shayya, Water management, purification, and conservation in arid climates, in: Water Purification, ume 2, Univ. of Sultan Qaboos Univ.(OM), 1999. | spa |
dcterms.bibliographicCitation | [94] S. Kim, K.H. Chu, Y.A.J. Al-Hamadani, C.M. Park, M. Jang, D.-H. Kim, M. Yu, J. Heo, Y. Yoon, Removal of contaminants of emerging concern by membranes in water and wastewater: a review, Chem. Eng. J. 335 (2018) 896e914, https://doi.org/10.1016/j.cej.2017.11.044. | spa |
dcterms.bibliographicCitation | [95] W.J.T. Lewis, T. Mattsson, Y.M.J. Chew, M.R. Bird, Investigation of cake fouling and pore blocking phenomena using fluid dynamic gauging and critical flux models, J. Membr. Sci. 533 (2017) 38e47, https://doi.org/10.1016/ j.memsci.2017.03.020. | spa |
dcterms.bibliographicCitation | [96] B. Van der Bruggen, M. M€antt€ari, M. Nystr€om, Drawbacks of applying nanofiltration and how to avoid them: a review, Separ. Purif. Technol. 63 (2008) 251e263, https://doi.org/10.1016/j.seppur.2008.05.010. | spa |
dcterms.bibliographicCitation | [97] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331e349, https://doi.org/10.1016/j.apcatb.2012.05.036. | spa |
dcterms.bibliographicCitation | [98] C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal. B Environ. 87 (2009) 105e145, https://doi.org/10.1016/ j.apcatb.2008.09.017. | spa |
dcterms.bibliographicCitation | [99] Y.-G. Zhu, T.A. Johnson, J.-Q. Su, M. Qiao, G.-X. Guo, R.D. Stedtfeld, S.A. Hashsham, J.M. Tiedje, Diverse and abundant antibiotic resistance genes in Chinese swine farms, Proc. Natl. Acad. Sci. Unit. States Am. 110 (2013) 3435e3440, https://doi.org/10.1073/pnas.1222743110. | spa |
dcterms.bibliographicCitation | [100] A. Pruden, R. Pei, H. Storteboom, K.H. Carlson, Antibiotic resistance genes as emerging contaminants: studies in northern Colorado y, Environ. Sci. Technol. 40 (2006) 7445e7450, https://doi.org/10.1021/es060413l. | spa |
dcterms.bibliographicCitation | [101] B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK, Water Res. 42 (2008) 3498e3518, https:// doi.org/10.1016/j.watres.2008.04.026. | spa |
dcterms.bibliographicCitation | [102] S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. DeCarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination 202 (2007) 156e181, https://doi.org/10.1016/j.desal.2005.12.052. | spa |
dcterms.bibliographicCitation | [103] V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices e a review, J. Environ. Manag. 92 (2011) 2304e2347, https://doi.org/10.1016/j.jenvman.2011.05.023. | spa |
dcterms.bibliographicCitation | [104] M.J. Focazio, D.W. Kolpin, K.K. Barnes, E.T. Furlong, M.T. Meyer, S.D. Zaugg, L.B. Barber, M.E. Thurman, A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States d II) Untreated drinking water sources, Sci. Total Environ. 402 (2008) 201e216, https://doi.org/10.1016/j.scitotenv.2008.02.021. | spa |
dcterms.bibliographicCitation | [105] L. Liu, M. Bilal, X. Duan, H.M.N. Iqbal, Mitigation of environmental pollution by genetically engineered bacteria d current challenges and future perspectives, Sci. Total Environ. 667 (2019) 444e454, https://doi.org/10.1016/ j.scitotenv.2019.02.390 | spa |
dcterms.bibliographicCitation | [106] C. Arguedas, Pollution standards, technology investment and fines for noncompliance, J. Regul. Econ. 44 (2013) 156e176, https://doi.org/10.1007/ s11149-013-9217-8. | spa |
dcterms.bibliographicCitation | [107] G. Hernandez-Vargas, J. Sosa-Hern andez, S. Saldarriaga-Hernandez, A. Villalba-Rodríguez, R. Parra-Saldivar, H. Iqbal, Electrochemical biosensors: a solution to pollution detection with reference to environmental contaminants, Biosensors 8 (2018) 29, https://doi.org/10.3390/bios8020029. | spa |
dcterms.bibliographicCitation | [108] S. Jarque, M. Bittner, L. Blaha, K. Hilscherova, Yeast biosensors for detection of environmental pollutants: current state and limitations, Trends Biotechnol. 34 (2016) 408e419, https://doi.org/10.1016/j.tibtech.2016.01.007. | spa |
dcterms.bibliographicCitation | [109] A. Sharfalddin, E. Alzahrani, M. Alamoudi, Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes, Res. Chem. Intermed. 43 (2017) 2587e2601, https://doi.org/ 10.1007/s11164-016-2781-7. | spa |
dcterms.bibliographicCitation | [110] M.P. Johansen, T. Cresswell, J. Davis, D.L. Howard, N.R. Howell, E. Prentice, Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: use of spectroscopy, microscopy and radiotracer methods, Water Res. 158 (2019) 392e400, https://doi.org/10.1016/ j.watres.2019.04.029. | spa |
dcterms.bibliographicCitation | [111] A. Bhatnagar, M. Sillanp€a€a, A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification e a review, Chem. Eng. J. 270 (2015) 244e271, https://doi.org/10.1016/j.cej.2015.01.135. | spa |
dcterms.bibliographicCitation | [112] D G omez-Ríos, VA L opez-agudelo, H Ramírez-Malule, Repurposing antivirals as potential treatments for SARS-CoV-2: From SARS to COVID-19, J Appl Pharm Sci 10 (5) (2020) 1e9, https://doi.org/10.7324/JAPS.2020.10501 | spa |
dcterms.bibliographicCitation | [113] H Ramirez-Malule, VA L opez-Agudelo, D G omez-Ríos, Candida auris: a bibliometric analysis of the first ten years of research (2009e2018), J Appl Pharm Sci 10 (3) (2020) 12e21, https://doi.org/10.7324/JAPS.2020.103002. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.emcon.2020.05.001 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Emerging contaminants Bibliometric analysis Pharmaceuticals Water pollution Advanced oxidation process Adsorption processes Scientific output | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |