Mostrar el registro sencillo del ítem
Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects
dc.contributor.author | Valencia Llano, Carlos Humberto | |
dc.contributor.other | López Tenorio, Diego | |
dc.contributor.other | Saavedra, Marcela | |
dc.contributor.other | Zapata, Paula A. | |
dc.contributor.other | Grande Tovar, Carlos David | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-11-15T19:11:34Z | |
dc.date.available | 2022-11-15T19:11:34Z | |
dc.date.issued | 2022-09-06 | |
dc.date.submitted | 2022-08-01 | |
dc.identifier.citation | Valencia-Llano, C.H.; López-Tenorio, D.; Saavedra, M.; Zapata, P.A.; Grande-Tovar, C.D. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules 2022, 27, 5745. https://doi.org/10.3390/ molecules27185745 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/768 | |
dc.description.abstract | Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult maleWistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 C to 83 C) for F2 due to the collagen presence. The xenograft’s X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32 . We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field. | spa |
dc.description.sponsorship | Universidad del Atlántico | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.title | Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects | spa |
dcterms.bibliographicCitation | Chen, M.-Y.; Fang, J.-J.; Lee, J.-N.; Periasamy, S.; Yen, K.-C.; Wang, H.-C.; Hsieh, D.-J. Supercritical Carbon Dioxide Decellularized Xenograft-3D CAD/CAM Carved Bone Matrix Personalized for Human Bone Defect Repair. Genes 2022, 13, 1–14. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhang, S.; Li, X.; Qi, Y.; Ma, X.; Qiao, S.; Cai, H.X.; Zhao, B.C.; Jiang, H.B.; Lee, E.S. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng. Regen. Med. 2021, 18, 327–341. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Dimar, J.R.; Glassman, S.D. The Art of Bone Grafting. Contemp. Spine Surg. 2008, 9, 1–7. [CrossRef] | spa |
dcterms.bibliographicCitation | Najafi-Ghalehlou, N.; Feizkhah, A.; Mobayen, M.; Pourmohammadi-Bejarpasi, Z.; Shekarchi, S.; Roushandeh, A.M.; Roudkenar, M.H. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal; Springer: New York, NY, USA, 2022; ISBN 0123456789. | spa |
dcterms.bibliographicCitation | Singh, R.; Mahesh, L.; Shukla, S. Infections Resulting from Bone Grafting Biomaterials. Int. J. Oral Implantol. Clin. Res. 2013, 4, 68–71. [CrossRef] | spa |
dcterms.bibliographicCitation | Picciolo, G.; Peditto, M.; Irrera, N.; Pallio, G.; Altavilla, D.; Vaccaro, M.; Picciolo, G.; Scarfone, A.; Squadrito, F.; Oteri, G. Preclinical and Clinical Applications of Biomaterialsin the Enhancement of Wound Healing in OralSurgery.Pdf. Pharmaceutics 2020, 12, 1018. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Bassi, A.P.F.; Bizelli, V.F.; Consolaro, R.B.; de Carvalho, P.S.P. Biocompatibility and Osteopromotor Factor of Bovine Integral Bone—a Microscopic and Histometric Analysis. Front. Oral Maxillofac. Med. 2021, 3, 33. [CrossRef] | spa |
dcterms.bibliographicCitation | Sheikh, Z.; Hamdan, N.; Ikeda, Y.; Grynpas, M.; Ganss, B.; Glogauer, M. Natural Graft Tissues and Synthetic Biomaterials for Periodontal and Alveolar Bone Reconstructive Applications: A Review. Biomater. Res. 2017, 21, 1–20. [CrossRef] | spa |
dcterms.bibliographicCitation | Precheur, H.V. Bone Graft Materials. Dent. Clin. N. Am. 2007, 51, 729–746. [CrossRef] | spa |
dcterms.bibliographicCitation | Tahmasebi, E.; Alam, M.; Yazdanian, M.; Tebyanian, H.; Yazdanian, A.; Seifalian, A.; Mosaddad, S.A. Current Biocompatible Materials in Oral Regeneration: A Comprehensive Overview of Composite Materials. J. Mater. Res. Technol. 2020, 9, 11731–11755. [CrossRef] | spa |
dcterms.bibliographicCitation | Rodríguez, Á.E.; Nowzari, H. The Long-Term Risks and Complications of Bovine-Derived Xenografts. Rev. La Asoc. Dent. Mex. 2020, 77, 108–116. [CrossRef] | spa |
dcterms.bibliographicCitation | Marina, A.; Gentile, P.; Chiono, V.; Ciardelli, G. Acta Biomaterialia Collagen for Bone Tissue Regeneration. Acta Biomater. 2012, 8, 3191–3200. [CrossRef] | spa |
dcterms.bibliographicCitation | Walters, B.D.; Stegemann, J.P. Strategies for Directing the Structure and Function of Three-Dimensional Collagen Biomaterials across Length Scales. Acta Biomater. 2014, 10, 1488–1501. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Kouketsu, A.; Matsui, K.; Kawai, T.; Ezoe, Y.; Yanagisawa, T.; Yasuda, A.; Takahashi, T.; Kamakura, S. Octacalcium Phosphate Collagen Composite Stimulates the Expression and Activity of Osteogenic Factors to Promote Bone Regeneration. J. Tissue Eng. Regen. Med. 2020, 14, 99–107. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Lu, Y.; Li, M.; Long, Z.; Yang, D.; Guo, S.; Li, J.; Liu, D.; Gao, P.; Chen, G.;Wang, Z. Collagen/ -TCP Composite as a Bone-Graft Substitute for Posterior Spinal Fusion in Rabbit Model: A Comparison Study. Biomed. Mater. 2019, 14, 1–19. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Vajgel, A.; Mardas, N.; Farias, B.C.; Petrie, A.; Cimões, R.; Donos, N. A Systematic Review on the Critical Size Defect Model. Clin. Oral Implant. Res. 2014, 25, 879–893. [CrossRef] | spa |
dcterms.bibliographicCitation | Ferreira, V.; Umasi, E.; Santos, A.; Veras, C.; Rampazzo, G.; Faverani, L. Calvaria Critical Size Defects Regeneration Using Collagen Membranes to Assess the Osteopromotive Principle: An Animal Study. Membranes 2022, 12, 1–16. | spa |
dcterms.bibliographicCitation | Valencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers 2022, 14, 2672. [CrossRef] | spa |
dcterms.bibliographicCitation | Elizalde-Mota, M.K.; Hernández-Romero, C.; Rocha-Rocha, V.M.; Mayoral-García, V.A. Cambios Dimensionales En Técnicas de Preservación Alveolar Bartee y Bio-Col Con Xenoinjerto Inteross®. Int. J. Odontostomatol. 2021, 15, 370–376. [CrossRef] | spa |
dcterms.bibliographicCitation | Shaheen, M.Y.; Basudan, A.M.; Niazy, A.A.; van den Beucken, J.J.; Jansen, J.A.; Alghamdi, H.S. Histological and Histomorphometric Analyses of Bone Regeneration in Osteoporotic Rats Using a Xenograft Material. Materials 2021, 14, 222. [CrossRef] | spa |
dcterms.bibliographicCitation | Kim, D.; Hong, H.; Lin, J.; Nevins, M. Evaluation of the Bone-Regenerating Effects of Two Anorganic Bovine Bone Grafts in a Critical-Sized Alveolar Ridge Defect Model. Int. J. Periodontics Restor. Dent. 2017, 37, e234–e244. [CrossRef] | spa |
dcterms.bibliographicCitation | Jain, G.; Blaauw, D.; Chang, S. A Comparative Study of Two Bone Graft Substitutes—InterOss® Collagen and OCS-B Collagen®. J. Funct. Biomater. 2022, 13, 28. [CrossRef] | spa |
dcterms.bibliographicCitation | Pannarale, L.; Morini, S.; D’Ubaldo, E.; Gaudio, E.; Marinozzi, G. SEM Corrosion-casts Study of the Microcirculation of the Flat Bones in the Rat. Anat. Rec. An. Off. Publ. Am. Assoc. Anat. 1997, 247, 462–471. [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, D.S.H.; Pai, Y.; Chang, S. Physicochemical Characterization of InterOss® and Bio-Oss® Anorganic Bovine Bone Grafting Material for Oral Surgery–A Comparative Study. Mater. Chem. Phys. 2014, 146, 99–104. [CrossRef] | spa |
dcterms.bibliographicCitation | Werner, J.; Linner-Krˇcmar, B.; Friess, W.; Greil, P. Mechanical Properties and in Vitro Cell Compatibility of Hydroxyapatite Ceramics with Graded Pore Structure. Biomaterials 2002, 23, 4285–4294. [CrossRef] | spa |
dcterms.bibliographicCitation | Ryan, A.J.; Gleeson, J.P.; Matsiko, A.; Thompson, E.M.; O’Brien, F.J. Effect of Different Hydroxyapatite Incorporation Methods on the Structural and Biological Properties of Porous Collagen Scaffolds for Bone Repair. J. Anat. 2015, 227, 732–745. [CrossRef] | spa |
dcterms.bibliographicCitation | Slósarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C. FTIR and XRD Evaluation of Carbonated Hydroxyapatite Powders Synthesized by Wet Methods. J. Mol. Struct. 2005, 744, 657–661. [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, J.H.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical Characterization of Porcine Bone-Derived Grafting Material and Comparison with Bovine Xenografts for Dental Applications. J. Periodontal Implant. Sci. 2017, 47, 388–401. [CrossRef] | spa |
dcterms.bibliographicCitation | Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR Analysis of Natural and Synthetic Collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [CrossRef] | spa |
dcterms.bibliographicCitation | Ahmadi, A.; Ahmadi, P.; Ehsani, A. Development of an Active Packaging System Containing Zinc Oxide Nanoparticles for the Extension of Chicken Fillet Shelf Life. Food Sci. Nutr. 2020, 8, 5461–5473. [CrossRef] | spa |
dcterms.bibliographicCitation | Stani, C.; Vaccari, L.; Mitri, E.; Birarda, G. FTIR Investigation of the Secondary Structure of Type I Collagen: New Insight into the Amide III Band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 118006. [CrossRef] | spa |
dcterms.bibliographicCitation | Safandowska, M.; Pietrucha, K. Effect of Fish Collagen Modification on Its Thermal and Rheological Properties. Int. J. Biol. Macromol. 2013, 53, 32–37. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Sionkowska, A.; Kozłowska, J. Characterization of Collagen/Hydroxyapatite Composite Sponges as a Potential Bone Substitute. Int. J. Biol. Macromol. 2010, 47, 483–487. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | León-Mancilla, B.H.; Araiza-Téllez, M.A.; Flores-Flores, J.O.; Piña-Barba, M.C. Physico-Chemical Characterization of Collagen Scaffolds for Tissue Engineering. J. Appl. Res. Technol. 2016, 14, 77–85. [CrossRef] | spa |
dcterms.bibliographicCitation | Rochdi, A.; Foucat, L.; Renou, J.-P. NMR and DSC Studies during Thermal Denaturation of Collagen. Food Chem. 2000, 69, 295–299. [CrossRef] | spa |
dcterms.bibliographicCitation | Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction. Nanomaterials 2020, 10, 1627. [CrossRef] | spa |
dcterms.bibliographicCitation | Accorsi-Mendonça, T.; Conz, M.B.; Barros, T.C.; Sena, L.Á.D.; Soares, G.D.A.; Granjeiro, J.M. Physicochemical Characterization of Two Deproteinized Bovine Xenografts. Braz. Oral Res. 2008, 22, 5–10. [CrossRef] | spa |
dcterms.bibliographicCitation | Becerra, J.; Rodriguez, M.; Leal, D.; Noris-Suarez, K.; Gonzalez, G. Chitosan-Collagen-Hydroxyapatite Membranes for Tissue Engineering. J. Mater. Sci. Mater. Med. 2022, 33, 18. [CrossRef] | spa |
dcterms.bibliographicCitation | Valencia, G.A.; Luciano, C.G.; Lourenço, R.V.; Bittante, A.M.Q.B.; do Amaral Sobral, P.J. Morphological and Physical Properties of Nano-Biocomposite Films Based on Collagen Loaded with Laponite®. Food Packag. Shelf Life 2019, 19, 24–30. [CrossRef] | spa |
dcterms.bibliographicCitation | Andonegi, M.; Peñalba, M.; de la Caba, K.; Guerrero, P. ZnO Nanoparticle-Incorporated Native Collagen Films with Electro- Conductive Properties. Mater. Sci. Eng. C 2020, 108, 110394. [CrossRef] | spa |
dcterms.bibliographicCitation | Chen, J.; Li, L.; Yi, R.; Xu, N.; Gao, R.; Hong, B. Extraction and Characterization of Acid-Soluble Collagen from Scales and Skin of Tilapia (Oreochromis Niloticus). LWT-Food Sci. Technol. 2016, 66, 453–459. [CrossRef] | spa |
dcterms.bibliographicCitation | Chatzipetros, E.; Yfanti, Z.; Christopoulos, P.; Donta, C.; Damaskos, S.; Tsiambas, E.; Tsiourvas, D.; Kalogirou, E.M.; Tosios, K.I.; Tsiklakis, K. Imaging of Nano-Hydroxyapatite/Chitosan Scaffolds Using a Cone Beam Computed Tomography Device on Rat Calvarial Defects with Histological Verification. Clin. Oral Investig. 2020, 24, 437–446. [CrossRef] | spa |
dcterms.bibliographicCitation | Agrali, O.B.; Yildirim, S.; Ozener, H.O.; Köse, K.N.; Ozbeyli, D.; Soluk-Tekkesin, M.; Kuru, L. Evaluation of the Effectiveness of Esterified Hyaluronic Acid Fibers on Bone Regeneration in Rat Calvarial Defects. Biomed. Res. Int. 2018, 2018, 1–8. [CrossRef] | spa |
dcterms.bibliographicCitation | Schmitz, J.P.; Hollinger, J.O. The Critical Size Defect as an Experimental Model for Craniomandibulofacial Nonunions. Clin. Orthop. Relat. Res. 1986, 205, 299–308. [CrossRef] | spa |
dcterms.bibliographicCitation | Gosain, A.K.; Song, L.; Yu, P.; Mehrara, B.J.; Maeda, C.Y.; Gold, L.I.; Longaker, M.T. Osteogenesis in Cranial Defects: Reassessment of the Concept of Critical Size and the Expression of TGF- Isoforms. Plast. Reconstr. Surg. 2000, 106, 360–371. [CrossRef] | spa |
dcterms.bibliographicCitation | Tovar, N.; Jimbo, R.; Gangolli, R.; Perez, L.; Manne, L.; Yoo, D.; Lorenzoni, F.; Witek, L.; Coelho, P.G. Evaluation of Bone Response to Various Anorganic Bovine Bone Xenografts: An Experimental Calvaria Defect Study. Int. J. Oral Maxillofac. Surg. 2014, 43, 251–260. [CrossRef] | spa |
dcterms.bibliographicCitation | Comuzzi, L.; Tumedei, M.; Piattelli, A.; Tartaglia, G.; Del Fabbro, M. Radiographic Analysis of Graft Dimensional Changes in Transcrestal Maxillary Sinus Augmentation: A Retrospective Study. Materials 2022, 15, 2964. [CrossRef] | spa |
dcterms.bibliographicCitation | Manfro, R.; Fonseca, F.S.; Bortoluzzi, M.C.; Sendyk,W.R. Comparative, Histological and Histomorphometric Analysis of Three Anorganic Bovine Xenogenous Bone Substitutes: Bio-Oss, Bone-Fill and Gen-Ox Anorganic. J. Maxillofac. Oral Surg. 2014, 13, 464–470. [CrossRef] | spa |
dcterms.bibliographicCitation | Saran, U.; Gemini Piperni, S.; Chatterjee, S. Role of Angiogenesis in Bone Repair. Arch. Biochem. Biophys. 2014, 561, 109–117. [CrossRef] | spa |
dcterms.bibliographicCitation | Fernández, T.; Olave, G.; Valencia, C.H.; Arce, S.; Quinn, J.M.W.; Thouas, G.A.; Chen, Q.-Z. Effects of Calcium Phosphate/Chitosan Composite on Bone Healing in Rats: Calcium Phosphate Induces Osteon Formation. Tissue Eng. Part A 2014, 20, 1948–1960. [CrossRef] | spa |
dcterms.bibliographicCitation | Fernández, M.P.R.; Gehrke, S.A.; Martinez, C.P.A.; Guirado, J.L.C.; de Aza, P.N. SEM-EDX Study of the Degradation Process of Two Xenograft Materials Used in Sinus Lift Procedures. Materials 2017, 10, 542. [CrossRef] | spa |
dcterms.bibliographicCitation | Li, Y.; Liu, Y.; Li, R.; Bai, H.; Zhu, Z.; Zhu, L.; Zhu, C.; Che, Z.; Liu, H.; Wang, J.; et al. Collagen-Based Biomaterials for Bone Tissue Engineering. Mater. Des. 2021, 210, 110049. [CrossRef] | spa |
dcterms.bibliographicCitation | Twardowski, T.; Fertala, A.; Orgel, J.; San Antonio, J. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers. Curr. Pharm. Des. 2007, 13, 3608–3621. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Keil, C.; Gollmer, B.; Zeidler-Rentzsch, I.; Gredes, T.; Heinemann, F. Histological Evaluation of Extraction Sites Grafted with Bio-Oss Collagen: Randomized Controlled Trial. Ann. Anat. 2021, 237, 151722. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Wessing, B.; Lettner, S.; Zechner,W. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 87–100. [CrossRef] | spa |
dcterms.bibliographicCitation | Sbricoli, L.; Guazzo, R.; Annunziata, M.; Gobbato, L.; Bressan, E.; Nastri, L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials 2020, 13, 786. [CrossRef] | spa |
dcterms.bibliographicCitation | Feher, B.; Apaza Alccayhuaman, K.A.; Strauss, F.J.; Lee, J.-S.; Tangl, S.; Kuchler, U.; Gruber, R. Osteoconductive Properties of Upside-down Bilayer Collagen Membranes in Rat Calvarial Defects. Int. J. Implant. Dent. 2021, 7, 1–10. [CrossRef] | spa |
dcterms.bibliographicCitation | Ramires, G.A.D.; Helena, J.T.; De Oliveira, J.C.S.; Faverani, L.P.; Bassi, A.P.F. Evaluation of Guided Bone Regeneration in Critical Defects Using Bovine and Porcine Collagen Membranes: Histomorphometric and Immunohistochemical Analyses. Int. J. Biomater. 2021, 2021, 1–9. [CrossRef] | spa |
dcterms.bibliographicCitation | Du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The Arrive Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/ molecules27185745 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | bone substitutes | spa |
dc.subject.keywords | collagen membranes | spa |
dc.subject.keywords | critical size defects | spa |
dc.subject.keywords | xenografts | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/draft | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Química | spa |
dc.publisher.sede | Sede Norte | spa |