Mostrar el registro sencillo del ítem
Pilot-Scale Anaerobic Digestion of Pig Manure with Thermal Pretreatment: Stability Monitoring to Improve the Potential for Obtaining Methane
dc.contributor.author | Vanegas, Marley | |
dc.contributor.other | Romani, Felipe | |
dc.contributor.other | Jiménez, Mayerlenis | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-11-15T19:12:01Z | |
dc.date.available | 2022-11-15T19:12:01Z | |
dc.date.issued | 2022-08-13 | |
dc.date.submitted | 2022-08-03 | |
dc.identifier.citation | Vanegas, M.; Romani, F.; Jiménez, M. Pilot-Scale Anaerobic Digestion of Pig Manure with Thermal Pretreatment: Stability Monitoring to Improve the Potential for Obtaining Methane. Processes 2022, 10, 1602. https://doi.org/10.3390/pr10081602 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/770 | |
dc.description.abstract | Monitoring and controlling stability in anaerobic digestion (AD) systems are essential, since it allows to obtain information that helps to take corrective actions in case of deviations in the system and to guarantee a stable performance in the biogas production. In this work, a pilot-scale CSRT reactor (1 m3) was monitored during the anaerobic digestion of pig manure with thermal pretreatment (80 C) operated at thermophilic temperature (45 C). The ratio of the volatile organic acids (FOS) to the total inorganic carbonate (TAC) and the pH were the indicators used during the monitoring process to identify deviations in the AD system. Additionally, alkaline solution NaOH (98%) was applied to counteract pH deviations and maintain stability. Chemical oxygen demand (COD) and biogas composition were measured during the AD process. It was found that during the AD process, the FOS/TAC was between the range of 0.5 and 1. The results revealed that, in the anaerobic digestion of pig manure with thermal pretreatment, the pH was kept stable in the range of 6.7–7.4 since no medium acidification occurred. Additionally, the tendency of the chemical oxygen demand decreased from the 10th day of operation, product of the favorable enzymatic activity of the microorganisms, reflected in the stable production of biogas (69% CH4). Finally, it is concluded that thermophilic AD of pig manure with thermal pretreatment is a good option when it is carried out efficiently by employing an adequate energetic integration. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Processes | spa |
dc.title | Pilot-Scale Anaerobic Digestion of Pig Manure with Thermal Pretreatment: Stability Monitoring to Improve the Potential for Obtaining Methane | spa |
dcterms.bibliographicCitation | Avcıo˘ glu, A.O.; Dayıo˘ glu, M.A.; Türker, U. Assessment of the energy potential of agricultural biomass residues in Turkey. Renew. Energy 2019, 138, 610–619. [CrossRef] | spa |
dcterms.bibliographicCitation | Hiloidhari, M.; Baruah, D.C.; Kumari, M.; Kumari, S.; Thakur, I.S. Prospect and potential of biomass power to mitigate climate change: A case study in India. J. Clean. Prod. 2019, 220, 931–944. [CrossRef] | spa |
dcterms.bibliographicCitation | Gonzalez-Salazar, M.A.; Morini, M.; Pinelli, M.; Spina, P.R.; Venturini, M.; Finkenrath, M.; Poganietz, W.-R. Methodology for estimating biomass energy potential and its application to Colombia. Appl. Energy 2014, 136, 781–796. [CrossRef] | spa |
dcterms.bibliographicCitation | Contreras, M.D.; Barros, R.S.; Zapata, J.; Chamorro, M.V.; Arrieta, A.A. A look to the biogas generation from organic wastes in Colombia. Int. J. Energy Econ. Policy 2020, 10, 248–254. [CrossRef] | spa |
dcterms.bibliographicCitation | Esteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C.D.R.V. Life cycle assessment of manure biogas production: A review. J. Clean. Prod. 2019, 219, 411–423. [CrossRef] | spa |
dcterms.bibliographicCitation | Amado, M.; Barca, C.; Hernández, M.A.; Ferrasse, J.H. Evaluation of Energy Recovery Potential by Anaerobic Digestion and Dark Fermentation of Residual Biomass in Colombia. Front. Energy Res. 2021, 9, 321. [CrossRef] | spa |
dcterms.bibliographicCitation | Battini, F.; Agostini, A.; Boulamanti, A.K.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Bywater, A.; Heaven, S.; Zhang, Y.; Banks, C.J. Potential for Biomethanisation of CO2 from Anaerobic Digestion of OrganicWastes in the United Kingdom. Processes 2022, 10, 1202. [CrossRef] | spa |
dcterms.bibliographicCitation | Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to energy: A focus on the impact of substrate type in biogas production. Processes 2020, 8, 1224. [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández Regalado, R.E.; Häner, J.; Brügging, E.; Tränckner, J. Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector. Energies 2022, 15, 4413. [CrossRef] | spa |
dcterms.bibliographicCitation | Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019, 84, 81–90. [CrossRef] | spa |
dcterms.bibliographicCitation | Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass Bioenergy 2020, 142, 105790. [CrossRef] | spa |
dcterms.bibliographicCitation | Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [CrossRef] | spa |
dcterms.bibliographicCitation | Khan, M.U.; Ahring, B.K. Anaerobic Digestion of Digested Manure Fibers: Influence of Thermal and Alkaline Thermal Pretreatment on the Biogas Yield. Bioenergy Res. 2021, 14, 891–900. [CrossRef] | spa |
dcterms.bibliographicCitation | Soltanian, S.; Aghbashlo, M.; Almasi, F.; Hosseinzadeh-Bandbafha, H.; Nizami, A.S.; Ok, Y.S.; Lam, S.S.; Tabatabaei, M. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers. Manag. 2020, 212, 112792. [CrossRef] | spa |
dcterms.bibliographicCitation | Usman Khan, M.; Kiaer Ahring, B. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresour. Technol. 2021, 321, 124427. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Orlando,M.Q.; Borja, V.M. Pretreatment of animal manure biomass to improve biogas production: A review. Energies 2020, 13, 3573. [CrossRef] | spa |
dcterms.bibliographicCitation | Muhammad Nasir, I.; Mohd Ghazi, T.I. Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Eng. Life Sci. 2015, 15, 733–742. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, X.; Li, Z.; Bai, X.; Zhou, X.; Cheng, S.; Gao, R.; Sun, J. Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process. Bioresour. Technol. 2018, 249, 290–297. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhou, Y.; Zeng, L.; Liu, X.; Gui, J.; Mei, X.; Fu, X.; Dong, F.; Tang, J.; Zhang, L.; Yang, Z. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 2017, 231, 78–86. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Baêta, B.E.L.; de Miranda Cordeiro, P.H.; Passos, F.; Gurgel, L.V.A.; de Aquino, S.F.; Fdz-Polanco, F. Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresour. Technol. 2017, 245, 66–72. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Shetty, D.J.; Kshirsagar, P.; Tapadia-Maheshwari, S.; Lanjekar, V.; Singh, S.K.; Dhakephalkar, P.K. Alkali pretreatment at ambient temperature: A promising method to enhance biomethanation of rice straw. Bioresour. Technol. 2017, 226, 80–88. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Passos, F.; Ortega, V.; Donoso-Bravo, A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation. Bioresour. Technol. 2017, 227, 239–246. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Amnuaycheewa, P.; Hengaroonprasan, R.; Rattanaporn, K.; Kirdponpattara, S.; Cheenkachorn, K.; Sriariyanun, M. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind. Crops Prod. 2016, 87, 247–254. [CrossRef] | spa |
dcterms.bibliographicCitation | Hu, Y.; Hao, X.; Wang, J.; Cao, Y. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. Waste Manag. 2016, 49, 55–63. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Speda, J.; Johansson, M.A.; Odnell, A.; Karlsson, M. Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes. Biotechnol. Biofuels 2017, 10, 129. [CrossRef] | spa |
dcterms.bibliographicCitation | Shen, F.; Li, H.; Wu, X.; Wang, Y.; Zhang, Q. Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment. Bioresour. Technol. 2018, 250, 155–162. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ferreira, L.C.; Souza, T.S.O.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure. Bioresour. Technol. 2014, 152, 393–398. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | González-Fernández, C.; León-Cofreces, C.; García-Encina, P.A. Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour. Technol. 2008, 99, 8710–8714. [CrossRef] | spa |
dcterms.bibliographicCitation | Rafique, R.; Poulsen, T.G.; Nizami, A.S.; Asam, Z.-U.-Z.; Murphy, J.D.; Kiely, G. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy 2010, 35, 4556–4561. [CrossRef] | spa |
dcterms.bibliographicCitation | Carrère, H.; Sialve, B.; Bernet, N. Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresour. Technol. 2009, 100, 3690–3694. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Chuenchart, W.; Logan, M.; Leelayouthayotin, C.; Visvanathan, C. Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Biomass Bioenergy 2020, 136, 105541. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhou, J.; Zhang, R.; Liu, F.; Yong, X.;Wu, X.; Zheng, T.; Jiang, M.; Jia, H. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour. Technol. 2016, 217, 44–49. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Sun, H.; Ni, P.; Angelidaki, I.; Dong, R.; Wu, S. Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations. Waste Manag. 2019, 91, 139–146. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Borth, P.L.B.; Perin, J.K.H.; Torrecilhas, A.R.; Lopes, D.D.; Santos, S.C.; Kuroda, E.K.; Fernandes, F. Pilot-scale anaerobic codigestion of food and garden waste: Methane potential, performance and microbial analysis. Biomass Bioenergy 2022, 157, 106331. [CrossRef] | spa |
dcterms.bibliographicCitation | Filer, J.; Ding, H.H.; Chang, S. Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water 2019, 11, 921. [CrossRef] | spa |
dcterms.bibliographicCitation | Symons, G.E.; Buswell, A.M. The Methane Fermentation of Carbohydrates1,2. J. Am. Chem. Soc. 1933, 55, 2028–2036. [CrossRef] | spa |
dcterms.bibliographicCitation | Wei, X.; Liu, D.; Liao, L.; Wang, Z.; Li, W.; Huang, W. Bioleaching of heavy metals from pig manure with indigenous sulfuroxidizing bacteria: Effects of sulfur concentration. Heliyon 2018, 4, e00778. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Zhang, S.-Y.; Hong, R.-Y.; Cao, J.-P.; Takarada, T. Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char. Bioresour. Technol. 2009, 100, 4278–4283. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Troy, S.M.; Nolan, T.; Leahy, J.J.; Lawlor, P.G.; Healy, M.G.; Kwapinski, W. Effect of sawdust addition and composting of feedstock on renewable energy and biochar production from pyrolysis of anaerobically digested pig manure. Biomass Bioenergy 2013, 49, 1–9. [CrossRef] | spa |
dcterms.bibliographicCitation | Bonmatí, A.; Flotats, X.; Mateu, L.; Campos, E. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci. Technol. 2001, 44, 109–116. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Baudez, J.C.; Slatter, P.; Eshtiaghi, N. The impact of temperature on the rheological behaviour of anaerobic digested sludge. Chem. Eng. J. 2013, 215–216, 182–187. [CrossRef] | spa |
dcterms.bibliographicCitation | Fuentes, K.L.; Torres-Lozada, P.; Chaparro, T.R. Beverage wastewater treatment by anaerobic digestion in two-stages for organic matter removal and energy production. Biomass Bioenergy 2021, 154, 106260. [CrossRef] | spa |
dcterms.bibliographicCitation | Moset, V.; Bertolini, E.; Cerisuelo, A.; Cambra, M.; Olmos, A.; Cambra-López, M. Start-up strategies for thermophilic anaerobic digestion of pig manure. Energy 2014, 74, 389–395. [CrossRef] | spa |
dcterms.bibliographicCitation | Helenas Perin, J.K.; Biesdorf Borth, P.L.; Torrecilhas, A.R.; Santana da Cunha, L.; Kuroda, E.K.; Fernandes, F. Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. J. Clean. Prod. 2020, 272, 123130. [CrossRef] | spa |
dcterms.bibliographicCitation | Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, D.H.; Behera, S.K.; Kim, J.W.; Park, H.-S. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manag. 2009, 29, 876–882. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [CrossRef] | spa |
dcterms.bibliographicCitation | Boe, K.; Batstone, D.J.; Steyer, J.-P.; Angelidaki, I. State indicators for monitoring the anaerobic digestion process. Water Res. 2010, 44, 5973–5980. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Martín-González, L.; Font, X.; Vicent, T. Alkalinity ratios to identify process imbalances in anaerobic digesters treating sourcesorted organic fraction of municipal wastes. Biochem. Eng. J. 2013, 76, 1–5. [CrossRef] | spa |
dcterms.bibliographicCitation | Labatut, R.A.; Angenent, L.T.; Scott, N.R. Conventional mesophilic vs. thermophilic anaerobic digestion: Atrade-off between performance and stability? Water Res. 2014, 53, 249–258. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Lu, J.-Y.; Wang, X.-M.; Liu, H.-Q.; Yu, H.-Q.; Li, W.-W. Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications. Environ. Int. 2019, 129, 273–278. [CrossRef] [PubMed] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/pr10081602 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | anaerobic digestion | spa |
dc.subject.keywords | pig manure | spa |
dc.subject.keywords | biogas | spa |
dc.subject.keywords | thermal pretreatment | spa |
dc.subject.keywords | monitoring stability | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |