Mostrar el registro sencillo del ítem
An Analysis of Mobility Influence in Optoelectronics Parameters in an InGaN/GaN Blue LED
dc.contributor.author | Zarate Galvez, Sarai | |
dc.contributor.other | Garcia Barrientos, Abel | |
dc.contributor.other | Ambrosio Lazaro, Roberto | |
dc.contributor.other | Garcia Ramirez, Mario | |
dc.contributor.other | Stevens Navarro, Enrique | |
dc.contributor.other | Plaza Castillo, Jairo | |
dc.contributor.other | Hoyo Montaño, Jose | |
dc.contributor.other | Perez Cortes, Obed | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-11-15T19:12:12Z | |
dc.date.available | 2022-11-15T19:12:12Z | |
dc.date.issued | 2022-08-08 | |
dc.date.submitted | 2022-07-02 | |
dc.identifier.citation | Zarate-Galvez, S.; Garcia-Barrientos, A.; Ambrosio-Lazaro, R.; Garcia-Ramirez, M.; Stevens-Navarro, E.; Plaza-Castillo, J.; Hoyo-Montaño, J.; Perez-Cortes, O. An Analysis of Mobility Influence in Optoelectronics Parameters in an InGaN/GaN Blue LED. Crystals 2022, 12, 1108. https:// doi.org/10.3390/cryst12081108 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/771 | |
dc.description.abstract | Simulations on mobility influence in optoelectronics parameters from an InGaN/GaN blue LED using the Nextnano++ software arepresented in this paper. These simulations were performed by changing the hole and electron mobility value for the material compounds according to experimental, theoretical, and doping-concentration data already reported in the literature. The power law mobility is used for the current calculation in the quantum drift-diffusion model. The results indicate the lower hole and electron leakage currents correspond to the lowest mobility values for the InGaN alloy, the greatest amount of recombination occurs in the extreme wells within the active layer of the LED and the stable emission is at 3.6 V with peak wavelength ˆl LED = 456.7 nm and full width at half maximum FWHM 11.1 nm for the three mobilities. Although experimental and theoretical mobility values reach higher carrier density and recombination, the photon emission is broader and unstable. Additionally, the doping-concentration mobility results in lower wavelength shifts and narrows FWHM, making it more stable. The highest quantum efficiency achieved by dopingconcentration mobility is only in the breakdown voltage (hdop�����max = 60.43%), which is the IQE value comparable to similar LEDs and is more useful for these kinds of semiconductor devices. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Crystals | spa |
dc.title | An Analysis of Mobility Influence in Optoelectronics Parameters in an InGaN/GaN Blue LED | spa |
dcterms.bibliographicCitation | Trellakis, A.; Galick, A.T.; Pacelli, A.; Ravaioli, U. Iteration scheme for the solution of the two-dimensional Schröding-er-Poisson equations in quantum structures. J. Appl. Phys. 2007, 81, 7880–7884. [CrossRef] | spa |
dcterms.bibliographicCitation | Sabathil, M.; Hackenbuchner, S.; Majewski, J.A.; Zandler, G.; Vogl, P. Towards fully quantum mechanical 3D device simula-tions. J. Comput. Electron. 2002, 1, 81–85. [CrossRef] | spa |
dcterms.bibliographicCitation | Auf der Maur, M.; Povolotskyi, M.; Sacconi, F.; Pecchia, A.; Romano, G.; Penazzi, G.; Di Carlo, A. TiberCAD: Towards mul-tiscale simulation of optoelectronic devices. Opt. Quant. Electron. 2008, 40, 1077–1083. [CrossRef] | spa |
dcterms.bibliographicCitation | Li, K.H.; Fu, W.Y.; Cheung, Y.F.; Wong, K.K.Y.; Wang, Y.; Lau, K.M.; Choi, H.W. Monolithically integrated InGaN/GaN lightemitting diodes, photodetectors, and waveguides on Si substrate. Optica 2018, 5, 564–569. [CrossRef] | spa |
dcterms.bibliographicCitation | Chen, J.; Wang, J.; Ji, K.; Jiang, B.; Cui, X.; Sha, W.; Wang, B.; Dai, X.; Hua, Q.; Wan, L.; et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res. 2022, 15, 5492–5499. [CrossRef] | spa |
dcterms.bibliographicCitation | Li, Y.; Liu, C.; Zhang, Y.; Jiang, Y.; Hu, X.; Song, Y.; Su, Z.; Jia, H.;Wang,W.; Chen, H. Realizing Single Chip White Light InGaN LED via Dual-Wavelength Multiple Quantum Wells. Materials 2022, 15, 3998. [CrossRef] | spa |
dcterms.bibliographicCitation | Cai, L.-E.; Zhang, B.-P.; Lin, H.-X.; Cheng, Z.-J.; Ren, P.-P.; Chen, Z.-C.; Huang, J.-M.; Cai, L.-L. Effect of barrier thickness on photoelectric properties of InGaN/GaN asymmetric multiple-quantum-well structure light-emitting diode. AIP Adv. 2022, 12, 65007. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, Y.; Liang, F.; Zhao, D.; Ben, Y.; Yang, J.; Liu, Z.; Chen, P. Effect of High Temperature Treatment on the Photolumi-nescence of InGaN Multiple Quantum Wells. Crystals 2022, 12, 839. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhang, Z.H.; Tan, S.T.; Ji, Y.; Liu,W.; Ju, Z.; Kyaw, Z.; Demir, H.V. A PN-type quantum barrier for InGaN/GaN light emit-ting diodes. Opt. Express 2013, 21, 15676–15685. [CrossRef] | spa |
dcterms.bibliographicCitation | Bulashevich, K.A.; Khokhlev, O.V.; Evstratov, I.Y.; Karpov, S.Y. Simulation of light-emitting diodes for new physics un-derstanding and device design. Proc. SPIE 2012, 8278, 827819. | spa |
dcterms.bibliographicCitation | Jia, X.; Zhou, Y.; Liu, B.; Lu, H.; Xie, Z.; Zhang, R.; Zheng, Y. A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications. Mater. Res. Express 2019, 6, 105915. [CrossRef] | spa |
dcterms.bibliographicCitation | Ryu, H.-Y.; Choi, W.J. Optimization of InGaN/GaN superlattice structures for high-efficiency vertical blue light-emitting diodes. J. Appl. Phys. 2013, 114, 173101. [CrossRef] | spa |
dcterms.bibliographicCitation | Birner, S.; Hackenbuchner, S.; Sabathil, M.; Zandler, G.; Majewski, J.A.; Andlauer, T.; Vogl, P. Modeling of Semicon-ductor Nanostructures with nextnano. Acta Phys. Pol. A 2006, 110, 111. [CrossRef] | spa |
dcterms.bibliographicCitation | Trellakis, A.; Zibold, T.; Andlauer, T.; Birner, S.; Smith, R.K.; Morschl, R.; Vogl, P. The 3D nanometer device project nextnano: Concepts, methods, results. J. Comput. Electron. 2006, 5, 285–289. [CrossRef] | spa |
dcterms.bibliographicCitation | Birner, S.; Zibold, T.; Andlauer, T.; Kubis, T.; Sabathil, M.; Trellakis, A.; Vogl, P. Nextnano: General Purpose 3-D Simulations. IEEE Trans. Electron Devices 2007, 54, 2137–2142. [CrossRef] | spa |
dcterms.bibliographicCitation | Nextnano; München, Germany. Available online: https://www.nextnano.com/index.php (accessed on 25 June 2022). | spa |
dcterms.bibliographicCitation | Brochen, S.; Brault, J.; Chenot, S.; Dussaigne, A.; Leroux, M.; Damilano, B. Dependence of the Mg-related acceptor ioniza-tion energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 103, 269904. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, H.; Chen, A.-B. Calculations of acceptor ionization energies in GaN. Phys. Rev. B 2001, 63, 125212. [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández-Gutiérrez, C.A.; Casallas-Moreno, Y.L.; Rangel-Kuoppa, V.-T.; Cardona, D.; Hu, Y.; Kudriatsev, Y.; Zambrano-Serrano, M.A.; Gallardo-Hernandez, S.; Lopez-Lopez, M. Study of the heavily p-type doping of cubic GaN with Mg. Sci. Rep. 2006, 10, 16858. [CrossRef] | spa |
dcterms.bibliographicCitation | Amano, H. Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation (Nobel Lecture). Ann. Phys. 2015, 527, 327–333. [CrossRef] | spa |
dcterms.bibliographicCitation | Dong, H.; Jia, T.; Liang, J.; Zhang, A.; Jia, Z.; Jia,W.; Liu, X.; Li, G.;Wu, Y.; Xu, B. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier. Opt. Laser Technol. 2020, 129, 106309. [CrossRef] | spa |
dcterms.bibliographicCitation | Greck, P.; Birner, S.; Huber, B.; Vogl, P. Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers. Opt. Express 2015, 23, 6587–6600. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Andlauer, T. Optoelectronic and Spin-Related Properties of Semiconductor Nanostructures in Magnetic Fields. Ph.D. Dissertation, Technische Universität München, Munich, Germany, 2009. | spa |
dcterms.bibliographicCitation | Li, S. The Atomic Struture of Inversion Domains and Grain Boundaries in Wurtzite Semiconductors: An Investigation by At-Omistic Modelling and High-Resolution Transmission Electron Microscopy. Ph.D. Dissertation, Normandie Université, Caen, France, 2018. | spa |
dcterms.bibliographicCitation | Henini, M.; Razeghi, M. Optoelectronic Devices: III Nitrides; Elsevier: Oxford, UK, 2004; pp. 9–18. | spa |
dcterms.bibliographicCitation | Martin, G.; Botchkarev, A.; Rockett, A.; Morkoc, H. Valence-band discontinuities of wurtzite GaN, AlN, and InNheterojunc-tions measured by X-ray photoemission spectroscopy. Appl. Phys. Lett. 1996, 68, 2541–2543. [CrossRef] | spa |
dcterms.bibliographicCitation | Bernardini, F.; Fiorentini, V. Spontaneous versus piezoelectric polarization in III–V nitrides: Conceptual aspects and practi-cal consequences. Phys. Stat. Sol. 1999, 216, 391–398. [CrossRef] | spa |
dcterms.bibliographicCitation | Park, S.-H. Crystal Orientation Effects on Electronic Properties of Wurtzite GaN/AlGaN Quantum Wells with Spontaneous and Piezoelectric Polarization. Jpn. J. Appl. Phys. 2000, 39, 3478–3482. [CrossRef] | spa |
dcterms.bibliographicCitation | Schulz, T.; Lymperakis, L.; Anikeeva, M.; Siekacz, M.; Wolny, P.; Markurt, T.; Albrecht, M. Influence of strain on the indium incorporation in (0001) GaN. Phys. Rev. Mater. 2020, 4, 73404. [CrossRef] | spa |
dcterms.bibliographicCitation | Quay, R.; Moglestue, C.; Palankovski, V.; Selberherr, S. A temperature dependent model for the saturation velocity in semiconductor materials. Mater. Sci. Semicond. Process. 2000, 3, 149–155. [CrossRef] | spa |
dcterms.bibliographicCitation | Lane, D.; Hayne, M. Simulations of Ultralow-Power Nonvolatile Cells for Random-Access Memory. IEEE Trans. Electron. Devices 2020, 67, 474–480. [CrossRef] | spa |
dcterms.bibliographicCitation | COMSOL Multiphysics; Massachusetts, USA. Available online: https://doc.comsol.com/5.5/doc/com.comsol.help.semicond/ semicond_ug_semiconductor.6.52.html (accessed on 25 June 2022). | spa |
dcterms.bibliographicCitation | Kyle, E.C.H.; Kaun, S.W.; Burke, P.G.; Wu, F.; Wu, Y.-R.; Speck, J.S. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy. J. Appl. Phys. 2014, 115, 193702. [CrossRef] | spa |
dcterms.bibliographicCitation | Poncé, S.; Jena, D.; Giustino, F. Hole mobility of strained GaN from first principles. Phys. Revi. B 2019, 100, 085204. [CrossRef] | spa |
dcterms.bibliographicCitation | Arakawa, Y.; Ueno, K.; Imabeppu, H.; Kobayashi, A.; Ohta, J.; Fujioka, H. Electrical properties of Si-doped GaN prepared using pulsed sputtering. Appl. Phys. Lett. 2017, 110, 042103. [CrossRef] | spa |
dcterms.bibliographicCitation | Horita, M.; Takashima, S.; Tanaka, R.; Matsuyama, H.; Ueno, K.; Edo, M.; Suda, J. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations. Jpn. J. Appl. Phys. 2017, 56, 031001. [CrossRef] | spa |
dcterms.bibliographicCitation | Yarar, Z. Transport and mobility properties of wurtzite InN and GaN. Phys. Status Solidi 2007, 244, 3711–3718. [CrossRef] | spa |
dcterms.bibliographicCitation | Chen, F.; Cartwright, A.N.; Lu, H.; Schaff, W.J. Ultrafast carrier dynamics in InN epilayers. J. Cryst. Growth 2004, 269, 10–14. [CrossRef] | spa |
dcterms.bibliographicCitation | AZoM, Riyadh, Saudi Arabia. Available online: https://www.azom.com/article.aspx?ArticleID=8367. (accessed on 25 June 2022). | spa |
dcterms.bibliographicCitation | Chen, F.; Cartwright, A.N.; Lu, H.; Schaff, W.J. Hole transport and carrier lifetime in InN epilayers. Appl. Phys. Lett. 2005, 87, 21210. [CrossRef] | spa |
dcterms.bibliographicCitation | Ma, N.; Wang, X.Q.; Liu, S.T.; Chen, G.; Pan, J.H.; Feng, L.; Shen, B. Hole mobility in wurtzite InN. Appl. Phys. Lett. 2011, 98, 192114. [CrossRef] | spa |
dcterms.bibliographicCitation | Piprek, J. Nitride Semiconductor Devices: Principles and Simulation; John Wiley & Sons: Weinheim, Germany, 2007. | spa |
dcterms.bibliographicCitation | Shen, Y.C.; Mueller, G.O.; Watanabe, S.; Gardner, N.F.; Munkholm, A.; Krames, M. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 2007, 91, 141101. [CrossRef] | spa |
dcterms.bibliographicCitation | Dmitriev, A.; Oruzheinikov, A. The rate of radiative recombination in the nitride semiconductors and alloys. J. Appl. Phys. 2017, 86, 3241–3246. [CrossRef] | spa |
dcterms.bibliographicCitation | Kioupakis, E.; Yan, Q.; Steiauf, D.; Van de Walle, C. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. New J. Phys. 2013, 15, 125006. [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, M.; Yang, M.; Song, K.M.; Park, S. InGaN/GaN Blue Light Emitting Diodes Using Freestanding GaN Extracted from a Si Substrate. ACS Photonics 2018, 5, 1453–1459. [CrossRef] | spa |
dcterms.bibliographicCitation | Lu, S.; Li, J.; Huang, K.; Liu, G.; Zhou, Y.; Cai, D.; Zhang, R.; Kang, J. Additional file 1 of Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density. Nanoscale Res. Lett. 2021, 16, 99. [CrossRef] | spa |
dcterms.bibliographicCitation | Chen, J.R.; Wu, Y.C.; Ling, S.C.; Ko, T.S.; Lu, T.C.; Kuo, H.C.; Wang, S.C. Investigation of wavelength-dependent effi-ciency droop in InGaN light-emitting diodes. Appl. Phys. B 2010, 98, 779–789. [CrossRef] | spa |
dcterms.bibliographicCitation | Jae-Hyun, R.; Yoder, P.D.; Jianping, L.; Lochner, Z.; Hyunsoo, K.; Suk, C.; Hee, J.K.; Dupuis, R.D. Control of quan-tum-confined stark effect in InGaN-based quantum wells. IEEE J. Sel. Top. Quant. 2009, 15, 1080–1091. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhou, Q.; Xu, M.;Wang, H. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes. Opto-Electron. Rev. 2016, 24, 1–9. [CrossRef] | spa |
dcterms.bibliographicCitation | Cho, J.; Schubert, E.F.; Kim, J.K. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev. 2013, 7, 408–421. [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/cryst12081108 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | InGaN/GaN | spa |
dc.subject.keywords | blue light emitting diodes | spa |
dc.subject.keywords | quantumefficiency | spa |
dc.subject.keywords | quantumdrift-diffusionmodel | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Física | spa |
dc.publisher.sede | Sede Norte | spa |