Mostrar el registro sencillo del ítem

dc.contributor.authorVanegas, Marley
dc.contributor.otherRomani, Felipe
dc.contributor.otherJiménez, Mayerlenis
dc.coverage.spatialColombia
dc.date.accessioned2022-11-15T19:12:01Z
dc.date.available2022-11-15T19:12:01Z
dc.date.issued2022-08-13
dc.date.submitted2022-08-03
dc.identifier.citationVanegas, M.; Romani, F.; Jiménez, M. Pilot-Scale Anaerobic Digestion of Pig Manure with Thermal Pretreatment: Stability Monitoring to Improve the Potential for Obtaining Methane. Processes 2022, 10, 1602. https://doi.org/10.3390/pr10081602spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/770
dc.description.abstractMonitoring and controlling stability in anaerobic digestion (AD) systems are essential, since it allows to obtain information that helps to take corrective actions in case of deviations in the system and to guarantee a stable performance in the biogas production. In this work, a pilot-scale CSRT reactor (1 m3) was monitored during the anaerobic digestion of pig manure with thermal pretreatment (80 C) operated at thermophilic temperature (45 C). The ratio of the volatile organic acids (FOS) to the total inorganic carbonate (TAC) and the pH were the indicators used during the monitoring process to identify deviations in the AD system. Additionally, alkaline solution NaOH (98%) was applied to counteract pH deviations and maintain stability. Chemical oxygen demand (COD) and biogas composition were measured during the AD process. It was found that during the AD process, the FOS/TAC was between the range of 0.5 and 1. The results revealed that, in the anaerobic digestion of pig manure with thermal pretreatment, the pH was kept stable in the range of 6.7–7.4 since no medium acidification occurred. Additionally, the tendency of the chemical oxygen demand decreased from the 10th day of operation, product of the favorable enzymatic activity of the microorganisms, reflected in the stable production of biogas (69% CH4). Finally, it is concluded that thermophilic AD of pig manure with thermal pretreatment is a good option when it is carried out efficiently by employing an adequate energetic integration.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceProcessesspa
dc.titlePilot-Scale Anaerobic Digestion of Pig Manure with Thermal Pretreatment: Stability Monitoring to Improve the Potential for Obtaining Methanespa
dcterms.bibliographicCitationAvcıo˘ glu, A.O.; Dayıo˘ glu, M.A.; Türker, U. Assessment of the energy potential of agricultural biomass residues in Turkey. Renew. Energy 2019, 138, 610–619. [CrossRef]spa
dcterms.bibliographicCitationHiloidhari, M.; Baruah, D.C.; Kumari, M.; Kumari, S.; Thakur, I.S. Prospect and potential of biomass power to mitigate climate change: A case study in India. J. Clean. Prod. 2019, 220, 931–944. [CrossRef]spa
dcterms.bibliographicCitationGonzalez-Salazar, M.A.; Morini, M.; Pinelli, M.; Spina, P.R.; Venturini, M.; Finkenrath, M.; Poganietz, W.-R. Methodology for estimating biomass energy potential and its application to Colombia. Appl. Energy 2014, 136, 781–796. [CrossRef]spa
dcterms.bibliographicCitationContreras, M.D.; Barros, R.S.; Zapata, J.; Chamorro, M.V.; Arrieta, A.A. A look to the biogas generation from organic wastes in Colombia. Int. J. Energy Econ. Policy 2020, 10, 248–254. [CrossRef]spa
dcterms.bibliographicCitationEsteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C.D.R.V. Life cycle assessment of manure biogas production: A review. J. Clean. Prod. 2019, 219, 411–423. [CrossRef]spa
dcterms.bibliographicCitationAmado, M.; Barca, C.; Hernández, M.A.; Ferrasse, J.H. Evaluation of Energy Recovery Potential by Anaerobic Digestion and Dark Fermentation of Residual Biomass in Colombia. Front. Energy Res. 2021, 9, 321. [CrossRef]spa
dcterms.bibliographicCitationBattini, F.; Agostini, A.; Boulamanti, A.K.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBywater, A.; Heaven, S.; Zhang, Y.; Banks, C.J. Potential for Biomethanisation of CO2 from Anaerobic Digestion of OrganicWastes in the United Kingdom. Processes 2022, 10, 1202. [CrossRef]spa
dcterms.bibliographicCitationNwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to energy: A focus on the impact of substrate type in biogas production. Processes 2020, 8, 1224. [CrossRef]spa
dcterms.bibliographicCitationHernández Regalado, R.E.; Häner, J.; Brügging, E.; Tränckner, J. Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector. Energies 2022, 15, 4413. [CrossRef]spa
dcterms.bibliographicCitationKainthola, J.; Kalamdhad, A.S.; Goud, V.V. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019, 84, 81–90. [CrossRef]spa
dcterms.bibliographicCitationMosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass Bioenergy 2020, 142, 105790. [CrossRef]spa
dcterms.bibliographicCitationNeshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [CrossRef]spa
dcterms.bibliographicCitationKhan, M.U.; Ahring, B.K. Anaerobic Digestion of Digested Manure Fibers: Influence of Thermal and Alkaline Thermal Pretreatment on the Biogas Yield. Bioenergy Res. 2021, 14, 891–900. [CrossRef]spa
dcterms.bibliographicCitationSoltanian, S.; Aghbashlo, M.; Almasi, F.; Hosseinzadeh-Bandbafha, H.; Nizami, A.S.; Ok, Y.S.; Lam, S.S.; Tabatabaei, M. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers. Manag. 2020, 212, 112792. [CrossRef]spa
dcterms.bibliographicCitationUsman Khan, M.; Kiaer Ahring, B. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresour. Technol. 2021, 321, 124427. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationOrlando,M.Q.; Borja, V.M. Pretreatment of animal manure biomass to improve biogas production: A review. Energies 2020, 13, 3573. [CrossRef]spa
dcterms.bibliographicCitationMuhammad Nasir, I.; Mohd Ghazi, T.I. Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Eng. Life Sci. 2015, 15, 733–742. [CrossRef]spa
dcterms.bibliographicCitationWang, X.; Li, Z.; Bai, X.; Zhou, X.; Cheng, S.; Gao, R.; Sun, J. Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process. Bioresour. Technol. 2018, 249, 290–297. [CrossRef]spa
dcterms.bibliographicCitationZhou, Y.; Zeng, L.; Liu, X.; Gui, J.; Mei, X.; Fu, X.; Dong, F.; Tang, J.; Zhang, L.; Yang, Z. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 2017, 231, 78–86. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBaêta, B.E.L.; de Miranda Cordeiro, P.H.; Passos, F.; Gurgel, L.V.A.; de Aquino, S.F.; Fdz-Polanco, F. Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresour. Technol. 2017, 245, 66–72. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationShetty, D.J.; Kshirsagar, P.; Tapadia-Maheshwari, S.; Lanjekar, V.; Singh, S.K.; Dhakephalkar, P.K. Alkali pretreatment at ambient temperature: A promising method to enhance biomethanation of rice straw. Bioresour. Technol. 2017, 226, 80–88. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPassos, F.; Ortega, V.; Donoso-Bravo, A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation. Bioresour. Technol. 2017, 227, 239–246. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAmnuaycheewa, P.; Hengaroonprasan, R.; Rattanaporn, K.; Kirdponpattara, S.; Cheenkachorn, K.; Sriariyanun, M. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind. Crops Prod. 2016, 87, 247–254. [CrossRef]spa
dcterms.bibliographicCitationHu, Y.; Hao, X.; Wang, J.; Cao, Y. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. Waste Manag. 2016, 49, 55–63. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSpeda, J.; Johansson, M.A.; Odnell, A.; Karlsson, M. Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes. Biotechnol. Biofuels 2017, 10, 129. [CrossRef]spa
dcterms.bibliographicCitationShen, F.; Li, H.; Wu, X.; Wang, Y.; Zhang, Q. Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment. Bioresour. Technol. 2018, 250, 155–162. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationFerreira, L.C.; Souza, T.S.O.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure. Bioresour. Technol. 2014, 152, 393–398. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGonzález-Fernández, C.; León-Cofreces, C.; García-Encina, P.A. Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour. Technol. 2008, 99, 8710–8714. [CrossRef]spa
dcterms.bibliographicCitationRafique, R.; Poulsen, T.G.; Nizami, A.S.; Asam, Z.-U.-Z.; Murphy, J.D.; Kiely, G. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy 2010, 35, 4556–4561. [CrossRef]spa
dcterms.bibliographicCitationCarrère, H.; Sialve, B.; Bernet, N. Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresour. Technol. 2009, 100, 3690–3694. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationChuenchart, W.; Logan, M.; Leelayouthayotin, C.; Visvanathan, C. Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Biomass Bioenergy 2020, 136, 105541. [CrossRef]spa
dcterms.bibliographicCitationZhou, J.; Zhang, R.; Liu, F.; Yong, X.;Wu, X.; Zheng, T.; Jiang, M.; Jia, H. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour. Technol. 2016, 217, 44–49. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSun, H.; Ni, P.; Angelidaki, I.; Dong, R.; Wu, S. Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations. Waste Manag. 2019, 91, 139–146. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBorth, P.L.B.; Perin, J.K.H.; Torrecilhas, A.R.; Lopes, D.D.; Santos, S.C.; Kuroda, E.K.; Fernandes, F. Pilot-scale anaerobic codigestion of food and garden waste: Methane potential, performance and microbial analysis. Biomass Bioenergy 2022, 157, 106331. [CrossRef]spa
dcterms.bibliographicCitationFiler, J.; Ding, H.H.; Chang, S. Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water 2019, 11, 921. [CrossRef]spa
dcterms.bibliographicCitationSymons, G.E.; Buswell, A.M. The Methane Fermentation of Carbohydrates1,2. J. Am. Chem. Soc. 1933, 55, 2028–2036. [CrossRef]spa
dcterms.bibliographicCitationWei, X.; Liu, D.; Liao, L.; Wang, Z.; Li, W.; Huang, W. Bioleaching of heavy metals from pig manure with indigenous sulfuroxidizing bacteria: Effects of sulfur concentration. Heliyon 2018, 4, e00778. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZhang, S.-Y.; Hong, R.-Y.; Cao, J.-P.; Takarada, T. Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char. Bioresour. Technol. 2009, 100, 4278–4283. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationTroy, S.M.; Nolan, T.; Leahy, J.J.; Lawlor, P.G.; Healy, M.G.; Kwapinski, W. Effect of sawdust addition and composting of feedstock on renewable energy and biochar production from pyrolysis of anaerobically digested pig manure. Biomass Bioenergy 2013, 49, 1–9. [CrossRef]spa
dcterms.bibliographicCitationBonmatí, A.; Flotats, X.; Mateu, L.; Campos, E. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci. Technol. 2001, 44, 109–116. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBaudez, J.C.; Slatter, P.; Eshtiaghi, N. The impact of temperature on the rheological behaviour of anaerobic digested sludge. Chem. Eng. J. 2013, 215–216, 182–187. [CrossRef]spa
dcterms.bibliographicCitationFuentes, K.L.; Torres-Lozada, P.; Chaparro, T.R. Beverage wastewater treatment by anaerobic digestion in two-stages for organic matter removal and energy production. Biomass Bioenergy 2021, 154, 106260. [CrossRef]spa
dcterms.bibliographicCitationMoset, V.; Bertolini, E.; Cerisuelo, A.; Cambra, M.; Olmos, A.; Cambra-López, M. Start-up strategies for thermophilic anaerobic digestion of pig manure. Energy 2014, 74, 389–395. [CrossRef]spa
dcterms.bibliographicCitationHelenas Perin, J.K.; Biesdorf Borth, P.L.; Torrecilhas, A.R.; Santana da Cunha, L.; Kuroda, E.K.; Fernandes, F. Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. J. Clean. Prod. 2020, 272, 123130. [CrossRef]spa
dcterms.bibliographicCitationMao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [CrossRef]spa
dcterms.bibliographicCitationLee, D.H.; Behera, S.K.; Kim, J.W.; Park, H.-S. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manag. 2009, 29, 876–882. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [CrossRef]spa
dcterms.bibliographicCitationBoe, K.; Batstone, D.J.; Steyer, J.-P.; Angelidaki, I. State indicators for monitoring the anaerobic digestion process. Water Res. 2010, 44, 5973–5980. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMartín-González, L.; Font, X.; Vicent, T. Alkalinity ratios to identify process imbalances in anaerobic digesters treating sourcesorted organic fraction of municipal wastes. Biochem. Eng. J. 2013, 76, 1–5. [CrossRef]spa
dcterms.bibliographicCitationLabatut, R.A.; Angenent, L.T.; Scott, N.R. Conventional mesophilic vs. thermophilic anaerobic digestion: Atrade-off between performance and stability? Water Res. 2014, 53, 249–258. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLu, J.-Y.; Wang, X.-M.; Liu, H.-Q.; Yu, H.-Q.; Li, W.-W. Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications. Environ. Int. 2019, 129, 273–278. [CrossRef] [PubMed]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/pr10081602
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsanaerobic digestionspa
dc.subject.keywordspig manurespa
dc.subject.keywordsbiogasspa
dc.subject.keywordsthermal pretreatmentspa
dc.subject.keywordsmonitoring stabilityspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por