Mostrar el registro sencillo del ítem

dc.contributor.authorZarate Galvez, Sarai
dc.contributor.otherGarcia Barrientos, Abel
dc.contributor.otherAmbrosio Lazaro, Roberto
dc.contributor.otherGarcia Ramirez, Mario
dc.contributor.otherStevens Navarro, Enrique
dc.contributor.otherPlaza Castillo, Jairo
dc.contributor.otherHoyo Montaño, Jose
dc.contributor.otherPerez Cortes, Obed
dc.coverage.spatialColombia
dc.date.accessioned2022-11-15T19:12:12Z
dc.date.available2022-11-15T19:12:12Z
dc.date.issued2022-08-08
dc.date.submitted2022-07-02
dc.identifier.citationZarate-Galvez, S.; Garcia-Barrientos, A.; Ambrosio-Lazaro, R.; Garcia-Ramirez, M.; Stevens-Navarro, E.; Plaza-Castillo, J.; Hoyo-Montaño, J.; Perez-Cortes, O. An Analysis of Mobility Influence in Optoelectronics Parameters in an InGaN/GaN Blue LED. Crystals 2022, 12, 1108. https:// doi.org/10.3390/cryst12081108spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/771
dc.description.abstractSimulations on mobility influence in optoelectronics parameters from an InGaN/GaN blue LED using the Nextnano++ software arepresented in this paper. These simulations were performed by changing the hole and electron mobility value for the material compounds according to experimental, theoretical, and doping-concentration data already reported in the literature. The power law mobility is used for the current calculation in the quantum drift-diffusion model. The results indicate the lower hole and electron leakage currents correspond to the lowest mobility values for the InGaN alloy, the greatest amount of recombination occurs in the extreme wells within the active layer of the LED and the stable emission is at 3.6 V with peak wavelength ˆl LED = 456.7 nm and full width at half maximum FWHM 11.1 nm for the three mobilities. Although experimental and theoretical mobility values reach higher carrier density and recombination, the photon emission is broader and unstable. Additionally, the doping-concentration mobility results in lower wavelength shifts and narrows FWHM, making it more stable. The highest quantum efficiency achieved by dopingconcentration mobility is only in the breakdown voltage (hdop�����max = 60.43%), which is the IQE value comparable to similar LEDs and is more useful for these kinds of semiconductor devices.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceCrystalsspa
dc.titleAn Analysis of Mobility Influence in Optoelectronics Parameters in an InGaN/GaN Blue LEDspa
dcterms.bibliographicCitationTrellakis, A.; Galick, A.T.; Pacelli, A.; Ravaioli, U. Iteration scheme for the solution of the two-dimensional Schröding-er-Poisson equations in quantum structures. J. Appl. Phys. 2007, 81, 7880–7884. [CrossRef]spa
dcterms.bibliographicCitationSabathil, M.; Hackenbuchner, S.; Majewski, J.A.; Zandler, G.; Vogl, P. Towards fully quantum mechanical 3D device simula-tions. J. Comput. Electron. 2002, 1, 81–85. [CrossRef]spa
dcterms.bibliographicCitationAuf der Maur, M.; Povolotskyi, M.; Sacconi, F.; Pecchia, A.; Romano, G.; Penazzi, G.; Di Carlo, A. TiberCAD: Towards mul-tiscale simulation of optoelectronic devices. Opt. Quant. Electron. 2008, 40, 1077–1083. [CrossRef]spa
dcterms.bibliographicCitationLi, K.H.; Fu, W.Y.; Cheung, Y.F.; Wong, K.K.Y.; Wang, Y.; Lau, K.M.; Choi, H.W. Monolithically integrated InGaN/GaN lightemitting diodes, photodetectors, and waveguides on Si substrate. Optica 2018, 5, 564–569. [CrossRef]spa
dcterms.bibliographicCitationChen, J.; Wang, J.; Ji, K.; Jiang, B.; Cui, X.; Sha, W.; Wang, B.; Dai, X.; Hua, Q.; Wan, L.; et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res. 2022, 15, 5492–5499. [CrossRef]spa
dcterms.bibliographicCitationLi, Y.; Liu, C.; Zhang, Y.; Jiang, Y.; Hu, X.; Song, Y.; Su, Z.; Jia, H.;Wang,W.; Chen, H. Realizing Single Chip White Light InGaN LED via Dual-Wavelength Multiple Quantum Wells. Materials 2022, 15, 3998. [CrossRef]spa
dcterms.bibliographicCitationCai, L.-E.; Zhang, B.-P.; Lin, H.-X.; Cheng, Z.-J.; Ren, P.-P.; Chen, Z.-C.; Huang, J.-M.; Cai, L.-L. Effect of barrier thickness on photoelectric properties of InGaN/GaN asymmetric multiple-quantum-well structure light-emitting diode. AIP Adv. 2022, 12, 65007. [CrossRef]spa
dcterms.bibliographicCitationWang, Y.; Liang, F.; Zhao, D.; Ben, Y.; Yang, J.; Liu, Z.; Chen, P. Effect of High Temperature Treatment on the Photolumi-nescence of InGaN Multiple Quantum Wells. Crystals 2022, 12, 839. [CrossRef]spa
dcterms.bibliographicCitationZhang, Z.H.; Tan, S.T.; Ji, Y.; Liu,W.; Ju, Z.; Kyaw, Z.; Demir, H.V. A PN-type quantum barrier for InGaN/GaN light emit-ting diodes. Opt. Express 2013, 21, 15676–15685. [CrossRef]spa
dcterms.bibliographicCitationBulashevich, K.A.; Khokhlev, O.V.; Evstratov, I.Y.; Karpov, S.Y. Simulation of light-emitting diodes for new physics un-derstanding and device design. Proc. SPIE 2012, 8278, 827819.spa
dcterms.bibliographicCitationJia, X.; Zhou, Y.; Liu, B.; Lu, H.; Xie, Z.; Zhang, R.; Zheng, Y. A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications. Mater. Res. Express 2019, 6, 105915. [CrossRef]spa
dcterms.bibliographicCitationRyu, H.-Y.; Choi, W.J. Optimization of InGaN/GaN superlattice structures for high-efficiency vertical blue light-emitting diodes. J. Appl. Phys. 2013, 114, 173101. [CrossRef]spa
dcterms.bibliographicCitationBirner, S.; Hackenbuchner, S.; Sabathil, M.; Zandler, G.; Majewski, J.A.; Andlauer, T.; Vogl, P. Modeling of Semicon-ductor Nanostructures with nextnano. Acta Phys. Pol. A 2006, 110, 111. [CrossRef]spa
dcterms.bibliographicCitationTrellakis, A.; Zibold, T.; Andlauer, T.; Birner, S.; Smith, R.K.; Morschl, R.; Vogl, P. The 3D nanometer device project nextnano: Concepts, methods, results. J. Comput. Electron. 2006, 5, 285–289. [CrossRef]spa
dcterms.bibliographicCitationBirner, S.; Zibold, T.; Andlauer, T.; Kubis, T.; Sabathil, M.; Trellakis, A.; Vogl, P. Nextnano: General Purpose 3-D Simulations. IEEE Trans. Electron Devices 2007, 54, 2137–2142. [CrossRef]spa
dcterms.bibliographicCitationNextnano; München, Germany. Available online: https://www.nextnano.com/index.php (accessed on 25 June 2022).spa
dcterms.bibliographicCitationBrochen, S.; Brault, J.; Chenot, S.; Dussaigne, A.; Leroux, M.; Damilano, B. Dependence of the Mg-related acceptor ioniza-tion energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 103, 269904. [CrossRef]spa
dcterms.bibliographicCitationWang, H.; Chen, A.-B. Calculations of acceptor ionization energies in GaN. Phys. Rev. B 2001, 63, 125212. [CrossRef]spa
dcterms.bibliographicCitationHernández-Gutiérrez, C.A.; Casallas-Moreno, Y.L.; Rangel-Kuoppa, V.-T.; Cardona, D.; Hu, Y.; Kudriatsev, Y.; Zambrano-Serrano, M.A.; Gallardo-Hernandez, S.; Lopez-Lopez, M. Study of the heavily p-type doping of cubic GaN with Mg. Sci. Rep. 2006, 10, 16858. [CrossRef]spa
dcterms.bibliographicCitationAmano, H. Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation (Nobel Lecture). Ann. Phys. 2015, 527, 327–333. [CrossRef]spa
dcterms.bibliographicCitationDong, H.; Jia, T.; Liang, J.; Zhang, A.; Jia, Z.; Jia,W.; Liu, X.; Li, G.;Wu, Y.; Xu, B. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier. Opt. Laser Technol. 2020, 129, 106309. [CrossRef]spa
dcterms.bibliographicCitationGreck, P.; Birner, S.; Huber, B.; Vogl, P. Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers. Opt. Express 2015, 23, 6587–6600. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAndlauer, T. Optoelectronic and Spin-Related Properties of Semiconductor Nanostructures in Magnetic Fields. Ph.D. Dissertation, Technische Universität München, Munich, Germany, 2009.spa
dcterms.bibliographicCitationLi, S. The Atomic Struture of Inversion Domains and Grain Boundaries in Wurtzite Semiconductors: An Investigation by At-Omistic Modelling and High-Resolution Transmission Electron Microscopy. Ph.D. Dissertation, Normandie Université, Caen, France, 2018.spa
dcterms.bibliographicCitationHenini, M.; Razeghi, M. Optoelectronic Devices: III Nitrides; Elsevier: Oxford, UK, 2004; pp. 9–18.spa
dcterms.bibliographicCitationMartin, G.; Botchkarev, A.; Rockett, A.; Morkoc, H. Valence-band discontinuities of wurtzite GaN, AlN, and InNheterojunc-tions measured by X-ray photoemission spectroscopy. Appl. Phys. Lett. 1996, 68, 2541–2543. [CrossRef]spa
dcterms.bibliographicCitationBernardini, F.; Fiorentini, V. Spontaneous versus piezoelectric polarization in III–V nitrides: Conceptual aspects and practi-cal consequences. Phys. Stat. Sol. 1999, 216, 391–398. [CrossRef]spa
dcterms.bibliographicCitationPark, S.-H. Crystal Orientation Effects on Electronic Properties of Wurtzite GaN/AlGaN Quantum Wells with Spontaneous and Piezoelectric Polarization. Jpn. J. Appl. Phys. 2000, 39, 3478–3482. [CrossRef]spa
dcterms.bibliographicCitationSchulz, T.; Lymperakis, L.; Anikeeva, M.; Siekacz, M.; Wolny, P.; Markurt, T.; Albrecht, M. Influence of strain on the indium incorporation in (0001) GaN. Phys. Rev. Mater. 2020, 4, 73404. [CrossRef]spa
dcterms.bibliographicCitationQuay, R.; Moglestue, C.; Palankovski, V.; Selberherr, S. A temperature dependent model for the saturation velocity in semiconductor materials. Mater. Sci. Semicond. Process. 2000, 3, 149–155. [CrossRef]spa
dcterms.bibliographicCitationLane, D.; Hayne, M. Simulations of Ultralow-Power Nonvolatile Cells for Random-Access Memory. IEEE Trans. Electron. Devices 2020, 67, 474–480. [CrossRef]spa
dcterms.bibliographicCitationCOMSOL Multiphysics; Massachusetts, USA. Available online: https://doc.comsol.com/5.5/doc/com.comsol.help.semicond/ semicond_ug_semiconductor.6.52.html (accessed on 25 June 2022).spa
dcterms.bibliographicCitationKyle, E.C.H.; Kaun, S.W.; Burke, P.G.; Wu, F.; Wu, Y.-R.; Speck, J.S. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy. J. Appl. Phys. 2014, 115, 193702. [CrossRef]spa
dcterms.bibliographicCitationPoncé, S.; Jena, D.; Giustino, F. Hole mobility of strained GaN from first principles. Phys. Revi. B 2019, 100, 085204. [CrossRef]spa
dcterms.bibliographicCitationArakawa, Y.; Ueno, K.; Imabeppu, H.; Kobayashi, A.; Ohta, J.; Fujioka, H. Electrical properties of Si-doped GaN prepared using pulsed sputtering. Appl. Phys. Lett. 2017, 110, 042103. [CrossRef]spa
dcterms.bibliographicCitationHorita, M.; Takashima, S.; Tanaka, R.; Matsuyama, H.; Ueno, K.; Edo, M.; Suda, J. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations. Jpn. J. Appl. Phys. 2017, 56, 031001. [CrossRef]spa
dcterms.bibliographicCitationYarar, Z. Transport and mobility properties of wurtzite InN and GaN. Phys. Status Solidi 2007, 244, 3711–3718. [CrossRef]spa
dcterms.bibliographicCitationChen, F.; Cartwright, A.N.; Lu, H.; Schaff, W.J. Ultrafast carrier dynamics in InN epilayers. J. Cryst. Growth 2004, 269, 10–14. [CrossRef]spa
dcterms.bibliographicCitationAZoM, Riyadh, Saudi Arabia. Available online: https://www.azom.com/article.aspx?ArticleID=8367. (accessed on 25 June 2022).spa
dcterms.bibliographicCitationChen, F.; Cartwright, A.N.; Lu, H.; Schaff, W.J. Hole transport and carrier lifetime in InN epilayers. Appl. Phys. Lett. 2005, 87, 21210. [CrossRef]spa
dcterms.bibliographicCitationMa, N.; Wang, X.Q.; Liu, S.T.; Chen, G.; Pan, J.H.; Feng, L.; Shen, B. Hole mobility in wurtzite InN. Appl. Phys. Lett. 2011, 98, 192114. [CrossRef]spa
dcterms.bibliographicCitationPiprek, J. Nitride Semiconductor Devices: Principles and Simulation; John Wiley & Sons: Weinheim, Germany, 2007.spa
dcterms.bibliographicCitationShen, Y.C.; Mueller, G.O.; Watanabe, S.; Gardner, N.F.; Munkholm, A.; Krames, M. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 2007, 91, 141101. [CrossRef]spa
dcterms.bibliographicCitationDmitriev, A.; Oruzheinikov, A. The rate of radiative recombination in the nitride semiconductors and alloys. J. Appl. Phys. 2017, 86, 3241–3246. [CrossRef]spa
dcterms.bibliographicCitationKioupakis, E.; Yan, Q.; Steiauf, D.; Van de Walle, C. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. New J. Phys. 2013, 15, 125006. [CrossRef]spa
dcterms.bibliographicCitationLee, M.; Yang, M.; Song, K.M.; Park, S. InGaN/GaN Blue Light Emitting Diodes Using Freestanding GaN Extracted from a Si Substrate. ACS Photonics 2018, 5, 1453–1459. [CrossRef]spa
dcterms.bibliographicCitationLu, S.; Li, J.; Huang, K.; Liu, G.; Zhou, Y.; Cai, D.; Zhang, R.; Kang, J. Additional file 1 of Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density. Nanoscale Res. Lett. 2021, 16, 99. [CrossRef]spa
dcterms.bibliographicCitationChen, J.R.; Wu, Y.C.; Ling, S.C.; Ko, T.S.; Lu, T.C.; Kuo, H.C.; Wang, S.C. Investigation of wavelength-dependent effi-ciency droop in InGaN light-emitting diodes. Appl. Phys. B 2010, 98, 779–789. [CrossRef]spa
dcterms.bibliographicCitationJae-Hyun, R.; Yoder, P.D.; Jianping, L.; Lochner, Z.; Hyunsoo, K.; Suk, C.; Hee, J.K.; Dupuis, R.D. Control of quan-tum-confined stark effect in InGaN-based quantum wells. IEEE J. Sel. Top. Quant. 2009, 15, 1080–1091. [CrossRef]spa
dcterms.bibliographicCitationZhou, Q.; Xu, M.;Wang, H. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes. Opto-Electron. Rev. 2016, 24, 1–9. [CrossRef]spa
dcterms.bibliographicCitationCho, J.; Schubert, E.F.; Kim, J.K. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev. 2013, 7, 408–421. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/cryst12081108
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsInGaN/GaNspa
dc.subject.keywordsblue light emitting diodesspa
dc.subject.keywordsquantumefficiencyspa
dc.subject.keywordsquantumdrift-diffusionmodelspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineFísicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por