Mostrar el registro sencillo del ítem
INTEGRATION OF ALGEBRA AND CHEMISTRY CONCEPTS WITH MOLECULAR DESCRIPTORS: A PROBLEM-BASEDLEARNING EXERCISE
dc.contributor.author | Cubillán, Néstor | |
dc.contributor.other | Marrero-Ponce, Yovani | |
dc.contributor.other | Inciarte González, Alicia | |
dc.date.accessioned | 2022-11-15T19:16:16Z | |
dc.date.available | 2022-11-15T19:16:16Z | |
dc.date.issued | 2019-03-17 | |
dc.date.submitted | 2018-06-01 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/783 | |
dc.description.abstract | A problem-based learning experience integrating mathematical concepts of linear and abstract algebra for undergraduate chemistry students is presented. The pedagogical framework was focused on the conceptual understanding of the vector space, graph theory and matrix algebra as a tool to obtain chemical information. The students were capable to solve a problem of physicochemical properties prediction through the calculation of molecular descriptors of the TOMOCOMD (acronym for TOpological MOlecular COMputational Design) approach. A “scientific congress” was organized by students to expose the results of the research. This evaluation strategy stimulated the self- and co-evaluation. The proposed experience demonstrated an enhanced learning compared to the traditional model. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | EDUCACION QUIMICA | spa |
dc.title | INTEGRATION OF ALGEBRA AND CHEMISTRY CONCEPTS WITH MOLECULAR DESCRIPTORS: A PROBLEM-BASEDLEARNING EXERCISE | spa |
dcterms.bibliographicCitation | Ajai, J. T., Imoko, B. I., & Emmanuel, I. O. (2013). Comparison of the Learning Effectiveness of Problem-Based Learning ( PBL ) and Conventional Method of Teaching Algebra. Journal of Education and Practice, 4(1), 131–136. Retrieved from http://www. iiste.org/Journals/index.php/JEP/article/view/4053 | spa |
dcterms.bibliographicCitation | Ali, R., Hukamdad, D., Akhter, A., & Khan, A. (2010). Effect of Using Problem Solving Method in Teaching Mathematics on the Achievement of Mathematics Students. Asian Social Science, 6(2), 67. https://doi.org/10.5539/ass.v6n2p67 | spa |
dcterms.bibliographicCitation | Ashraf, S. S., Marzouk, S. A. M., Shehadi, I. A., & Murphy, B. M. (2011). An Integrated Professional and Transferable Skills Course for Undergraduate Chemistry Students. Journal of Chemical Education, 88(1), 44–48. https://doi.org/10.1021/ed100275y | spa |
dcterms.bibliographicCitation | Bledsoe, K. E., & Flick, L. (2012). Concept Development and Meaningful Learning Among Electrical Engineering Students Engaged in a Problem-Based Laboratory Experience. Journal of Science Education and Technology, 21(2), 226–245. https:// doi.org/10.1007/s10956-011-9303-6 | spa |
dcterms.bibliographicCitation | Chen, W. H. (2013). Teaching geometry through problem-based learning and creative design. Jurnal Teknologi (Social Sciences), 63, 123–127. | spa |
dcterms.bibliographicCitation | Cowden, C. D., & Santiago, M. F. (2016). Interdisciplinary Explorations: Promoting Critical Thinking via Problem-Based Learning in an Advanced Biochemistry Class. Journal of Chemical Education, 93(3), 464–469. https://doi.org/10.1021/acs. jchemed.5b00378 | spa |
dcterms.bibliographicCitation | Eaton, J. (2016). GNU Octave. | spa |
dcterms.bibliographicCitation | Fakayode, S. O., King, A. G., Yakubu, M., Mohammed, A. K., & Pollard, D. A. (2012). Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory. Journal of Chemical Education, 89(1), 109–113. https://doi. org/10.1021/ed1011585 | spa |
dcterms.bibliographicCitation | Graovac, A., & Gutman, I. (1979). The Determinant of the Adjacency Matrix of a Molecular Graph. MATCH Communications in Mathematical and in COMputational Chemistry, 6, 49–73. | spa |
dcterms.bibliographicCitation | Gron, L. U., Bradley, S. B., McKenzie, J. R., Shinn, S. E., & Teague, M. W. (2013). How To Recognize Success and Failure: Practical Assessment of an Evolving, First-Semester Laboratory Program Using Simple, Outcome-Based Tools. Journal of Chemical Education, 90(6), 694–699. https://doi.org/10.1021/ed200523w | spa |
dcterms.bibliographicCitation | Gurses, A., Dogar, C., & Geyik, E. (2015). Teaching of the Concept of Enthalpy Using Problem Based Learning Approach. Procedia - Social and Behavioral Sciences, 197, 2390–2394. https://doi.org/10.1016/J.SBSPRO.2015.07.298 | spa |
dcterms.bibliographicCitation | Gutman, I., & Vidovic, D. (2002). The Largest Eigenvalues of Adjacency and Laplacian Matrices, and Ionization Potentials of Alkanes. Indian Journal of Chemistry, 41A, 893–896. | spa |
dcterms.bibliographicCitation | Hailikari, T. K., & Nevgi, A. (2010). How to Diagnose At‐risk Students in Chemistry: The case of prior knowledge assessment. International Journal of Science Education, 32(15), 2079–2095. https://doi.org/10.1080/09500690903369654 | spa |
dcterms.bibliographicCitation | Hopkins, T. A., & Samide, M. (2013). Using a Thematic Laboratory-Centered Curriculum To Teach General Chemistry. Journal of Chemical Education, 90(9), 1162–1166. https://doi.org/10.1021/ed300438t | spa |
dcterms.bibliographicCitation | Jansson, S., Söderström, H., Andersson, P. L., & Nording, M. L. (2015). Implementation of Problem-Based Learning in Environmental Chemistry. Journal of Chemical Education, 92(12), 2080–2086. https://doi.org/10.1021/ed500970y | spa |
dcterms.bibliographicCitation | Jones, B. D., Epler, C. M., Tech, V., Bryant, L. H., Paretti, M. C., Jones, B. D., … Paretti, L. H. (2013). The Effects of a Collaborative Problem-based Learning Experience on Students’ Motivation in Engineering Capstone Courses. Interdisciplinary Journal of Problem-Based Learning, 7(2), 5–16. https://doi.org/10.7771/1541-5015.1344 | spa |
dcterms.bibliographicCitation | Kerber, A., Laue, R., Meringer, M., Rücker, C., & Schymanski, E. (2014). Mathematical chemistry and chemoinformatics: Structure generation, elucidation and quantitative structure-property relationships. Mathematical Chemistry and Chemoinformatics: Structure Generation, Elucidation and Quantitative Structure- Property Relationships. https://doi.org/10.1515/9783110254075 | spa |
dcterms.bibliographicCitation | Kolb, A. Y., & Kolb, D. A. (2012). Experiential Learning Theory. In Seel N.M. (Ed.), Encyclopedia of the Sciences of Learning (pp. 1215–1219). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-1428-6_227 | spa |
dcterms.bibliographicCitation | Lin, Y. I., Son, J. Y., & Rudd, J. A. (2016). Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, 38(4), 644–662. https://doi.org/10.1080/09500693.2016.1144945 | spa |
dcterms.bibliographicCitation | Llorens-Molina, J.-A. (2010). El aprendizaje basado en problemas como estrategia para el cambio metodológico en los trabajos de laboratorio. Química Nova, 33(4), 994– 999. https://doi.org/10.1590/S0100-40422010000400043 | spa |
dcterms.bibliographicCitation | Maplesoft. (2016). MAPLE. | spa |
dcterms.bibliographicCitation | Marrero-Ponce, Y. (2003). Total and Local Quadratic Indices of the Molecular Pseudograph’s Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic Compounds. Molecules, 8(9), 687–726. https://doi. org/10.3390/80900687 | spa |
dcterms.bibliographicCitation | Marrero-Ponce, Y., Garit, J., Torrens, F., Zaldivar, V., & Castro, E. (2004). Atom, Atom- Type, and Total Linear Indices of the “Molecular Pseudograph’s Atom Adjacency Matrix”: Application to QSPR/QSAR Studies of Organic Compounds. Molecules, 9(12), 1100–1123. https://doi.org/10.3390/91201100 | spa |
dcterms.bibliographicCitation | Marrero-Ponce, Y., Khan, M. T. H., Casañola Martín, G. M., Ather, A., Sultankhodzhaev, M. N., Torrens, F., & Rotondo, R. (2007). Prediction of Tyrosinase Inhibition Activity Using Atom-Based Bilinear Indices. ChemMedChem, 2(4), 449–478. https://doi. org/10.1002/cmdc.200600186 | spa |
dcterms.bibliographicCitation | Marrero Ponce, Y. (2004). Total and local (atom and atom type) molecular quadratic indices: significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR applications. Bioorganic & Medicinal Chemistry, 12(24), 6351– 6369. https://doi.org/10.1016/J.BMC.2004.09.034 | spa |
dcterms.bibliographicCitation | MATLAB. (2016). MATLAB. MATLAB. https://doi.org/10.1201/9781420034950 | spa |
dcterms.bibliographicCitation | Mihalić, Z., & Trinajstić, N. (1992). A graph-theoretical approach to structure-property relationships. Journal of Chemical Education, 69(9), 701. https://doi.org/10.1021/ ed069p701 | spa |
dcterms.bibliographicCitation | Murphy, P. M. (2007). Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point. Journal of Chemical Education, 84(1), 97. https://doi. org/10.1021/ed084p97 | spa |
dcterms.bibliographicCitation | Pelligrino, J. W., & Hilton, M. L. (Eds.). (2012). Education for Life and Work. Washington: National Academies Press. https://doi.org/10.17226/13398 | spa |
dcterms.bibliographicCitation | Ram, P. (1999). Problem-Based Learning in Undergraduate Instruction. A Sophomore Chemistry Laboratory. Journal of Chemical Education, 76(8), 1122. https://doi. org/10.1021/ed076p1122 | spa |
dcterms.bibliographicCitation | Ross, A., & Willson, V. (2012). The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students’ Algebraic Procedure and Conceptual Understanding. School Science and Mathematics, 112(2), 117–128. https://doi. org/10.1111/j.1949-8594.2011.00125.x | spa |
dcterms.bibliographicCitation | SageMath. (2016). SageMath Kernel. | spa |
dcterms.bibliographicCitation | Sahin, M. (2010). Effects of Problem-Based Learning on University Students’ Epistemological Beliefs About Physics and Physics Learning and Conceptual Understanding of Newtonian Mechanics. Journal of Science Education and Technology, 19(3), 266–275. https://doi.org/10.1007/s10956-009-9198-7 | spa |
dcterms.bibliographicCitation | Todeschini, R., & Consonni, V. (2009). Molecular Descriptors for Chemoinformatic. (R. Todeschini & V. Consonni, Eds.) (Vol. 41). Weinheim, Germany: Wiley-VCH. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.doi | 10.22201/fq.18708404e.2019.2.65090 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | problem-based-learning, Abstract and Linear Algebra, Chemoinformatics, Multidisciplinary | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Animación | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |