Mostrar el registro sencillo del ítem

dc.contributor.authorVallejo, William
dc.contributor.otherCantillo, Alvaro
dc.contributor.otherDíaz-Uribe, Carlos
dc.date.accessioned2022-11-15T19:14:35Z
dc.date.available2022-11-15T19:14:35Z
dc.date.issued2019-09-04
dc.date.submitted2020-01-02
dc.identifier.urihttps://hdl.handle.net/20.500.12834/778
dc.description.abstractThis study synthesized and characterized Ag-doped ZnO thin films. Doped ZnO powders were synthesized using the sol-gel method, and thin films were fabricated using the doctor blade technique. The Ag content was determined by optical emission spectrometers with inductively coupled plasma (ICP plasma). Additionally, X-ray diffraction, Raman spectroscopy, Atomic Force Microscopy (AFM), diffuse reflectance, and X-ray photoelectron spectroscopy (XPS) measurements were used for physicochemical characterization. Finally, the photocatalytic degradation of methylene blue (MB) was studied under visible irradiation in aqueous solution. The Langmuir-Hinshelwood model was used to determine the reaction rate constant of the photocatalytic degradation. The physicochemical characterization showed that the samples were polycrystalline, and the diffraction signals corresponded to the ZnO wurtzite crystalline phase. Raman spectroscopy verified the ZnO doping process. The AFM analysis showed that roughness and grain size were reduced after the doping process. Furthermore, the optical results indicated that the presence of Ag improved the ZnO optical properties in the visible range, and the Ag-doped ZnO thin films had the lowest band gap value (2.95 eV). Finally, the photocatalytic degradation results indicated that the doping process enhanced the photocatalytic activity under visible irradiation, and the Ag-doped ZnO thin films had the highest MB photodegradation value (45.1%), as compared to that of the ZnO thin films (2.7%).spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceHindawi International Journal of Photoenergy Volume 2020, Article ID 1627498, 11 pages https://doi.org/10.1155/2020/1627498spa
dc.titleMethylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Filmsspa
dcterms.bibliographicCitationM. A. Mohd Adnan, N. Muhd Julkapli, M. N. I. Amir, and A. Maamor, “Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review,” International Journal of Environmental Science and Technology, vol. 16, no. 1, pp. 547–566, 2019.spa
dcterms.bibliographicCitationJ. Bedia, V.Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J. J. Rodríguez, and C. Belver, “A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification,” Catalysts, vol. 9, no. 1, p. 52, 2019.spa
dcterms.bibliographicCitationD. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, and I. Di Somma, “Solar photocatalysis: materials, reactors, some commercial, and pre- industrialized applications. A comprehensive approach,” Applied Catalysis B: Environmental, vol. 170-171, pp. 90–123, 2015.spa
dcterms.bibliographicCitationA. G. Gutierrez-Mata, S. Velazquez-Martínez, A. Álvarez- Gallegos et al., “Recent overview of solar photocatalysis and solar photo-Fenton processes for wastewater treatment,” International Journal of Photoenergy, vol. 2017, Article ID 8528063, 27 pages, 2017.spa
dcterms.bibliographicCitationK. Siwińska-Stefańska, A. Kubiak, A. Piasecki et al., “TiO2- ZnO binary oxide systems: comprehensive characterization and tests of photocatalytic activity,” Materials, vol. 11, no. 5, p. 841, 2018.spa
dcterms.bibliographicCitationC. Yuan, H. B. Wu, Y. Xie, and X. W. D. Lou, “Mixed transition-metal oxides: design, synthesis, and energy-related applications,” Angewandte Chemie International Edition, vol. 53, no. 6, pp. 1488–1504, 2014.spa
dcterms.bibliographicCitationA. Das, P. Malakar, and R. G. Nair, “Engineering of ZnO nanostructures for efficient solar photocatalysis,” Materials Letters, vol. 219, pp. 76–80, 2018.spa
dcterms.bibliographicCitationM. Yin, Z. Li, J. Kou, and Z. Zou, “Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system,” Environmental Science& Technology, vol. 43, no. 21, pp. 8361–8366, 2009.spa
dcterms.bibliographicCitationW. Vallejo, C. Diaz-Uribe, and Á. Cantillo, “Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy- phthalocyanines,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 299, pp. 80–86, 2015.spa
dcterms.bibliographicCitationW. Vallejo, A. Rueda, C. Díaz-Uribe, C. Grande, and P. Quintana, “Photocatalytic activity of graphene oxide– TiO2thin films sensitized by natural dyes extracted from Bactris guineensis,” Royal Society Open Science, vol. 6, no. 3, p. 181824, 2019.spa
dcterms.bibliographicCitationC. Díaz-Uribe, W. Vallejo, K. Campos et al., “Improvement of the photocatalytic activity of TiO2 using Colombian Caribbean species (Syzygium cumini) as natural sensitizers: experimental and theoretical studies,” Dyes and Pigments, vol. 150, pp. 370– 376, 2018.spa
dcterms.bibliographicCitationRitika, M. Kaur, A. Umar et al., “Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst,” Materials, vol. 11, no. 11, p. 2254, 2018.spa
dcterms.bibliographicCitationJ. Zhong, J. Li, J. Zeng et al., “Enhanced photocatalytic activity of In2O3-decorated TiO2,” Applied Physics A, vol. 115, no. 4, pp. 1231–1238, 2014.spa
dcterms.bibliographicCitationW. Vallejo, C. Díaz-Uribe, and K. Rios, “Methylene blue photocatalytic degradation under visible irradiation on In2S3 synthesized by chemical bath deposition,” Advances in Physical Chemistry, vol. 2017, Article ID 6358601, 5 pages, 2017.spa
dcterms.bibliographicCitationB. Subash, B. Krishnakumar, M. Swaminathan, and M. Shanthi, “Highly efficient, solar active, and reusable photocatalyst: Zr-loaded ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism,” Langmuir, vol. 29, no. 3, pp. 939–949, 2013.spa
dcterms.bibliographicCitationH. Aby, A. Kshirsagar, and P. K. Khanna, “Plasmon mediated photocatalysis by solar active Ag/ZnO nanostructures: degradation of organic pollutants in aqueous conditions,” Journal of Materials Science and Nanotechnology, vol. 4, no. 1, p. 103, 2016.spa
dcterms.bibliographicCitationC. Díaz-Uribe, J. Viloria, L. Cervantes et al., “Photocatalytic activity of Ag-TiO2 composites deposited by photoreduction under UV irradiation,” International Journal of Photoenergy, vol. 2018, Article ID 6080432, 8 pages, 2018.spa
dcterms.bibliographicCitationL. Chen, T. ThanhThuy Tran, C.’a. Huang, J. Li, L. Yuan, and Q. Cai, “Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films,” Applied Surface Science, vol. 273, pp. 82–88, 2013.spa
dcterms.bibliographicCitationV. Kumari, A. Mittal, J. Jindal, S. Yadav, and N. Kumar, “S-, Nand C-doped ZnO as semiconductor photocatalysts: a review,” Frontiers of Materials Science, vol. 13, no. 1, pp. 1–22, 2019.spa
dcterms.bibliographicCitationJ. Schumann, M. Eichelbaum, T. Lunkenbein et al., “Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts,” ACS Catalysis, vol. 5, no. 6, pp. 3260–3270, 2015.spa
dcterms.bibliographicCitationV. Kumari, A. Mittal, J. Jindal, S. Yadav, and N. Kumar, “S-, Nand C-doped ZnO as semiconductor photocatalysts: a review,” Frontiers of Materials Science, vol. 13, no. 1, pp. 1–22, 2019.spa
dcterms.bibliographicCitationT. C. Bharat, Shubham, S. Mondal, H. S. Gupta, P. K. Singh, and A. K. Das, “Synthesis of doped zinc oxide nanoparticles: a review,” Materials Today: Proceedings, vol. 11, pp. 767–775, 2019.spa
dcterms.bibliographicCitationŞ. Ş. Türkyılmaz, N. Güy, and M. Özacar, “Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 341, pp. 39–50, 2017.spa
dcterms.bibliographicCitationB. M. Rajbongshi and S. K. Samdarshi, “Cobalt-doped zincblende– wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum,” Applied Catalysis B: Environmental, vol. 144, pp. 435–441, 2014.spa
dcterms.bibliographicCitationK. Umar, A. Aris, T. Parveen et al., “Synthesis, characterization of Mo and Mn doped ZnO and their photocatalytic activity for the decolorization of two different chromophoric dyes,” Applied Catalysis A: General, vol. 505, pp. 507–514, 2015.spa
dcterms.bibliographicCitationM. K. Lima, D. M. Fernandes, M. F. Silva et al., “Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: effects on the structural, optical, photocatalytic and antibacterial properties,” Journal of Sol-Gel Science and Technology, vol. 72, no. 2, pp. 301–309, 2014.spa
dcterms.bibliographicCitationH. Bouzid, M. Faisal, F. A. Harraz, S. A. Al-Sayari, and A. A. Ismail, “Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity,” Catalysis Today, vol. 252, pp. 20–26, 2015.spa
dcterms.bibliographicCitationO. Altintas Yildirim, H. Arslan, and S. Sönmezoğlu, “Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts,” Applied Surface Science, vol. 390, pp. 111–121, 2016.spa
dcterms.bibliographicCitationM. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z. L. Hong, and N. R. Khalid, “Enhancing visible light responsive photocatalytic activity by decorating Mn- doped ZnO nanoparticles on graphene,” Ceramics International, vol. 40, no. 7, pp. 10085– 10097, 2014.spa
dcterms.bibliographicCitationİ. Polat, S. Yılmaz, İ. Altın, E. Bacaksız, and M. Sökmen, “The influence of Cu-doping on structural, optical and photocatalytic properties of ZnO nanorods,” Materials Chemistry and Physics, vol. 148, no. 3, pp. 528–532, 2014.spa
dcterms.bibliographicCitationL. S. Zhang, K. H. Wong, H. Y. Yip et al., “Effective photocatalytic disinfection ofE. coliK-12 using AgBr−Ag−Bi2WO6nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals,” Environmental Science & Technology, vol. 44, no. 4, pp. 1392–1398, 2010.spa
dcterms.bibliographicCitationÖ. A. Yıldırım, H. E. Unalan, and C. Durucan, “Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles: structural, optical, and photocatalytic properties,” Journal of the American Ceramic Society, vol. 96, no. 3, pp. 766–773, 2013.spa
dcterms.bibliographicCitationR. Mohammadzadeh Kakhki, R. Tayebee, and F. Ahsani, “New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 8, pp. 5941–5952, 2017.spa
dcterms.bibliographicCitationH. R. L. J. A. Pérez, J. L. Gallego, and W. S. Roman, “Zinc oxide nanostructured thin films,” in Scientia et Technica Año XIV, No. 39, vol. 39, pp. 416–421, Universidad Tecnológica de Pereira, 2008, https://revistas.utp.edu.co/index.php/ revistaciencia/article/view/3261.spa
dcterms.bibliographicCitationD. Ramírez Vinasco, L. P. Vera, and R. L. Henry, “Zn1-xMnxO thin films,” in Scientia et Technica Año XV, No 41, vol. 41, pp. 273–278, Universidad Tecnológica de Pereira, 2009, July 2019, https://revistas.utp.edu.co/index.php/revistaciencia/ article/view/2951.spa
dcterms.bibliographicCitationC. Quiñones, J. Ayala, and W. Vallejo, “Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films,” Applied Surface Science, vol. 257, no. 2, pp. 367– 371, 2010.spa
dcterms.bibliographicCitationF. Grieser, “Free radical formation and scavenging by solutes in the sonolysis of aqueous solutions,” in Proceedings of Meetings on Acoustics, vol. 19, p. 45093, Montreal, Canada, 2013.spa
dcterms.bibliographicCitationT. M. El-Morsi, W. R. Budakowski, A. S. Abd-El-Aziz, and K. J. Friesen, “Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: a reaction of adsorbed chlorinated alkane with surface hydroxyl radicals,” Environmental Science & Technology, vol. 34, no. 6, pp. 1018–1022, 2000.spa
dcterms.bibliographicCitationM. Pelaez, P. Falaras, V. Likodimos et al., “Use of selected scavengers for the determination of NF- TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation,” Journal of Molecular Catalysis A: Chemical, vol. 425, no. 0, pp. 183–189, 2016.spa
dcterms.bibliographicCitationS. Kumar, S. Pal, J. Kuntail, A. KumarDe, and I. Sinha, “Construction of a visible light Z-scheme photocatalyst: curcumin functionalized Cu2O/Ag nanocomposites,” ChemistrySelect, vol. 4, no. 36, pp. 10709–10718, 2019.spa
dcterms.bibliographicCitationM. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, and A. Z. Moshfegh, “Recent progress on doped ZnO nanostructures for visible-light photocatalysis,” Thin Solid Films, vol. 605, pp. 2– 19, 2016.spa
dcterms.bibliographicCitationJ. M. Calleja and M. Cardona, “Resonant Raman scattering in ZnO,” Physical Review B, vol. 16, no. 8, pp. 3753–3761, 1977.spa
dcterms.bibliographicCitationR. Cuscó, E. Alarcón-Lladó, J. Ibáñez et al., “Temperature dependence of Raman scattering in ZnO,” Physical Review B, vol. 75, no. 16, p. 165202, 2007.spa
dcterms.bibliographicCitationJ. Sann, J. Stehr, A. Hofstaetter et al., “Zn interstitial related donors in ammonia-treated ZnO powders,” Physical Review B, vol. 76, no. 19, article 195203, 2007.spa
dcterms.bibliographicCitationF. Friedrich and N. H. Nickel, “Resonant Raman scattering in hydrogen and nitrogen doped ZnO,” Applied Physics Letters, vol. 91, no. 11, article 111903, 2007.spa
dcterms.bibliographicCitationR. S. Zeferino, M. B. Flores, and U. Pal, “Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles,” Journal of Applied Physics, vol. 109, no. 1, article 014308, 2011.spa
dcterms.bibliographicCitationM. Kwoka, B. Lyson-Sypien, A. Kulis et al., “Surface properties of nanostructured, porous ZnO thin films prepared by direct current reactive magnetron sputtering,” Materials, vol. 11, no. 1, p. 131, 2018.spa
dcterms.bibliographicCitationY. Chen, W. H. Tse, L. Chen, and J. Zhang, “Ag nanoparticlesdecorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties,” Nanoscale Research Letters, vol. 10, no. 1, p. 106, 2015.spa
dcterms.bibliographicCitationM. H. Shin, M. S. Park, S. H. Jung, J. H. Boo, and N. E. Lee, “Effect of doping elements on ZnO etching characteristics with CH4/H2/Ar plasma,” Thin Solid Films, vol. 515, no. 12, pp. 4950–4954, 2007.spa
dcterms.bibliographicCitationO. Lupan, L. Chow, L. K. Ono et al., “Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route,” Journal of Physical Chemistry C, vol. 114, no. 29, pp. 12401–12408, 2010.spa
dcterms.bibliographicCitationM. Wu, B. Yang, Y. Lv et al., “Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity,” Applied Surface Science, vol. 256, no. 23, pp. 7125–7130, 2010.spa
dcterms.bibliographicCitationY. Ao, J. Xu, D. Fu, and C. Yuan, “Preparation of Ag-doped mesoporous titania and its enhanced photocatalytic activity under UV light irradiation,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, pp. 2660–2664, 2008.spa
dcterms.bibliographicCitationM. A. Thomas, W. W. Sun, and J. B. Cui, “Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights,” Journal of Physical Chemistry C, vol. 116, no. 10, pp. 6383–6391, 2012.spa
dcterms.bibliographicCitationS. Khosravi-Gandomani, R. Yousefi, F. Jamali-Sheini, and N. M. Huang, “Optical and electrical properties of p -type Ag-doped ZnO nanostructures,” Ceramics International, vol. 40, no. 6, pp. 7957–7963, 2014.spa
dcterms.bibliographicCitationK. Thongsuriwong, P. Amornpitoksuk, and S. Suwanboon, “Photocatalytic and antibacterial activities of Ag-doped ZnO thin films prepared by a sol-gel dip-coating method,” Journal of Sol-Gel Science and Technology, vol. 62, no. 3, pp. 304– 312, 2012.spa
dcterms.bibliographicCitationE. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, “Synthesis and characterization of zinc oxide thin films for optoelectronic applications,” Heliyon, vol. 3, no. 4, article e00285, 2017.spa
dcterms.bibliographicCitationB. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. He, and P. Yang, “Transition-metal doped zinc oxide nanowires,” Angewandte Chemie, vol. 118, no. 3, pp. 434–437, 2006.spa
dcterms.bibliographicCitationX. Wang, L. Sø, R. Su et al., “The influence of crystallite size and crystallinity of anatase nanoparticles on the photodegradation of phenol,” Journal of Catalysis, vol. 310, pp. 100–108, 2014.spa
dcterms.bibliographicCitationS. Bai, J. Hu, D. Li, R. Luo, A. Chen, and C. C. Liu, “Quantumsized ZnO nanoparticles: synthesis, characterization and sensing properties for NO2,” Journal of Materials Chemistry, vol. 21, no. 33, p. 12288, 2011.spa
dcterms.bibliographicCitationE. L. Simmons, “Relation of the diffuse reflectance remission function to the fundamental optical parameters,” Optica Acta: International Journal of Optics, vol. 19, no. 10, pp. 845–851, 1972.spa
dcterms.bibliographicCitationB. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie III, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Physica Status Solidi (b), vol. 252, no. 8, pp. 1700–1710, 2015.spa
dcterms.bibliographicCitationM. Pal, U. Pal, J. M. G. Y. Jiménez, and F. Pérez-Rodríguez, “Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors,” Nanoscale Research Letters, vol. 7, no. 1, p. 1, 2012.spa
dcterms.bibliographicCitationV. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” Journal of Applied Physics, vol. 83, no. 10, pp. 5447– 5451, 1998.spa
dcterms.bibliographicCitationN. El-Atab, F. Chowdhury, T. G. Ulusoy et al., “~3-nm ZnO nanoislands deposition and application in charge trapping memory grown by single ALD step,” Scientific Reports, vol. 6, no. 1, article 38712, 2016.spa
dcterms.bibliographicCitationK. S. Ahmad and S. B. Jaffri, “Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators,” Open Chemistry, vol. 16, no. 1, pp. 556–570, 2018.spa
dcterms.bibliographicCitationS. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, “Oxidative degradation of acid orange 7 using Ag-doped zinc oxide thin films,” Journal of Photochemistry and Photobiology B: Biology, vol. 117, pp. 262–268, 2012.spa
dcterms.bibliographicCitationS. Jayswal and R. S. Moirangthem, “Construction of a solar spectrum active SnS/ZnO p–n heterojunction as a highly efficient photocatalyst: the effect of the sensitization process on its performance,” New Journal of Chemistry, vol. 42, no. 16, pp. 13689–13701, 2018.spa
dcterms.bibliographicCitationS. J. Park, G. S. Das, F. Schütt et al., “Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment,” NPG Asia Materials, vol. 11, no. 1, article 107, p. 8, 2019.spa
dcterms.bibliographicCitationS. Kuriakose, B. Satpati, and S. Mohapatra, “Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures,” Physical Chemistry Chemical Physics, vol. 17, no. 38, pp. 25172–25181, 2015.spa
dcterms.bibliographicCitationC. Diaz-Uribe, W. Vallejo, and W. Ramos, “Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium,” Applied Surface Science, vol. 319, pp. 121–127, 2014.spa
dcterms.bibliographicCitationA. V. Emeline, V. N. Kuznetsov, V. K. Ryabchuk, and N. Serpone, “Chapter 1-Heterogeneous photocatalysis: basic approaches and terminology,” in New and Future Developments in Catalysis, pp. 1–47, Elsevier, 2013.spa
dcterms.bibliographicCitationK. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, “Quantum yields of active oxidative species formed on TiO2 photocatalyst,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 134, no. 1-2, pp. 139–142, 2000.spa
dcterms.bibliographicCitationO. Legrini, E. Oliveros, and A. M. Braun, “Photochemical processes for water treatment,” Chemical Reviews, vol. 93, no. 2, pp. 671–698, 1993.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1155/2020/1627498
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsN/Aspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por