Mostrar el registro sencillo del ítem

dc.contributor.authorDiaz-Uribe, Carlos
dc.contributor.otherWilliam, Vallejo
dc.contributor.otherCesar, Quiñones
dc.date.accessioned2022-11-15T19:15:19Z
dc.date.available2022-11-15T19:15:19Z
dc.date.issued2019-10-30
dc.date.submitted2020-01-03
dc.identifier.urihttps://hdl.handle.net/20.500.12834/780
dc.description.abstractIn this work, we studied the anthracene oxidation by hydroxyl radicals. Hydroxyl radical was generated by reaction of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Fe (III) (TPPFe) with hydrogen peroxide under visible radiation at a nitrogen atmosphere. The TPPFe was synthesized by Adler Method followed by metal complexation with Fe (III) chloride hexahydrate. Hydroxyl radical was detected by fluorescence emission spectroscopy and we studied kinetic of anthracene selective oxidation by hydroxyl radicals through the differential method. The TPPFe was characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM) measurements. The results indicated that TPPFE was compound by micro-particles with a size distribution of around 2500 nm. Kinetic results showed that the apparent rate constant for the oxidation of anthracene increased exponentially on as temperature increases, furthermore, the activation energy for the Anthracene oxidation by hydroxyl radicals under visible irradiation was 51.3 kJ/mol. Finally, anthraquinone was the main byproduct generated after oxidation of anthracene by TPP-Fe under visible irradiation.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceInternational Journal of Molecular Sciencesspa
dc.titlePhysical-chemical study of anthracene selective oxidation by a Fe(III)-phenylporhyrin derivativespa
dcterms.bibliographicCitationMa, J.; Liu, Y.; He, H. Degradation kinetics of anthracene by ozone on mineral oxides. Atmos. Environ. 2010, 44, 4446–4453.spa
dcterms.bibliographicCitationUkiwe, L.N.; Egereonu, U.U.; Njoku, P.C.; Nwoko, C.I.A.; Allinor, J.I. Polycyclic aromatic hydrocarbons degradation techniques: A review. Int. J. Chem. 2013, 5, 43–55.spa
dcterms.bibliographicCitationKrumova, K.; Cosa, G. Chapter 1: Overview of reactive oxygen species. In Singlet Oxygen: Applications in Biosciences and Nanosciences, 1st ed.; RSC: London, UK, 2016; pp. 1–21.spa
dcterms.bibliographicCitationKolarova, H.; Nevrelova, P.; Tomankova, K.; Kolar, P.; Bajgar, R.; Mosinger, J. Production of reactive oxygen species for photodynamic therapy by porphyrin sensitizers. Gen. Physiol. Biophys. 2008, 27, 101–105.spa
dcterms.bibliographicCitationBoyle, R.; Dolphin, D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem. Photobiol. 1996, 64, 469–485.spa
dcterms.bibliographicCitationAnanthula, R.; Yamada, T.; Taylor, P.H. Kinetics of OH radical reaction with anthracene and anthracene-d10. J. Phys. Chem. A 2006, 110, 3559–3566.spa
dcterms.bibliographicCitationSilva, M.; Severino, D.; Manso, F.; Oliveira, M.; de Oliveira, M.B.; Baptista, M.; de Medeiros, M.G.; di Mascio, P. Synthesis and characterization of new anthracene derivatives used as singlet molecular oxygen chemical traps. Free Radic. Biol. Med. 2010, 49, S99–S100.spa
dcterms.bibliographicCitationGoulay, F.; Rebrion-Rowe, C.; le Garrec, J.L.; le Picard, S.D.; Canosa, A.; Rowe, B.R. The reaction of anthracene with OH radicals: An experimental studyof the kinetics between 58 and 470 K. J. Chem. Phys. 2005, 122, 104308.spa
dcterms.bibliographicCitationDougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905.spa
dcterms.bibliographicCitationCarella, A.; Borbone, F.; Centore, R. Research progress on photosensitizers for DSSC. Front. Chem. 2018, 6, 481.spa
dcterms.bibliographicCitationChen, Y.; Li, A.; Huang, Z.; Wang, L.; Kan, F. Porphyrin-based nanostructures for photocatalytic applications. Nanomaterials (Basel) 2016, 6, 51.spa
dcterms.bibliographicCitationZargari, S.; Rahimi, R.; Yousefi, A. An efficient visible light photocatalyst based on tin porphyrin intercalated between TiO2 graphene nanosheets for inactivation of E. coli and investigation of charge transfer mechanism. RSC Adv. 2016, 6, 24218–24228.spa
dcterms.bibliographicCitationBonnett, R.; Roberts, S.; Phillips, D.; O’Brien, P. Chemical Aspects of Photodynamic Therapy, 1st ed.; CRC Press: London, UK, 2000; pp. 1–324.spa
dcterms.bibliographicCitationIshibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantum yields of active oxidative spices formed on TiO2 photocatalyst. J. Photochem. Photobiol. A Chem. 2000, 134, 139–142. [spa
dcterms.bibliographicCitationRodríguez, F.; Dolores, M.; Adrados, L.F.; Burillo, J.C.; Tijero, J.F. Selective oxidation of anthracene to anthraquinone in acetic acid with air in presence of nitric acid. Tetrahedron Lett. 1989, 30, 2417–2420.spa
dcterms.bibliographicCitationSafari, N.; Naghavi, S.; Khavasi, H.R. Homogeneous m-CPBA-oxidation of anthracene by electron-withdrawing metalloporphyrins in different reaction conditions. Appl. Catal. A Gen. 2005, 285, 59–64.spa
dcterms.bibliographicCitationMaranzana, A.; Ghigo, G.; Tonachini, G. Anthracene and phenanthrene tropospheric oxidation promoted by the nitrate radical in the gas-phase. Theoretical modelistic study. Atmos. Environ. 2017, 167, 181–189.spa
dcterms.bibliographicCitationBiermann, H.W.; Mac Leod, H.; Atkinson, R.; Winer, A.M.; Pitts, J.N. Kinetics of the gas-phase reactions of the hydroxyl radical with naphthalene, phenanthrene, and anthracene. Environ. Sci. Technol. 1985, 19, 244–248.spa
dcterms.bibliographicCitationZhao, N.; Zhang, Q.; Wang, W. Atmospheric oxidation of phenanthrene initiated by OH radicals in the presence of O2 and NOx—A theoretical study. Sci. Total Environ. 2016, 563–564, 1008–1015.spa
dcterms.bibliographicCitationZhang, Q.; Gao, R.; Xu, F.; Zhou, Q.; Jiang, G.; Wang, T.; Chen, J.; Hu, J.; Jiang, W.; Wang, W. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: A computational study. Environ. Sci. Technol. 2014, 48, 5051–5057.spa
dcterms.bibliographicCitationFang, G.; Gao, J.; Dionysiou, D.D.; Liu, C.; Zhou, D. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs. Environ. Sci. Technol. 2013, 47, 4605–4611.spa
dcterms.bibliographicCitationWei, B.; Sun, J.; Mei, Q.; An, Z.; Wang, X.; He, M. Theoretical study on gas-phase reactions of nitrate radicals with methoxyphenols: Mechanism, kinetic and toxicity assessment. Environ. Pollut. 2018, 243, 1772–1780.spa
dcterms.bibliographicCitationLiu, W.; Lv, G.; Sun, X.; He, L.; Zhang, C.; Li, Z. Theoretical study on the reaction of anthracene with sulfate radical and hydroxyl radical in aqueous solution. Ecotoxicol. Environ. Saf. 2019, 183, 109551.spa
dcterms.bibliographicCitationKaram, F.F.; Hussein, F.H.; Baqir, S.J.; Halbus, A.F.; Dillert, R.; Bahnemann, D. Photocatalytic degradation of anthracene in closed system reactor. Int. J. Photoenergy 2014.spa
dcterms.bibliographicCitationKozak, J.; Włodarczyk, M. Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals. E3S Web Conf. 2018, 30, 02009.spa
dcterms.bibliographicCitationLuo, Z.; Wang, J.; Song, Y.; Zheng, X.; Qu, L.L.; Wu, Z.; Wu, X. Remediation of phenanthrene contaminated soil by a solid-state photo-fenton reagent based on mesoporous magnetite/carboxylate-rich carbon composites and its phytotoxicity evaluation. ACS Sustain. Chem. Eng. 2018, 6, 13262–13275.spa
dcterms.bibliographicCitationKe, Y.; Ning, X.A.; Liang, J.; Zou, H.; Sun, J.; Cai, H.; Lin, M.; Li, R.; Zhang, Y. Sludge treatment by integrated ultrasound-Fenton process: Characterization of sludge organic matter and its impact on PAHs removal. J. Hazard. Mater. 2018, 343, 191–199.spa
dcterms.bibliographicCitationBocos, E.; Fernández-Costas, C.; Pazos, M.; Sanromán, M. Ángeles removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere 2015, 125, 168–174.spa
dcterms.bibliographicCitationZhao, X.; Qin, L.; Gatheru, M.; Cheng, P.; Yang, B.; Wang, J.; Ling, W. Removal of bound PAH residues in contaminated soils by Fenton oxidation. Catalysts 2019, 9, 619.spa
dcterms.bibliographicCitationZhao, X.; Qin, L.; Gatheru, M.; Cheng, P.; Yang, B.; Wang, J.; Ling, W. Removal of bound PAH residues in contaminated soils by Fenton oxidation. Catalysts 2019, 9, 619.spa
dcterms.bibliographicCitationKarthikeyan, S.; Boopathy, R.; Gupta, V.K.; Sekaran, G. Preparation, characterizations and its application of heterogeneous Fenton catalyst for the treatment of synthetic phenol solution. J. Mol. Liq. 2013, 177, 402–408.spa
dcterms.bibliographicCitationTryba, B.; Morawski, A.W.; Inagaki, M.; Toyoda, M. The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Appl. Catal. B Environ. 2006, 63, 215–221.spa
dcterms.bibliographicCitationKusic, H.; Koprivanac, N.; Bozic, A.L.; Selanec, I. Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study. J. Hazard. Mater. 2006, 136, 632–644.spa
dcterms.bibliographicCitationZheng, W.; Shan, N.; Yu, L.; Wang, X. UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 2008, 77, 153–157.spa
dcterms.bibliographicCitationPapkovsky, D.B.; Ponomare, G.V.; Trettnak, W.; O’Leary, P. Phosphorescent complexes of porphyrin ketones: Optical properties and application to oxygen sensing. Anal. Chem. 1995, 67, 4112–4117.spa
dcterms.bibliographicCitationDíaz, C.; Vallejo, W.; Miranda, J. Photo-Fenton oxidation of phenol with Fe(III)-tetra-4-carboxyphenylporphyrin/SiO2 assisted with visible light. J. Photochem. Photobiol. A Chem. 2014, 294, 75–80.spa
dcterms.bibliographicCitationZhdanova, K.A.; Ezhov, A.V.; Bragina, N.A.; Mironov, A.F. Synthesis of new binary porphyrin-cyanine conjugates and their self-aggregation in organic-aqueous media. Mendeleev Commun. 2018, 28, 626–628.spa
dcterms.bibliographicCitationAndrade, S.M.; Teixeira, R.; Costa, S.M.B.; Sobral, A.J.F.N. Self-aggregation of free base porphyrins in aqueous solution and in DMPC vesicles. Biophys. Chem. 2008, 133, 1–10.spa
dcterms.bibliographicCitationMark, G.; Tauber, A.; Laupert, R.; Schuchmann, H.; Schulz, D.; Mues, A.; Sonntag, C. OH-radical formation by ultrasound in aqueous solution—Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason. Sonochem. 1998, 5, 41–52.spa
dcterms.bibliographicCitationKohtani, S.; Tomohiro, M.; Tokumura, K.; Nakagaki, R. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts. Appl. Catal. B Environ. 2005, 58, 265–272.spa
dcterms.bibliographicCitationPaddon, C.A.; Banks, C.E.; Davies, I.G.; Compton, R.G. Oxidation of anthracene on platinum macro- and micro-electrodes: Sonoelectrochemical, cryoelectrochemical and sonocryoelectrochemical studies. Ultrason. Sonochem. 2006, 13, 126–132.spa
dcterms.bibliographicCitationCordeiro, D.S.; Corio, P. Electrochemical and photocatalytic reactions of polycyclic aromatic hydrocarbons investigated by raman spectroscopy. J. Braz. Chem. Soc. 2009, 2, 80–87.spa
dcterms.bibliographicCitationAdler, A.; Longo, F.; Finarelli, J.; Goldmacher, J.; Assour, J.; Korsakoff, L. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem. 1967, 32, 476.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/ijms21010353
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordssensitizer; porphyrin; hydroxyl radical; polycyclic aromatic hydrocarbons; anthracenespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por