Mostrar el registro sencillo del ítem
Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films
dc.contributor.author | Vallejo, William | |
dc.contributor.other | Cantillo, Alvaro | |
dc.contributor.other | Díaz-Uribe, Carlos | |
dc.date.accessioned | 2022-11-15T19:14:35Z | |
dc.date.available | 2022-11-15T19:14:35Z | |
dc.date.issued | 2019-09-04 | |
dc.date.submitted | 2020-01-02 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/778 | |
dc.description.abstract | This study synthesized and characterized Ag-doped ZnO thin films. Doped ZnO powders were synthesized using the sol-gel method, and thin films were fabricated using the doctor blade technique. The Ag content was determined by optical emission spectrometers with inductively coupled plasma (ICP plasma). Additionally, X-ray diffraction, Raman spectroscopy, Atomic Force Microscopy (AFM), diffuse reflectance, and X-ray photoelectron spectroscopy (XPS) measurements were used for physicochemical characterization. Finally, the photocatalytic degradation of methylene blue (MB) was studied under visible irradiation in aqueous solution. The Langmuir-Hinshelwood model was used to determine the reaction rate constant of the photocatalytic degradation. The physicochemical characterization showed that the samples were polycrystalline, and the diffraction signals corresponded to the ZnO wurtzite crystalline phase. Raman spectroscopy verified the ZnO doping process. The AFM analysis showed that roughness and grain size were reduced after the doping process. Furthermore, the optical results indicated that the presence of Ag improved the ZnO optical properties in the visible range, and the Ag-doped ZnO thin films had the lowest band gap value (2.95 eV). Finally, the photocatalytic degradation results indicated that the doping process enhanced the photocatalytic activity under visible irradiation, and the Ag-doped ZnO thin films had the highest MB photodegradation value (45.1%), as compared to that of the ZnO thin films (2.7%). | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Hindawi International Journal of Photoenergy Volume 2020, Article ID 1627498, 11 pages https://doi.org/10.1155/2020/1627498 | spa |
dc.title | Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films | spa |
dcterms.bibliographicCitation | M. A. Mohd Adnan, N. Muhd Julkapli, M. N. I. Amir, and A. Maamor, “Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review,” International Journal of Environmental Science and Technology, vol. 16, no. 1, pp. 547–566, 2019. | spa |
dcterms.bibliographicCitation | J. Bedia, V.Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J. J. Rodríguez, and C. Belver, “A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification,” Catalysts, vol. 9, no. 1, p. 52, 2019. | spa |
dcterms.bibliographicCitation | D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, and I. Di Somma, “Solar photocatalysis: materials, reactors, some commercial, and pre- industrialized applications. A comprehensive approach,” Applied Catalysis B: Environmental, vol. 170-171, pp. 90–123, 2015. | spa |
dcterms.bibliographicCitation | A. G. Gutierrez-Mata, S. Velazquez-Martínez, A. Álvarez- Gallegos et al., “Recent overview of solar photocatalysis and solar photo-Fenton processes for wastewater treatment,” International Journal of Photoenergy, vol. 2017, Article ID 8528063, 27 pages, 2017. | spa |
dcterms.bibliographicCitation | K. Siwińska-Stefańska, A. Kubiak, A. Piasecki et al., “TiO2- ZnO binary oxide systems: comprehensive characterization and tests of photocatalytic activity,” Materials, vol. 11, no. 5, p. 841, 2018. | spa |
dcterms.bibliographicCitation | C. Yuan, H. B. Wu, Y. Xie, and X. W. D. Lou, “Mixed transition-metal oxides: design, synthesis, and energy-related applications,” Angewandte Chemie International Edition, vol. 53, no. 6, pp. 1488–1504, 2014. | spa |
dcterms.bibliographicCitation | A. Das, P. Malakar, and R. G. Nair, “Engineering of ZnO nanostructures for efficient solar photocatalysis,” Materials Letters, vol. 219, pp. 76–80, 2018. | spa |
dcterms.bibliographicCitation | M. Yin, Z. Li, J. Kou, and Z. Zou, “Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system,” Environmental Science& Technology, vol. 43, no. 21, pp. 8361–8366, 2009. | spa |
dcterms.bibliographicCitation | W. Vallejo, C. Diaz-Uribe, and Á. Cantillo, “Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy- phthalocyanines,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 299, pp. 80–86, 2015. | spa |
dcterms.bibliographicCitation | W. Vallejo, A. Rueda, C. Díaz-Uribe, C. Grande, and P. Quintana, “Photocatalytic activity of graphene oxide– TiO2thin films sensitized by natural dyes extracted from Bactris guineensis,” Royal Society Open Science, vol. 6, no. 3, p. 181824, 2019. | spa |
dcterms.bibliographicCitation | C. Díaz-Uribe, W. Vallejo, K. Campos et al., “Improvement of the photocatalytic activity of TiO2 using Colombian Caribbean species (Syzygium cumini) as natural sensitizers: experimental and theoretical studies,” Dyes and Pigments, vol. 150, pp. 370– 376, 2018. | spa |
dcterms.bibliographicCitation | Ritika, M. Kaur, A. Umar et al., “Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst,” Materials, vol. 11, no. 11, p. 2254, 2018. | spa |
dcterms.bibliographicCitation | J. Zhong, J. Li, J. Zeng et al., “Enhanced photocatalytic activity of In2O3-decorated TiO2,” Applied Physics A, vol. 115, no. 4, pp. 1231–1238, 2014. | spa |
dcterms.bibliographicCitation | W. Vallejo, C. Díaz-Uribe, and K. Rios, “Methylene blue photocatalytic degradation under visible irradiation on In2S3 synthesized by chemical bath deposition,” Advances in Physical Chemistry, vol. 2017, Article ID 6358601, 5 pages, 2017. | spa |
dcterms.bibliographicCitation | B. Subash, B. Krishnakumar, M. Swaminathan, and M. Shanthi, “Highly efficient, solar active, and reusable photocatalyst: Zr-loaded ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism,” Langmuir, vol. 29, no. 3, pp. 939–949, 2013. | spa |
dcterms.bibliographicCitation | H. Aby, A. Kshirsagar, and P. K. Khanna, “Plasmon mediated photocatalysis by solar active Ag/ZnO nanostructures: degradation of organic pollutants in aqueous conditions,” Journal of Materials Science and Nanotechnology, vol. 4, no. 1, p. 103, 2016. | spa |
dcterms.bibliographicCitation | C. Díaz-Uribe, J. Viloria, L. Cervantes et al., “Photocatalytic activity of Ag-TiO2 composites deposited by photoreduction under UV irradiation,” International Journal of Photoenergy, vol. 2018, Article ID 6080432, 8 pages, 2018. | spa |
dcterms.bibliographicCitation | L. Chen, T. ThanhThuy Tran, C.’a. Huang, J. Li, L. Yuan, and Q. Cai, “Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films,” Applied Surface Science, vol. 273, pp. 82–88, 2013. | spa |
dcterms.bibliographicCitation | V. Kumari, A. Mittal, J. Jindal, S. Yadav, and N. Kumar, “S-, Nand C-doped ZnO as semiconductor photocatalysts: a review,” Frontiers of Materials Science, vol. 13, no. 1, pp. 1–22, 2019. | spa |
dcterms.bibliographicCitation | J. Schumann, M. Eichelbaum, T. Lunkenbein et al., “Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts,” ACS Catalysis, vol. 5, no. 6, pp. 3260–3270, 2015. | spa |
dcterms.bibliographicCitation | V. Kumari, A. Mittal, J. Jindal, S. Yadav, and N. Kumar, “S-, Nand C-doped ZnO as semiconductor photocatalysts: a review,” Frontiers of Materials Science, vol. 13, no. 1, pp. 1–22, 2019. | spa |
dcterms.bibliographicCitation | T. C. Bharat, Shubham, S. Mondal, H. S. Gupta, P. K. Singh, and A. K. Das, “Synthesis of doped zinc oxide nanoparticles: a review,” Materials Today: Proceedings, vol. 11, pp. 767–775, 2019. | spa |
dcterms.bibliographicCitation | Ş. Ş. Türkyılmaz, N. Güy, and M. Özacar, “Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 341, pp. 39–50, 2017. | spa |
dcterms.bibliographicCitation | B. M. Rajbongshi and S. K. Samdarshi, “Cobalt-doped zincblende– wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum,” Applied Catalysis B: Environmental, vol. 144, pp. 435–441, 2014. | spa |
dcterms.bibliographicCitation | K. Umar, A. Aris, T. Parveen et al., “Synthesis, characterization of Mo and Mn doped ZnO and their photocatalytic activity for the decolorization of two different chromophoric dyes,” Applied Catalysis A: General, vol. 505, pp. 507–514, 2015. | spa |
dcterms.bibliographicCitation | M. K. Lima, D. M. Fernandes, M. F. Silva et al., “Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: effects on the structural, optical, photocatalytic and antibacterial properties,” Journal of Sol-Gel Science and Technology, vol. 72, no. 2, pp. 301–309, 2014. | spa |
dcterms.bibliographicCitation | H. Bouzid, M. Faisal, F. A. Harraz, S. A. Al-Sayari, and A. A. Ismail, “Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity,” Catalysis Today, vol. 252, pp. 20–26, 2015. | spa |
dcterms.bibliographicCitation | O. Altintas Yildirim, H. Arslan, and S. Sönmezoğlu, “Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts,” Applied Surface Science, vol. 390, pp. 111–121, 2016. | spa |
dcterms.bibliographicCitation | M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z. L. Hong, and N. R. Khalid, “Enhancing visible light responsive photocatalytic activity by decorating Mn- doped ZnO nanoparticles on graphene,” Ceramics International, vol. 40, no. 7, pp. 10085– 10097, 2014. | spa |
dcterms.bibliographicCitation | İ. Polat, S. Yılmaz, İ. Altın, E. Bacaksız, and M. Sökmen, “The influence of Cu-doping on structural, optical and photocatalytic properties of ZnO nanorods,” Materials Chemistry and Physics, vol. 148, no. 3, pp. 528–532, 2014. | spa |
dcterms.bibliographicCitation | L. S. Zhang, K. H. Wong, H. Y. Yip et al., “Effective photocatalytic disinfection ofE. coliK-12 using AgBr−Ag−Bi2WO6nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals,” Environmental Science & Technology, vol. 44, no. 4, pp. 1392–1398, 2010. | spa |
dcterms.bibliographicCitation | Ö. A. Yıldırım, H. E. Unalan, and C. Durucan, “Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles: structural, optical, and photocatalytic properties,” Journal of the American Ceramic Society, vol. 96, no. 3, pp. 766–773, 2013. | spa |
dcterms.bibliographicCitation | R. Mohammadzadeh Kakhki, R. Tayebee, and F. Ahsani, “New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 8, pp. 5941–5952, 2017. | spa |
dcterms.bibliographicCitation | H. R. L. J. A. Pérez, J. L. Gallego, and W. S. Roman, “Zinc oxide nanostructured thin films,” in Scientia et Technica Año XIV, No. 39, vol. 39, pp. 416–421, Universidad Tecnológica de Pereira, 2008, https://revistas.utp.edu.co/index.php/ revistaciencia/article/view/3261. | spa |
dcterms.bibliographicCitation | D. Ramírez Vinasco, L. P. Vera, and R. L. Henry, “Zn1-xMnxO thin films,” in Scientia et Technica Año XV, No 41, vol. 41, pp. 273–278, Universidad Tecnológica de Pereira, 2009, July 2019, https://revistas.utp.edu.co/index.php/revistaciencia/ article/view/2951. | spa |
dcterms.bibliographicCitation | C. Quiñones, J. Ayala, and W. Vallejo, “Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films,” Applied Surface Science, vol. 257, no. 2, pp. 367– 371, 2010. | spa |
dcterms.bibliographicCitation | F. Grieser, “Free radical formation and scavenging by solutes in the sonolysis of aqueous solutions,” in Proceedings of Meetings on Acoustics, vol. 19, p. 45093, Montreal, Canada, 2013. | spa |
dcterms.bibliographicCitation | T. M. El-Morsi, W. R. Budakowski, A. S. Abd-El-Aziz, and K. J. Friesen, “Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: a reaction of adsorbed chlorinated alkane with surface hydroxyl radicals,” Environmental Science & Technology, vol. 34, no. 6, pp. 1018–1022, 2000. | spa |
dcterms.bibliographicCitation | M. Pelaez, P. Falaras, V. Likodimos et al., “Use of selected scavengers for the determination of NF- TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation,” Journal of Molecular Catalysis A: Chemical, vol. 425, no. 0, pp. 183–189, 2016. | spa |
dcterms.bibliographicCitation | S. Kumar, S. Pal, J. Kuntail, A. KumarDe, and I. Sinha, “Construction of a visible light Z-scheme photocatalyst: curcumin functionalized Cu2O/Ag nanocomposites,” ChemistrySelect, vol. 4, no. 36, pp. 10709–10718, 2019. | spa |
dcterms.bibliographicCitation | M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, and A. Z. Moshfegh, “Recent progress on doped ZnO nanostructures for visible-light photocatalysis,” Thin Solid Films, vol. 605, pp. 2– 19, 2016. | spa |
dcterms.bibliographicCitation | J. M. Calleja and M. Cardona, “Resonant Raman scattering in ZnO,” Physical Review B, vol. 16, no. 8, pp. 3753–3761, 1977. | spa |
dcterms.bibliographicCitation | R. Cuscó, E. Alarcón-Lladó, J. Ibáñez et al., “Temperature dependence of Raman scattering in ZnO,” Physical Review B, vol. 75, no. 16, p. 165202, 2007. | spa |
dcterms.bibliographicCitation | J. Sann, J. Stehr, A. Hofstaetter et al., “Zn interstitial related donors in ammonia-treated ZnO powders,” Physical Review B, vol. 76, no. 19, article 195203, 2007. | spa |
dcterms.bibliographicCitation | F. Friedrich and N. H. Nickel, “Resonant Raman scattering in hydrogen and nitrogen doped ZnO,” Applied Physics Letters, vol. 91, no. 11, article 111903, 2007. | spa |
dcterms.bibliographicCitation | R. S. Zeferino, M. B. Flores, and U. Pal, “Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles,” Journal of Applied Physics, vol. 109, no. 1, article 014308, 2011. | spa |
dcterms.bibliographicCitation | M. Kwoka, B. Lyson-Sypien, A. Kulis et al., “Surface properties of nanostructured, porous ZnO thin films prepared by direct current reactive magnetron sputtering,” Materials, vol. 11, no. 1, p. 131, 2018. | spa |
dcterms.bibliographicCitation | Y. Chen, W. H. Tse, L. Chen, and J. Zhang, “Ag nanoparticlesdecorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties,” Nanoscale Research Letters, vol. 10, no. 1, p. 106, 2015. | spa |
dcterms.bibliographicCitation | M. H. Shin, M. S. Park, S. H. Jung, J. H. Boo, and N. E. Lee, “Effect of doping elements on ZnO etching characteristics with CH4/H2/Ar plasma,” Thin Solid Films, vol. 515, no. 12, pp. 4950–4954, 2007. | spa |
dcterms.bibliographicCitation | O. Lupan, L. Chow, L. K. Ono et al., “Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route,” Journal of Physical Chemistry C, vol. 114, no. 29, pp. 12401–12408, 2010. | spa |
dcterms.bibliographicCitation | M. Wu, B. Yang, Y. Lv et al., “Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity,” Applied Surface Science, vol. 256, no. 23, pp. 7125–7130, 2010. | spa |
dcterms.bibliographicCitation | Y. Ao, J. Xu, D. Fu, and C. Yuan, “Preparation of Ag-doped mesoporous titania and its enhanced photocatalytic activity under UV light irradiation,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, pp. 2660–2664, 2008. | spa |
dcterms.bibliographicCitation | M. A. Thomas, W. W. Sun, and J. B. Cui, “Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights,” Journal of Physical Chemistry C, vol. 116, no. 10, pp. 6383–6391, 2012. | spa |
dcterms.bibliographicCitation | S. Khosravi-Gandomani, R. Yousefi, F. Jamali-Sheini, and N. M. Huang, “Optical and electrical properties of p -type Ag-doped ZnO nanostructures,” Ceramics International, vol. 40, no. 6, pp. 7957–7963, 2014. | spa |
dcterms.bibliographicCitation | K. Thongsuriwong, P. Amornpitoksuk, and S. Suwanboon, “Photocatalytic and antibacterial activities of Ag-doped ZnO thin films prepared by a sol-gel dip-coating method,” Journal of Sol-Gel Science and Technology, vol. 62, no. 3, pp. 304– 312, 2012. | spa |
dcterms.bibliographicCitation | E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, “Synthesis and characterization of zinc oxide thin films for optoelectronic applications,” Heliyon, vol. 3, no. 4, article e00285, 2017. | spa |
dcterms.bibliographicCitation | B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. He, and P. Yang, “Transition-metal doped zinc oxide nanowires,” Angewandte Chemie, vol. 118, no. 3, pp. 434–437, 2006. | spa |
dcterms.bibliographicCitation | X. Wang, L. Sø, R. Su et al., “The influence of crystallite size and crystallinity of anatase nanoparticles on the photodegradation of phenol,” Journal of Catalysis, vol. 310, pp. 100–108, 2014. | spa |
dcterms.bibliographicCitation | S. Bai, J. Hu, D. Li, R. Luo, A. Chen, and C. C. Liu, “Quantumsized ZnO nanoparticles: synthesis, characterization and sensing properties for NO2,” Journal of Materials Chemistry, vol. 21, no. 33, p. 12288, 2011. | spa |
dcterms.bibliographicCitation | E. L. Simmons, “Relation of the diffuse reflectance remission function to the fundamental optical parameters,” Optica Acta: International Journal of Optics, vol. 19, no. 10, pp. 845–851, 1972. | spa |
dcterms.bibliographicCitation | B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie III, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Physica Status Solidi (b), vol. 252, no. 8, pp. 1700–1710, 2015. | spa |
dcterms.bibliographicCitation | M. Pal, U. Pal, J. M. G. Y. Jiménez, and F. Pérez-Rodríguez, “Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors,” Nanoscale Research Letters, vol. 7, no. 1, p. 1, 2012. | spa |
dcterms.bibliographicCitation | V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” Journal of Applied Physics, vol. 83, no. 10, pp. 5447– 5451, 1998. | spa |
dcterms.bibliographicCitation | N. El-Atab, F. Chowdhury, T. G. Ulusoy et al., “~3-nm ZnO nanoislands deposition and application in charge trapping memory grown by single ALD step,” Scientific Reports, vol. 6, no. 1, article 38712, 2016. | spa |
dcterms.bibliographicCitation | K. S. Ahmad and S. B. Jaffri, “Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators,” Open Chemistry, vol. 16, no. 1, pp. 556–570, 2018. | spa |
dcterms.bibliographicCitation | S. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, “Oxidative degradation of acid orange 7 using Ag-doped zinc oxide thin films,” Journal of Photochemistry and Photobiology B: Biology, vol. 117, pp. 262–268, 2012. | spa |
dcterms.bibliographicCitation | S. Jayswal and R. S. Moirangthem, “Construction of a solar spectrum active SnS/ZnO p–n heterojunction as a highly efficient photocatalyst: the effect of the sensitization process on its performance,” New Journal of Chemistry, vol. 42, no. 16, pp. 13689–13701, 2018. | spa |
dcterms.bibliographicCitation | S. J. Park, G. S. Das, F. Schütt et al., “Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment,” NPG Asia Materials, vol. 11, no. 1, article 107, p. 8, 2019. | spa |
dcterms.bibliographicCitation | S. Kuriakose, B. Satpati, and S. Mohapatra, “Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures,” Physical Chemistry Chemical Physics, vol. 17, no. 38, pp. 25172–25181, 2015. | spa |
dcterms.bibliographicCitation | C. Diaz-Uribe, W. Vallejo, and W. Ramos, “Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium,” Applied Surface Science, vol. 319, pp. 121–127, 2014. | spa |
dcterms.bibliographicCitation | A. V. Emeline, V. N. Kuznetsov, V. K. Ryabchuk, and N. Serpone, “Chapter 1-Heterogeneous photocatalysis: basic approaches and terminology,” in New and Future Developments in Catalysis, pp. 1–47, Elsevier, 2013. | spa |
dcterms.bibliographicCitation | K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, “Quantum yields of active oxidative species formed on TiO2 photocatalyst,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 134, no. 1-2, pp. 139–142, 2000. | spa |
dcterms.bibliographicCitation | O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical processes for water treatment,” Chemical Reviews, vol. 93, no. 2, pp. 671–698, 1993. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1155/2020/1627498 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | N/A | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |