Mostrar el registro sencillo del ítem

dc.contributor.authorValencia Llano, Carlos Humberto
dc.contributor.otherLópez Tenorio, Diego
dc.contributor.otherGrande Tovar, Carlos David
dc.coverage.spatialColombia
dc.date.accessioned2022-11-15T19:16:35Z
dc.date.available2022-11-15T19:16:35Z
dc.date.issued2022-06-30
dc.date.submitted2022-06-13
dc.identifier.citationValencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers 2022, 14, 2672. https:// doi.org/10.3390/polym14132672spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/785
dc.description.abstractBone substitutes based on xenografts have been used for a long time in bone regeneration thanks to their inductive capacity for bone tissue regeneration. Some bone-based scaffolds have been modified by adding collagen and other proteins to improve their regenerative capacity and prevent migration and aggregation, especially particles. However, rejection of this graft has been reported due to protein residues caused by poor material preparation. We compared the in vitro and in vivo biological response of two commercial xenografts (InterOss®, F1 and InterOss® Collagen, F2) and a commercial porcine collagen membrane (InterCollagen® Guide, F3) as a rapid degradation control. Fourier Transform Infrared Spectroscopy (FT-IR) analysis evidenced the presence of hydroxyl, orthophosphate, and carbonate groups of the xenografts and amide groups of collagen. Thermogravimetric analysis (TGA) of the xenografts demonstrated their thermal stability and the presence of a few amounts of organic material. The study by differential scanning calorimetry showed the presence of endothermic peaks typical of the dehydration of the xenografts (F1 and F2) and for the collagen membrane (F3), the beginning of structural three-dimensional protein changes. Subsequently, in vitro biocompatibility tests were carried out for the materials with Artemia salina and MTT cell viability with HeLa cells, demonstrating the high biocompatibility of the materials. Finally, in vivo biocompatibility was studied by implanting xenografts in biomodels (Wistar rats) at different periods (30, 60, and 90 days). The F1 xenograft (InterOss) remained remarkably stable throughout the experiment (90 days). F2 (InterOss Collagen) presented a separation of its apatite and collagen components at 60 days and advanced resorption at 90 days of implantation. Finally, the collagen membrane (F3) presented faster resorption since, at 90 days, only some tiny fragments of the material were evident. All the in vivo and in vitro test results demonstrated the biocompatibility of the xenografts, demonstrating the potential of these materials for tissue engineering.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourcePolymersspa
dc.titleBiocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methodsspa
dcterms.bibliographicCitationBassi, A.P.F.; Bizelli, V.F.; Consolaro, R.B.; de Carvalho, P.S.P. Biocompatibility and Osteopromotor Factor of Bovine Integral Bone—A Microscopic and Histometric Analysis. Front. Oral Maxillofac. Med. 2021, 3, 1–11. [CrossRef]spa
dcterms.bibliographicCitationHosseinpour, S.; Gaudin, A.; Peters, O.A. A Critical Analysis of Research Methods and Experimental Models to Study Biocompatibility of Endodontic Materials. Int. Endod. J. 2022, 1–24. [CrossRef]spa
dcterms.bibliographicCitationZhao, R.; Yang, R.; Cooper, P.R.; Khurshid, Z.; Shavandi, A.; Ratnayake, J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021, 26, 3007. [CrossRef]spa
dcterms.bibliographicCitationGill, S.; Prakash, M.; Forghany, M.; Vaderhobli, R.M. An Ethical Perspective to Using Bone Grafts in Dentistry. J. Am. Dent. Assoc. 2022, 153, 88–91. [CrossRef]spa
dcterms.bibliographicCitationDorj, B.; Won, J.-E.; Purevdorj, O.; Patel, K.D.; Kim, J.-H.; Lee, E.-J.; Kim, H.-W. A Novel Therapeutic Design of Microporous- Structured Biopolymer Scaffolds for Drug Loading and Delivery. Acta Biomater. 2014, 10, 1238–1250. [CrossRef]spa
dcterms.bibliographicCitationPatel, K.D.; Kim, T.-H.; Mandakhbayar, N.; Singh, R.K.; Jang, J.-H.; Lee, J.-H.; Kim, H.-W. Coating Biopolymer Nanofibers with Carbon Nanotubes Accelerates Tissue Healing and Bone Regeneration through Orchestrated Cell-and Tissue-Regulatory Responses. Acta Biomater. 2020, 108, 97–110. [CrossRef]spa
dcterms.bibliographicCitationCatauro, M.; Tranquillo, E.; Poggetto, G.D.; Naviglio, S.; Barrino, F. Antibacterial Properties of Sol–Gel Biomaterials with Different Percentages of PEG or PCL. In Proceedings of the Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 389, p. 1900056.spa
dcterms.bibliographicCitationWu, J.; Jiang, L.; Ju, L.; Zhang, Y.; Li, M.; Liu, X.; Qu, X. A Novel Compound Bone Articular Repair Material Combining Deproteinized Osteoarticulation with Calcium Phosphate Cement and BMP-9. Mater. Des. 2021, 210, 110021. [CrossRef]spa
dcterms.bibliographicCitationRather, H.A.; Patel, R.; Yadav, U.C.S.; Vasita, R. Dual Drug-Delivering Polycaprolactone-Collagen Scaffold to Induce Early Osteogenic Differentiation and Coupled Angiogenesis. Biomed. Mater. 2020, 15, 45008. [CrossRef]spa
dcterms.bibliographicCitationSuh, H.; Han, D.; Park, J.; Lee, D.H.; Lee, W.S.; Han, C.D. A Bone Replaceable Artificial Bone Substitute: Osteoinduction by Combining with Bone Inducing Agent. Artif. Organs 2001, 25, 459–466. [CrossRef]spa
dcterms.bibliographicCitationDumitrescu, C.R.; Neacsu, I.A.; Surdu, V.A.; Nicoara, A.I.; Iordache, F.; Trusca, R.; Ciocan, L.T.; Ficai, A.; Andronescu, E. Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and in Vitro Behavior. Nanomaterials 2021, 11, 2289. [CrossRef]spa
dcterms.bibliographicCitationKao, S.T.; Scott, D.D. A Review of Bone Substitutes. Oral Maxillofac. Surg Clin 2007, 19, 513–521. [CrossRef]spa
dcterms.bibliographicCitationPrecheur, H.V. Bone Graft Materials. Dent. Clin. N. Am. 2007, 51, 729–746. [CrossRef]spa
dcterms.bibliographicCitationSheikh, Z.; Sima, C.; Glogauer, M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. Materials 2015, 8, 2953–2993. [CrossRef]spa
dcterms.bibliographicCitationKeil, C.; Gollmer, B.; Zeidler-Rentzsch, I.; Gredes, T.; Heinemann, F. Histological Evaluation of Extraction Sites Grafted with Bio-Oss Collagen: Randomized Controlled Trial. Ann. Anat. 2021, 237, 151722. [CrossRef]spa
dcterms.bibliographicCitationRyan, A.J.; Gleeson, J.P.; Matsiko, A.; Thompson, E.M.; O’Brien, F.J. Effect of Different Hydroxyapatite Incorporation Methods on the Structural and Biological Properties of Porous Collagen Scaffolds for Bone Repair. J. Anat. 2015, 227, 732–745. [CrossRef]spa
dcterms.bibliographicCitationLee, D.S.H.; Pai, Y.; Chang, S. Physicochemical Characterization of InterOss® and Bio-Oss® Anorganic Bovine Bone Grafting Material for Oral Surgery–A Comparative Study. Mater. Chem. Phys. 2014, 146, 99–104. [CrossRef]spa
dcterms.bibliographicCitationMilhem, M.M.; Al-Hiyasat, A.S.; Darmani, H. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (Artemia salina). J. Appl. Oral Sci. 2008, 16, 297–301. [CrossRef]spa
dcterms.bibliographicCitationDemarchi, C.A.; Cruz, A.B.; da Silva Bitencourt, C.M.; Farias, I.V.; S´lawska-Waniewska, A.; Nedelko, N.; Dłuz˙ ewski, P.; Morawiec, K.; Calisto, J.F.F.; Martello, R.; et al. Eugenia Umbelliflora Mediated Reduction of Silver Nanoparticles Incorporated into O-Carboxymethylchitosan/y-Fe2O3: Synthesis, Antimicrobial Activity and Toxicity. Int. J. Biol. Macromol. 2020, 155, 614–624. [CrossRef]spa
dcterms.bibliographicCitationShelembe, B.; Mahlangeni, N.; Moodley, R. Biosynthesis and Bioactivities of Metal Nanoparticles Mediated by Helichrysum Aureonitens. J. Anal. Sci. Technol. 2022, 13, 1–11. [CrossRef]spa
dcterms.bibliographicCitationBakker, A.D.; Klein-Nulend, J. Osteoblast Isolation from Murine Calvaria and Long Bones. In Bone Research Protocols, Methods in Molecular Biology; Helfrich, M., Ralston, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 816, pp. 19–30; ISBN 9781617794155.spa
dcterms.bibliographicCitationWerner, J.; Linner-Krˇcmar, B.; Friess, W.; Greil, P. Mechanical Properties and in Vitro Cell Compatibility of Hydroxyapatite Ceramics with Graded Pore Structure. Biomaterials 2002, 23, 4285–4294. [CrossRef]spa
dcterms.bibliographicCitationJain, G.; Blaauw, D.; Chang, S. A Comparative Study of Two Bone Graft Substitutes—InterOss®Collagen and OCS-B Collagen®. J. Funct. Biomater. 2022, 13, 28. [CrossRef]spa
dcterms.bibliographicCitationMujahid, M.; Sarfraz, S.; Amin, S. On the Formation of Hydroxyapatite Nano Crystals Prepared Using Cationic Surfactant. Mater. Res. 2015, 18, 468–472. [CrossRef]spa
dcterms.bibliographicCitationLee, J.H.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical Characterization of Porcine Bone-Derived Grafting Material and Comparison with Bovine Xenografts for Dental Applications. J. Periodontal Implant Sci. 2017, 47, 388–401. [CrossRef]spa
dcterms.bibliographicCitationPullicino, E.; Zou, W.; Gresil, M.; Soutis, C. The Effect of Shear Mixing Speed and Time on the Mechanical Properties of GNP/Epoxy Composites. Appl. Compos. Mater. 2017, 24, 301–311. [CrossRef]spa
dcterms.bibliographicCitationHu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon Dioxide Absorption into Promoted Potassium Carbonate Solutions: A Review. Int. J. Greenh. Gas Control 2016, 53, 28–40. [CrossRef]spa
dcterms.bibliographicCitationAhmadi, A.; Ahmadi, P.; Ehsani, A. Development of an Active Packaging System Containing Zinc Oxide Nanoparticles for the Extension of Chicken Fillet Shelf Life. Food Sci. Nutr. 2020, 8, 5461–5473. [CrossRef]spa
dcterms.bibliographicCitationRiaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR Analysis of Natural and Synthetic Collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [CrossRef]spa
dcterms.bibliographicCitationChen, J.; Li, L.; Yi, R.; Xu, N.; Gao, R.; Hong, B. Extraction and Characterization of Acid-Soluble Collagen from Scales and Skin of Tilapia (Oreochromis Niloticus). LWT-Food Sci. Technol. 2016, 66, 453–459. [CrossRef]spa
dcterms.bibliographicCitationSafandowska, M.; Pietrucha, K. Effect of Fish Collagen Modification on Its Thermal and Rheological Properties. Int. J. Biol. Macromol. 2013, 53, 32–37. [CrossRef]spa
dcterms.bibliographicCitationLeón-Mancilla, B.H.; Araiza-Téllez, M.A.; Flores-Flores, J.O.; Piña-Barba, M.C. Physico-Chemical Characterization of Collagen Scaffolds for Tissue Engineering. J. Appl. Res. Technol. 2016, 14, 77–85. [CrossRef]spa
dcterms.bibliographicCitationSionkowska, A.; Kozłowska, J. Characterization of Collagen/Hydroxyapatite Composite Sponges as a Potential Bone Substitute. Int. J. Biol. Macromol. 2010, 47, 483–487. [CrossRef]spa
dcterms.bibliographicCitationRotini, A.; Manfra, L.; Canepa, S.; Tornambè, A.; Migliore, L. Can Artemia Hatching Assay Be a (Sensitive) Alternative Tool to Acute Toxicity Test? Bull. Environ. Contam. Toxicol. 2015, 95, 745–751. [CrossRef]spa
dcterms.bibliographicCitationMorgana, S.; Estévez-Calvar, N.; Gambardella, C.; Faimali, M.; Garaventa, F. A Short-Term Swimming Speed Alteration Test with Nauplii of Artemia Franciscana. Ecotoxicol. Environ. Saf. 2018, 147, 558–564. [CrossRef]spa
dcterms.bibliographicCitationMuhammad,W.; Ullah, N.; Khans, M.; Ahmad,W.; Khan, M.Q.; Abbasi, B.H. Why Brine Shrimp (Artemia salina) Larvae Is Used as a Screening System for Nanomaterials? The Science of Procedure and Nano-Toxicology: A Review. Int. J. Biosci. 2019, 14, 156–176.spa
dcterms.bibliographicCitationVanhaecke, P.; Persoone, G. The ARC-Test: A Standardized Short-Term Routine Toxicity Test with Artemia Nauplii. Methodology and Evaluation. Ecotoxicological Test. Mar. Environ. 1984, 2, 143–157.spa
dcterms.bibliographicCitationPelka, M.; Danzl, C.; Distler, W.; Petschelt, A. A New Screening Test for Toxicity Testing of Dental Materials. J. Dent. 2000, 28, 341–345. [CrossRef]spa
dcterms.bibliographicCitationLagarto Parra, A.; Silva Yhebra, R.; Guerra Sardiñas, I.; Iglesias Buela, L. Comparative Study of the Assay of Artemia salina L. And the Estimate of the Medium Lethal Dose (LD50 Value) in Mice, to Determine Oral Acute Toxicity of Plant Extracts. Phytomedicine 2001, 8, 395–400. [CrossRef]spa
dcterms.bibliographicCitationEl Fels, L.; Hafidi, M.; Ouhdouch, Y. Artemia salina as a New Index for Assessment of Acute Cytotoxicity during Co-Composting of Sewage Sludge and Lignocellulose Waste. Waste Manag. 2016, 50, 194–200. [CrossRef]spa
dcterms.bibliographicCitationAsadi Dokht Lish, R.; Johari, S.A.; Sarkheil, M.; Yu, I.J. On How Environmental and Experimental Conditions Affect the Results of Aquatic Nanotoxicology on Brine Shrimp (Artemia salina): A Case of Silver Nanoparticles Toxicity. Environ. Pollut. 2019, 255, 113358. [CrossRef]spa
dcterms.bibliographicCitationPecoraro, R.; Scalisi, E.M.; Messina, G.; Fragalà, G.; Ignoto, S.; Salvaggio, A.; Zimbone, M.; Impellizzeri, G.; Brundo, M.V. Artemia salina: A Microcrustacean to Assess Engineered Nanoparticles Toxicity. Microsc. Res. Tech. 2020, 84, 531–536. [CrossRef]spa
dcterms.bibliographicCitationMadhav, M.R.; David, S.E.M.; Kumar, R.S.S.; Swathy, J.S.; Bhuvaneshwari, M.; Mukherjee, A.; Chandrasekaran, N. Toxicity and Accumulation of Copper Oxide (CuO) Nanoparticles in Different Life Stages of Artemia salina. Environ. Toxicol. Pharmacol. 2017, 52, 227–238. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBhuvaneshwari, M.; Thiagarajan, V.; Nemade, P.; Chandrasekaran, N.; Mukherjee, A. Toxicity and Trophic Transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: Effect of Dietary and Waterborne Exposure. Environ. Res. 2018, 160, 39–46. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZhu, B.; Zhu, S.; Li, J.; Hui, X.;Wang, G.X. The Developmental Toxicity, Bioaccumulation and Distribution of Oxidized Single Walled Carbon Nanotubes in: Artemia salina. Toxicol. Res. 2018, 7, 897–906. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAlves, P.e.S.; Oliveira, M.d.D.A.d.; Marcos de Almeida, P.; Martins, F.A.; Amélia de Carvalho Melo Cavalcante, A.; de Jesus Aguiar dos Santos Andrade, T.; Feitosa, C.M.; Rai, M.; Campinho dos Reis, A.; Soares da Costa Júnior, J. Determination by Chromatography and Cytotoxotoxic and Oxidative Effects of Pyriproxyfen and Pyridalyl. Chemosphere 2019, 224, 398–406. [CrossRef]spa
dcterms.bibliographicCitationSarmento, P.d.A.; Ataíde, T.d.R.; Pinto, A.P.d.S.; de Araújo-Júnior, J.X.; Lúcio, I.M.L.; Bastos, M.L.d.A. Avaliação Do Extrato Da Zeyheria Tuberculosa Na Perspectiva de Um Produto Para Cicatrização de Feridas. Rev. Lat. Am. Enfermagem 2014, 22, 165–172. [CrossRef]spa
dcterms.bibliographicCitationMorgan, D.M.L. Tetrazolium (MTT) Assay for Cellular Viability and Activity. In Polyamine Protocols; Springer: Berlin/Heidelberg, Germany, 1998; pp. 179–184.spa
dcterms.bibliographicCitationStockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium Salts and Formazan Products in Cell Biology: Viability Assessment, Fluorescence Imaging, and Labeling Perspectives. Acta Histochem. 2018, 120, 159–167. [CrossRef]spa
dcterms.bibliographicCitationMilhan, N.V.M.; Carvalho, I.C.S.; do Prado, R.F.; Trichês, E.D.S.; Camargo, C.H.R.; Camargo, S.E.A. Analysis of Indicators of Osteogenesis, Cytotoxicity and Genotoxicity of an Experimental -TCP Compared to Other Bone Substitutes. Acta Sci. Heal. Sci. 2017, 39, 97–105. [CrossRef]spa
dcterms.bibliographicCitationWang, T.Y.; Xu, S.L.; Wang, Z.P.; Guo, J.Y. Mega-Oss and Mega-TCP versus Bio-Oss Granules Fixed by Alginate Gel for Bone Regeneration. BDJ Open 2020, 6, 1–8. [CrossRef]spa
dcterms.bibliographicCitationNaujokat, H.; Rohwedder, J.; Gülses, A.; Cenk Aktas, O.; Wiltfang, J.; Açil, Y. CAD/CAM Scaffolds for Bone Tissue Engineering: Investigatuon of Biocompatibility of Selective Laser Melted Lightweight Titanium. IET Nanobiotechnol. 2020, 14, 584–589. [CrossRef]spa
dcterms.bibliographicCitationJing, L.; Wei, Q.; Xiaoqi, R.; Hao, S.; Ting, Y.; Chengzhong, S.; Baoxing, L.; Yaping, Z. Calcined Bovine Bone Combined with Acellular Dermal Matrix for Maintaining the Alveolar Ridge in Dog. Chinese J. Tissue Eng. Res. 2022, 26, 3445–3449.spa
dcterms.bibliographicCitationAslantürk, Ö.S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity-A Predict. Risk Our Act. World 2018, 2, 64–80.spa
dcterms.bibliographicCitationGhasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAdib, Y.; Bensussan, A.; Michel, L. CutaneousWound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm. 2022, 2022, 5344085. [CrossRef] [PubMed]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/polym14132672
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsbiocompatibilityspa
dc.subject.keywordsbone substitutesspa
dc.subject.keywordscollagenspa
dc.subject.keywordsxenograftsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por