Mostrar el registro sencillo del ítem

dc.contributor.authorValencia Ochoa, Guillermo
dc.contributor.otherCárdenas Gutierrez, Javier
dc.contributor.otherDuarte Forero, Jorge
dc.date.accessioned2022-11-15T19:15:38Z
dc.date.available2022-11-15T19:15:38Z
dc.date.issued2020-01-01
dc.date.submitted2019-11-10
dc.identifier.urihttps://hdl.handle.net/20.500.12834/782
dc.description.abstractIn this article, an organicRankine cycle (ORC)was integrated into a 2-MWnatural gas engine to evaluate the possibility of generating electricity by recovering the engine’s exhaust heat. The operational anddesignvariableswiththe greatest influence onthe energy, economic, andenvironmentalperformance of the system were analyzed. Likewise, the components with greater exergy destruction were identified through the variety of different operating parameters. From the parametric results, it was found that the evaporation pressure has the greatest influence on the destruction of exergy. The highest fraction of exergy was obtained for the Shell and tube heat exchanger (ITC1) with 38% of the total exergy destruction of the system. It was also determined that the high value of the heat transfer area increases its acquisition costs and the levelized cost of energy (LCOE) of the thermal system. Therefore, these systems must have a turbine technology with an efficiency not exceeding 90% because, from this value, the LCOE of the system surpasses the LCOE of a gas turbine. Lastly, a life cycle analysis (LCA) was developed on the system operating under the selected organic working fluids. It was found that the component with the greatest environmental impact was the turbine, which reached a maximum value of 3013.65 Pts when the material was aluminum. Acetone was used as the organic working fluid.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceresourcesspa
dc.titleExergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Enginespa
dcterms.bibliographicCitationBarrozo, F.; Valencia, G.; Cárdenas, Y. An economic evaluation of renewable and conventional electricity generation systems in shopping center using HOMER Pro. Contemp. Eng. Sci. 2017, 10, 1287–1295.spa
dcterms.bibliographicCitationZhang, H.; Guan, X.; Ding, Y.; Liu, C. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 2018, 183, 1207–1215.spa
dcterms.bibliographicCitationValencia, G.; Acevedo, C.; Duarte, J. Thermoeconomic optimization with PSO Algorithm of waste heat recovery systems based on Organic Rankine Cycle system for a natural gas engine. Energies 2019, 21, 4165.spa
dcterms.bibliographicCitationValencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and exergy analysis of di erent exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 2019, 12, 2378.spa
dcterms.bibliographicCitationZhai, H.; An, Q.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and analysis of heat sources for Organic Rankine Cycle systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805.spa
dcterms.bibliographicCitationLiu, X.; Liang, J.; Xiang, D.; Yang, S.; Qian, Y. A proposed coal-to-methanol process with CO2 capture combined Organic Rankine Cycle (ORC) for waste heat recovery. J. Clean. Prod. 2016, 129, 53–64.spa
dcterms.bibliographicCitationGholamian, E.; Habibollahzade, A.; Zare, V. Development and multi-objective optimization of geothermalbased Organic Rankine Cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production. Energy Convers. Manag. 2018, 174, 112–125.spa
dcterms.bibliographicCitationYao, S.; Zhang, Y.; Yu, X. Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China. Energy 2018, 164, 602–614.spa
dcterms.bibliographicCitationDimitrova, Z.; Lourdais, P.; Maréchal, F. Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain. Energy 2015, 86, 574–588.spa
dcterms.bibliographicCitationVivian, J.; Manente, G.; Lazzaretto, A. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources. Appl. Energy 2015, 156, 727–746.spa
dcterms.bibliographicCitationYu, H.; Feng, X.; Wang, Y. A new pinch based method for simultaneous selection of working fluid and operating conditions in an Organic Rankine Cycle (ORC) recovering waste heat. Energy 2015, 90, 36–46.spa
dcterms.bibliographicCitationInvernizzi, C.M.; Iora, P.; Preißinger, M.; Manzolini, G. HFOs as substitute for R-134a as working fluids in ORC power plants: A thermodynamic assessment and thermal stability analysis. Appl. Therm. Eng. 2016, 103, 790–797.spa
dcterms.bibliographicCitationMavrou, P.; Papadopoulos, A.I.; Stijepovic, M.Z.; Seferlis, P.; Linke, P.; Voutetakis, S. Novel and conventional working fluid mixtures for solar Rankine cycles: Performance assessment and multi-criteria selection. Appl. Therm. Eng. 2015, 75, 384–396.spa
dcterms.bibliographicCitationRahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N.; Mirhadizadeh, S.A. Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 2017, 134, 135–155.spa
dcterms.bibliographicCitationKarellas, S.; Braimakis, K. Energy–exergy analysis and economic investigation of a cogeneration and trigeneration ORC–VCC hybrid system utilizing biomass fuel and solar power. Energy Convers. Manag. 2016, 107, 103–113.spa
dcterms.bibliographicCitationPang, K.-C.; Chen, S.-C.; Hung, T.-C.; Feng, Y.-Q.; Yang, S.-C.;Wong, K.-W.; Lin, J.-R. Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy 2017, 133, 636–651.spa
dcterms.bibliographicCitationWang, J.; Diao, M.; Yue, K. Optimization on pinch point temperature di erence of ORC system based on AHP-Entropy method. Energy 2017, 141, 97–107.spa
dcterms.bibliographicCitationMahmoudi, S.M.S.; Ghavimi, A.R. Thermoeconomic analysis and multi objective optimization of a molten carbonate fuel cell—Supercritical carbon dioxide—Organic Rankin Cycle integrated power system using liquefied natural gas as heat sink. Appl. Therm. Eng. 2016, 107, 1219–1232.spa
dcterms.bibliographicCitationZhang, Q.; Ogren, R.M.; Kong, S.-C. Thermo-economic analysis and multi-objective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for o shore gas turbine application. Energy Convers. Manag. 2018, 172, 212–227.spa
dcterms.bibliographicCitationLiu, C.; He, C.; Gao, H.; Xie, H.; Li, Y.; Wu, S.; Xu, J. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment. Energy 2013, 56, 144–154.spa
dcterms.bibliographicCitationCioccolanti, L.; Rajabi Hamedani, S.; Villarini, M. Environmental and energy assessment of a small-scale solar Organic Rankine Cycle trigeneration system based on compound parabolic collectors. Energy Convers. Manag. 2019, 198, 111829.spa
dcterms.bibliographicCitationDing, Y.; Liu, C.; Zhang, C.; Xu, X.; Li, Q.; Mao, L. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 2018, 145, 52–64.spa
dcterms.bibliographicCitationHeberle, F.; Schi echner, C.; Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 2016, 64, 392–400.spa
dcterms.bibliographicCitationSun, W.; Yue, X.; Wang, Y. Exergy e ciency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat. Energy Convers. Manag. 2017, 135, 63–73.spa
dcterms.bibliographicCitationMateu-Royo, C.; Mota-Babiloni, A.; Navarro-Esbrí, J.; Peris, B.; Molés, F.; Amat-Albuixech, M. Multi-objective optimization of a novel reversible High-Temperature Heat Pump-Organic Rankine Cycle (HTHP-ORC) for industrial low-grade waste heat recovery. Energy Convers. Manag. 2019, 197, 111908.spa
dcterms.bibliographicCitationVan Kleef, L.M.T.; Oyewunmi, O.A.; Markides, C.N. Multi-objective thermo-economic optimization of Organic Rankine Cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques. Appl. Energy 2019, 251, 112513.spa
dcterms.bibliographicCitationShi, L.; Shu, G.; Tian, H.; Deng, S. A review of modified Organic Rankine Cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev. 2018, 92, 95–110.spa
dcterms.bibliographicCitationValencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic analysis of di erent exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4071.spa
dcterms.bibliographicCitationDa Silva, J.A.M.; Seifert, V.; de Morais, V.O.B.; Tsolakis, A.; Herreros, J.; Torres, E. Exergy evaluation and ORC use as an alternative for e ciency improvement in a CI-engine power plant. Sustain. Energy Technol. Assess. 2018, 30, 216–223.spa
dcterms.bibliographicCitationAbam, F.I.; Ekwe, E.B.; E om, S.O.; Ndukwu, M.C. A comparative performance analysis and thermosustainability indicators of modified low-heat Organic Rankine Cycles (ORCs): An exergy-based procedure. Energy Rep. 2018, 4, 110–118.spa
dcterms.bibliographicCitationKarvountzis-Kontakiotis, A.; Pesiridis, A.; Zhao, H.; Alshammari, F.; Franchetti, B.; Pesmazoglou, I.; Tocci, L. Effect of an ORCWaste Heat Recovery System on Diesel Engine Fuel Economy for Off-Highway Vehicles; SAE Technical Paper; SAE:Warrendale, PA, USA, 2017.spa
dcterms.bibliographicCitationOchoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under di erentworking fluids. Appl. Sci. 2019, 9, 4526.spa
dcterms.bibliographicCitationKhoo,H.H. LCAof plasticwaste recovery into recycledmaterials, energy and fuels in Singapore. Resour. Conserv. Recycl. 2019, 145, 67–77.spa
dcterms.bibliographicCitationShyam Mishra, R.; Khan, Y. Exergy and energy analysis of modified organic rankine cycle for reduction of global warming and ozone depletion. Int. J. Res. Eng. Innov. 2017, 1, 1–12.spa
dcterms.bibliographicCitationOchoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700.spa
dcterms.bibliographicCitationWater, G.P. Jenbacher 612 GS-N. L 2MW. Tech. Specif. 2011, 1–4. Available online: http://kts-eng.com/assets/ files/J-612.pdf (accessed on 28 December 2019).spa
dcterms.bibliographicCitationBarrozo, F.; Ochoa, G.V.; Cárdenas, Y.D. Hybrid PV & Wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemp. Eng. Sci. 2017, 26, 1269–1278.spa
dcterms.bibliographicCitationZare, V. A comparative exergoeconomic analysis of di erent ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138.spa
dcterms.bibliographicCitationEl-Emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444.spa
dcterms.bibliographicCitationCalise, F.; Capuozzo, C.; Carotenuto, A.; Vanoli, L. Thermoeconomic analysis and o -design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol. Energy 2014, 103, 595–609.spa
dcterms.bibliographicCitationVoros, N.G.; Kiranoudis, C.T.; Maroulis, Z.B. Solar energy exploitation for reverse osmosis desalination plants. Desalination 1998, 115, 83–101.spa
dcterms.bibliographicCitationValencia, G.; Benavides, A.; Cárdenas, Y. Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119.spa
dcterms.bibliographicCitationShengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754.spa
dcterms.bibliographicCitationBhatt, A.; Bradford, A.; Abbassi, B.E. Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. J. Environ. Manag. 2019, 231, 98–109.spa
dcterms.bibliographicCitationInternational Organization for Standardization (ISO). Environmental Management The ISO 14000 Family of International Standards ISO in Brief ISO and the Environment; ISO: Geneva, Switzerland, 2009.spa
dcterms.bibliographicCitationArvanitoyannis, I.S. Life cycle assessment (LCA)—Principles and guidelines. Waste Manag. Food Ind. 2008, 14040, 97–132.spa
dcterms.bibliographicCitationKost, C.; Schlegl, T.; Thomsen, J.; Nold, S.; Mayer, J.; Hartmann, N.; Senkpiel, C.; Philipps, S.; Lude, S.; Saad, N. Fraunhofer ISE: Levelized cost of electricity—Renewable energy technologies, March 2018. arXiv 2018, arXiv:cs/9605103. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/ publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed on 28 December 2019).spa
dcterms.bibliographicCitationValencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655.spa
dcterms.bibliographicCitationDiaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903.spa
dcterms.bibliographicCitationValencia, G.; Vanegas, M.; Villicana, E. Disponibilidad Geográfica y Temporal de la Energía Solar en la Costa Caribe Colombiana; Sello editorial de la Universidad del Atlántico: Barranquilla, Colombia, 2016.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/resources9010002
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsorganic Rankine cycle; organic working fluids; LCOE; thermodynamic analysis; economic analysis; LCAspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por