Mostrar el registro sencillo del ítem

dc.contributor.authorCubillán, Néstor
dc.contributor.otherMarrero-Ponce, Yovani
dc.contributor.otherInciarte González, Alicia
dc.date.accessioned2022-11-15T19:16:16Z
dc.date.available2022-11-15T19:16:16Z
dc.date.issued2019-03-17
dc.date.submitted2018-06-01
dc.identifier.urihttps://hdl.handle.net/20.500.12834/783
dc.description.abstractA problem-based learning experience integrating mathematical concepts of linear and abstract algebra for undergraduate chemistry students is presented. The pedagogical framework was focused on the conceptual understanding of the vector space, graph theory and matrix algebra as a tool to obtain chemical information. The students were capable to solve a problem of physicochemical properties prediction through the calculation of molecular descriptors of the TOMOCOMD (acronym for TOpological MOlecular COMputational Design) approach. A “scientific congress” was organized by students to expose the results of the research. This evaluation strategy stimulated the self- and co-evaluation. The proposed experience demonstrated an enhanced learning compared to the traditional model.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceEDUCACION QUIMICAspa
dc.titleINTEGRATION OF ALGEBRA AND CHEMISTRY CONCEPTS WITH MOLECULAR DESCRIPTORS: A PROBLEM-BASEDLEARNING EXERCISEspa
dcterms.bibliographicCitationAjai, J. T., Imoko, B. I., & Emmanuel, I. O. (2013). Comparison of the Learning Effectiveness of Problem-Based Learning ( PBL ) and Conventional Method of Teaching Algebra. Journal of Education and Practice, 4(1), 131–136. Retrieved from http://www. iiste.org/Journals/index.php/JEP/article/view/4053spa
dcterms.bibliographicCitationAli, R., Hukamdad, D., Akhter, A., & Khan, A. (2010). Effect of Using Problem Solving Method in Teaching Mathematics on the Achievement of Mathematics Students. Asian Social Science, 6(2), 67. https://doi.org/10.5539/ass.v6n2p67spa
dcterms.bibliographicCitationAshraf, S. S., Marzouk, S. A. M., Shehadi, I. A., & Murphy, B. M. (2011). An Integrated Professional and Transferable Skills Course for Undergraduate Chemistry Students. Journal of Chemical Education, 88(1), 44–48. https://doi.org/10.1021/ed100275yspa
dcterms.bibliographicCitationBledsoe, K. E., & Flick, L. (2012). Concept Development and Meaningful Learning Among Electrical Engineering Students Engaged in a Problem-Based Laboratory Experience. Journal of Science Education and Technology, 21(2), 226–245. https:// doi.org/10.1007/s10956-011-9303-6spa
dcterms.bibliographicCitationChen, W. H. (2013). Teaching geometry through problem-based learning and creative design. Jurnal Teknologi (Social Sciences), 63, 123–127.spa
dcterms.bibliographicCitationCowden, C. D., & Santiago, M. F. (2016). Interdisciplinary Explorations: Promoting Critical Thinking via Problem-Based Learning in an Advanced Biochemistry Class. Journal of Chemical Education, 93(3), 464–469. https://doi.org/10.1021/acs. jchemed.5b00378spa
dcterms.bibliographicCitationEaton, J. (2016). GNU Octave.spa
dcterms.bibliographicCitationFakayode, S. O., King, A. G., Yakubu, M., Mohammed, A. K., & Pollard, D. A. (2012). Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory. Journal of Chemical Education, 89(1), 109–113. https://doi. org/10.1021/ed1011585spa
dcterms.bibliographicCitationGraovac, A., & Gutman, I. (1979). The Determinant of the Adjacency Matrix of a Molecular Graph. MATCH Communications in Mathematical and in COMputational Chemistry, 6, 49–73.spa
dcterms.bibliographicCitationGron, L. U., Bradley, S. B., McKenzie, J. R., Shinn, S. E., & Teague, M. W. (2013). How To Recognize Success and Failure: Practical Assessment of an Evolving, First-Semester Laboratory Program Using Simple, Outcome-Based Tools. Journal of Chemical Education, 90(6), 694–699. https://doi.org/10.1021/ed200523wspa
dcterms.bibliographicCitationGurses, A., Dogar, C., & Geyik, E. (2015). Teaching of the Concept of Enthalpy Using Problem Based Learning Approach. Procedia - Social and Behavioral Sciences, 197, 2390–2394. https://doi.org/10.1016/J.SBSPRO.2015.07.298spa
dcterms.bibliographicCitationGutman, I., & Vidovic, D. (2002). The Largest Eigenvalues of Adjacency and Laplacian Matrices, and Ionization Potentials of Alkanes. Indian Journal of Chemistry, 41A, 893–896.spa
dcterms.bibliographicCitationHailikari, T. K., & Nevgi, A. (2010). How to Diagnose At‐risk Students in Chemistry: The case of prior knowledge assessment. International Journal of Science Education, 32(15), 2079–2095. https://doi.org/10.1080/09500690903369654spa
dcterms.bibliographicCitationHopkins, T. A., & Samide, M. (2013). Using a Thematic Laboratory-Centered Curriculum To Teach General Chemistry. Journal of Chemical Education, 90(9), 1162–1166. https://doi.org/10.1021/ed300438tspa
dcterms.bibliographicCitationJansson, S., Söderström, H., Andersson, P. L., & Nording, M. L. (2015). Implementation of Problem-Based Learning in Environmental Chemistry. Journal of Chemical Education, 92(12), 2080–2086. https://doi.org/10.1021/ed500970yspa
dcterms.bibliographicCitationJones, B. D., Epler, C. M., Tech, V., Bryant, L. H., Paretti, M. C., Jones, B. D., … Paretti, L. H. (2013). The Effects of a Collaborative Problem-based Learning Experience on Students’ Motivation in Engineering Capstone Courses. Interdisciplinary Journal of Problem-Based Learning, 7(2), 5–16. https://doi.org/10.7771/1541-5015.1344spa
dcterms.bibliographicCitationKerber, A., Laue, R., Meringer, M., Rücker, C., & Schymanski, E. (2014). Mathematical chemistry and chemoinformatics: Structure generation, elucidation and quantitative structure-property relationships. Mathematical Chemistry and Chemoinformatics: Structure Generation, Elucidation and Quantitative Structure- Property Relationships. https://doi.org/10.1515/9783110254075spa
dcterms.bibliographicCitationKolb, A. Y., & Kolb, D. A. (2012). Experiential Learning Theory. In Seel N.M. (Ed.), Encyclopedia of the Sciences of Learning (pp. 1215–1219). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-1428-6_227spa
dcterms.bibliographicCitationLin, Y. I., Son, J. Y., & Rudd, J. A. (2016). Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, 38(4), 644–662. https://doi.org/10.1080/09500693.2016.1144945spa
dcterms.bibliographicCitationLlorens-Molina, J.-A. (2010). El aprendizaje basado en problemas como estrategia para el cambio metodológico en los trabajos de laboratorio. Química Nova, 33(4), 994– 999. https://doi.org/10.1590/S0100-40422010000400043spa
dcterms.bibliographicCitationMaplesoft. (2016). MAPLE.spa
dcterms.bibliographicCitationMarrero-Ponce, Y. (2003). Total and Local Quadratic Indices of the Molecular Pseudograph’s Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic Compounds. Molecules, 8(9), 687–726. https://doi. org/10.3390/80900687spa
dcterms.bibliographicCitationMarrero-Ponce, Y., Garit, J., Torrens, F., Zaldivar, V., & Castro, E. (2004). Atom, Atom- Type, and Total Linear Indices of the “Molecular Pseudograph’s Atom Adjacency Matrix”: Application to QSPR/QSAR Studies of Organic Compounds. Molecules, 9(12), 1100–1123. https://doi.org/10.3390/91201100spa
dcterms.bibliographicCitationMarrero-Ponce, Y., Khan, M. T. H., Casañola Martín, G. M., Ather, A., Sultankhodzhaev, M. N., Torrens, F., & Rotondo, R. (2007). Prediction of Tyrosinase Inhibition Activity Using Atom-Based Bilinear Indices. ChemMedChem, 2(4), 449–478. https://doi. org/10.1002/cmdc.200600186spa
dcterms.bibliographicCitationMarrero Ponce, Y. (2004). Total and local (atom and atom type) molecular quadratic indices: significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR applications. Bioorganic & Medicinal Chemistry, 12(24), 6351– 6369. https://doi.org/10.1016/J.BMC.2004.09.034spa
dcterms.bibliographicCitationMATLAB. (2016). MATLAB. MATLAB. https://doi.org/10.1201/9781420034950spa
dcterms.bibliographicCitationMihalić, Z., & Trinajstić, N. (1992). A graph-theoretical approach to structure-property relationships. Journal of Chemical Education, 69(9), 701. https://doi.org/10.1021/ ed069p701spa
dcterms.bibliographicCitationMurphy, P. M. (2007). Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point. Journal of Chemical Education, 84(1), 97. https://doi. org/10.1021/ed084p97spa
dcterms.bibliographicCitationPelligrino, J. W., & Hilton, M. L. (Eds.). (2012). Education for Life and Work. Washington: National Academies Press. https://doi.org/10.17226/13398spa
dcterms.bibliographicCitationRam, P. (1999). Problem-Based Learning in Undergraduate Instruction. A Sophomore Chemistry Laboratory. Journal of Chemical Education, 76(8), 1122. https://doi. org/10.1021/ed076p1122spa
dcterms.bibliographicCitationRoss, A., & Willson, V. (2012). The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students’ Algebraic Procedure and Conceptual Understanding. School Science and Mathematics, 112(2), 117–128. https://doi. org/10.1111/j.1949-8594.2011.00125.xspa
dcterms.bibliographicCitationSageMath. (2016). SageMath Kernel.spa
dcterms.bibliographicCitationSahin, M. (2010). Effects of Problem-Based Learning on University Students’ Epistemological Beliefs About Physics and Physics Learning and Conceptual Understanding of Newtonian Mechanics. Journal of Science Education and Technology, 19(3), 266–275. https://doi.org/10.1007/s10956-009-9198-7spa
dcterms.bibliographicCitationTodeschini, R., & Consonni, V. (2009). Molecular Descriptors for Chemoinformatic. (R. Todeschini & V. Consonni, Eds.) (Vol. 41). Weinheim, Germany: Wiley-VCH.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.doi10.22201/fq.18708404e.2019.2.65090
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsproblem-based-learning, Abstract and Linear Algebra, Chemoinformatics, Multidisciplinaryspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaAnimaciónspa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por