Mostrar el registro sencillo del ítem
Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia
dc.contributor.author | Barrozo Budes, Farid Antonio | |
dc.contributor.other | Valencia Ochoa, Guillermo | |
dc.contributor.other | Obregon, Luis Guillermo | |
dc.contributor.other | Arango-Manrique, Adriana | |
dc.contributor.other | Núñez Álvarez, José Ricardo | |
dc.date.accessioned | 2022-11-15T19:16:45Z | |
dc.date.available | 2022-11-15T19:16:45Z | |
dc.date.issued | 2020-04-02 | |
dc.date.submitted | 2020-03-17 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/788 | |
dc.description.abstract | The electrical sector in the Caribbean region of Colombia is currently facing problems that a ect its reliability. Many thermo-electric plants are required to fill the gap and ensure energy supply. This paper thus proposes a hybrid renewable energy generation plant that could supply a percentage of the total energy demand and reduce the environmental impact of conventional energy generation. The hybrid plant works with a photovoltaic (PV) system and wind turbine systems, connected in parallel with the grid to supply a renewable fraction of the total energy demand. The investigation was conducted in three steps: the first stage determined locations where the energy system was able to take advantage of renewable sources, the second identified a location that could work more e ciently from an economic perspective, and finally, the third step estimated the number of PV solar panels and wind turbines required to guarantee optimal functioning for this location using, as a main method of calculation, the software HOMER pro® for hybrid optimization with multiple energy resources. The proposed system is expected to not only limit environmental impacts but also decrease total costs of electric grid consumption from thermoelectric plants. The simulations helped identify Puerto Bolivar, Colombia, as the location where the hybrid plant made the best use of non-conventional resources of energy. However, Rancho Grande was found to o er the system more e ciency, while generating a considerable amount of energy at the lowest possible cost. An optimal combination was also obtained—441 PV arrays and 3 wind turbines, resulting in a net present cost (NPC) of $11.8 million and low CO2 production of 244.1 tons per year | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | energies | spa |
dc.title | Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia | spa |
dcterms.bibliographicCitation | 1. McCormick, R.L.; Tennant, C.J.; Hayes, R.R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C.A. Regulated emissions from biodiesel tested in heavy duty engines meeting 2004 emission standards. In Proceedings of the 2005 SAE Brasil Fuels & Lubricants Meeting, Rio De Janeiro, Brazil, 11–13 May 2005. | spa |
dcterms.bibliographicCitation | 2. Valencia Ochoa, G.; Cárdenas Gutierrez, J.; Duarte Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2. | spa |
dcterms.bibliographicCitation | 3. Valencia Ochoa, G.; Piero Rojas, J.; Duarte Forero, J. Advance Exergo-Economic Analysis of aWaste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267. | spa |
dcterms.bibliographicCitation | 4. Boca, G.D.; Saraçlı, S. Environmental Education and Student’s Perception, for Sustainability. Sustainability 2019, 11, 1553. | spa |
dcterms.bibliographicCitation | 5. Noh, C.-H.; Kim, I.; Jang, W.-H.; Kim, C.-H. Recent Trends in Renewable Energy Resources for Power Generation in the Republic of Korea. Resources 2015, 4, 751–764. | spa |
dcterms.bibliographicCitation | 6. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Di erent ExhaustWaste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. | spa |
dcterms.bibliographicCitation | 7. Núñez, A.J.; Benítez, P.I.; Proenza, Y.R.; Vázquez, S.L.; Díaz, M.D. Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Rev. Iberoam. Automática Inf. Ind. 2020, 17, 94–105. | spa |
dcterms.bibliographicCitation | 8. Ueckerdt, F.; Brecha, R.; Luderer, G. Analyzing major challenges of wind and solar variability in power systems. Renew. Energy 2015, 81, 1–10. | spa |
dcterms.bibliographicCitation | 9. International Energy Agency. World Energy Outlook 2016; IEA Publications: Paris, France, 2016. | spa |
dcterms.bibliographicCitation | 10. Szymczak, P.D. Asia Pac Leads Global Solar Photovoltaic (PV) Market. 18 December 2018. Available online: https://oilandgaseurasia.com/2018/12/18/asia-pac-leads-global-solar-photovoltaic-pv-market/ (accessed on 30 December 2019). | spa |
dcterms.bibliographicCitation | 11. Fairley Peter. The Pros and Cons of theWorld’s Biggest Solar Park. 2020. Available online: https://spectrum.ieee. org/energy/renewables/the-pros-and-cons-of-the-worlds-biggest-solar-park (accessed on 21 December 2019). | spa |
dcterms.bibliographicCitation | 12. Moemken, J.; Reyers, M.; Feldmann, H.; Pinto, J. Future changes of wind speed and wind energy potentials in EURO-CORDEX ensemble simulations. J. Geophys. Res. Atmos. 2018, 123, 6373–6389. | spa |
dcterms.bibliographicCitation | 13. Valencia Ochoa, G.; Vanegas Chamorro, M.; Polo Jiménez, J. Análisis Estadístico de la Velocidad y Dirección Del Viento en la Región Caribe Colombiana con Enfasis en la Guajira; Sello Editorial Universidad Del Atlántico: Barranquilla, Colombia, 2016; p. 51. | spa |
dcterms.bibliographicCitation | 14. Valencia, G.; Nuñez, J.; Acevedo, C. Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal,Wind and Biomass Energy. Int. J. Energy Econ. Policy 2019, 9, 242–253. | spa |
dcterms.bibliographicCitation | 15. Ochoa, G.V.; Blanco, C.; Martinez, C.; Ramos, E. Fuzzy Adaptive Control Applied to a Hybrid Electric-Power Generation System (HEPGS). Indian J. Sci. Technol. 2017, 10, 1–9. | spa |
dcterms.bibliographicCitation | 16. Milanes Batista, C.M.; Planas, J.A.; Pelot, R.; Núñez, J.R. A new methodology incorporating public participation within Cuba’s ICZM program. Ocean Coast. Manag. 2020, 186, 105101. | spa |
dcterms.bibliographicCitation | 17. Sinay, L.; Carter, R.W.B. Climate Change Adaptation Options for Coastal Communities and Local Governments. Climate 2020, 8, 7. | spa |
dcterms.bibliographicCitation | 18. Boden, T.A.;Marland, G.; Andres, R.J. Global, Regional, and National Fossil-Fuel CO2 Emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory; U.S. Department of Energy: Oak Ridge, TN, USA, 2017. Available online: https://cdiac.ess-dive.lbl.gov/trends/emis/meth_reg.html (accessed on 26 October 2019). | spa |
dcterms.bibliographicCitation | 19. Valencia, G.; Benavides, A.; Cárdenas, Y. Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119. | spa |
dcterms.bibliographicCitation | 20. HOMER Pro. Available online: https://www.homerenergy.com/products/pro/index.html (accessed on 29 July 2017). | spa |
dcterms.bibliographicCitation | 21. Valencia, G.; Vanegas, M.; Villicana, E. Disponibilidad Geográfica y Temporal de la Energía Solar en la Costa Caribe Colombiana; Sello editorial de la Universidad del Atlántico: Barranquilla, Colombia, 2016. | spa |
dcterms.bibliographicCitation | 22. Valencia Ochoa, G.; Vanegas Chamorro, M.; Villicaña Ortiz, E. Atlas Solar de la Costa Caribe Colombiana; Sello Editorial Universidad Del Atlántico: Barranquilla, Colombia, 2016. | spa |
dcterms.bibliographicCitation | 23. Goldwind. Goldwind PMDD 1.5 MW Wind Turbine Brochure. 2017. Available online: https://www. goldw indamericas.com/sites/default/files/Goldwind%20Americas_Goldwind%201.5MW%20Brochure%20% 2820 17%29_0.pdf (accessed on 2 February 2020). | spa |
dcterms.bibliographicCitation | 24. UPME. Escenarios de Oferta y Demanda de Hidrocarburos en Colombia; Ministerio de Minas y Energía: Bogota, Colombia, 2012. Available online: http://www.upme.gov.co/docs/publicaciones/2012/escenarios_oferta_ demanda_hidrocarburos.pdf (accessed on 9 April 2018). | spa |
dcterms.bibliographicCitation | 25. Papoulis, A. Probability, Random Variables, and Stochastic Processes, 3rd ed.; McGraw-Hill: New York, NY, USA, 1991. | spa |
dcterms.bibliographicCitation | 26. Jafari, A.A.; Zakerzadeh, H. Inference on the parameters of theWeibull distribution using records. SORT 2015, 39, 3–18. | spa |
dcterms.bibliographicCitation | 27. Jung, S.; Arda Vanli, O.; Kwon, S.-D. Wind energy potential assessment considering the uncertainties due to limited data. Appl. Energy 2013, 102, 1492–1503. | spa |
dcterms.bibliographicCitation | 28. Etghani, M.M.; Shojaeefard, M.H.; Khalkhali, A.; Akbari, M. A hybrid method of modified NSGA-II and TOPSIS to optimize performance and emissions of a diesel engine using biodiesel. Appl. Therm. Eng. 2013, 59, 309–315. | spa |
dcterms.bibliographicCitation | 29. Ochoa, G.V.; Isaza-Roldan, C.; Duarte Forero, J. Economic and Exergo-Advance Analysis of aWaste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. | spa |
dcterms.bibliographicCitation | 30. Ochoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Di erent Working Fluids. Appl. Sci. 2019, 9, 4526. | spa |
dcterms.bibliographicCitation | 31. Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655. | spa |
dcterms.bibliographicCitation | 32. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. | spa |
dcterms.bibliographicCitation | 33. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine. Energies 2019, 12, 4165. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/en13071662 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | solar energy; wind energy; energy e ciency; environmental impact; economic evaluation; on-grid system; HOMER Pro software | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |