Mostrar el registro sencillo del ítem

dc.contributor.authorValencia Llano, Carlos Humberto
dc.contributor.otherLópez Tenorio, Diego
dc.contributor.otherSaavedra, Marcela
dc.contributor.otherZapata, Paula A.
dc.contributor.otherGrande Tovar, Carlos David
dc.coverage.spatialColombia
dc.date.accessioned2022-11-15T19:11:34Z
dc.date.available2022-11-15T19:11:34Z
dc.date.issued2022-09-06
dc.date.submitted2022-08-01
dc.identifier.citationValencia-Llano, C.H.; López-Tenorio, D.; Saavedra, M.; Zapata, P.A.; Grande-Tovar, C.D. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules 2022, 27, 5745. https://doi.org/10.3390/ molecules27185745spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/768
dc.description.abstractAutologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult maleWistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 C to 83 C) for F2 due to the collagen presence. The xenograft’s X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32 . We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.spa
dc.description.sponsorshipUniversidad del Atlánticospa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleComparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defectsspa
dcterms.bibliographicCitationChen, M.-Y.; Fang, J.-J.; Lee, J.-N.; Periasamy, S.; Yen, K.-C.; Wang, H.-C.; Hsieh, D.-J. Supercritical Carbon Dioxide Decellularized Xenograft-3D CAD/CAM Carved Bone Matrix Personalized for Human Bone Defect Repair. Genes 2022, 13, 1–14. [CrossRef]spa
dcterms.bibliographicCitationZhang, S.; Li, X.; Qi, Y.; Ma, X.; Qiao, S.; Cai, H.X.; Zhao, B.C.; Jiang, H.B.; Lee, E.S. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng. Regen. Med. 2021, 18, 327–341. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDimar, J.R.; Glassman, S.D. The Art of Bone Grafting. Contemp. Spine Surg. 2008, 9, 1–7. [CrossRef]spa
dcterms.bibliographicCitationNajafi-Ghalehlou, N.; Feizkhah, A.; Mobayen, M.; Pourmohammadi-Bejarpasi, Z.; Shekarchi, S.; Roushandeh, A.M.; Roudkenar, M.H. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal; Springer: New York, NY, USA, 2022; ISBN 0123456789.spa
dcterms.bibliographicCitationSingh, R.; Mahesh, L.; Shukla, S. Infections Resulting from Bone Grafting Biomaterials. Int. J. Oral Implantol. Clin. Res. 2013, 4, 68–71. [CrossRef]spa
dcterms.bibliographicCitationPicciolo, G.; Peditto, M.; Irrera, N.; Pallio, G.; Altavilla, D.; Vaccaro, M.; Picciolo, G.; Scarfone, A.; Squadrito, F.; Oteri, G. Preclinical and Clinical Applications of Biomaterialsin the Enhancement of Wound Healing in OralSurgery.Pdf. Pharmaceutics 2020, 12, 1018. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBassi, A.P.F.; Bizelli, V.F.; Consolaro, R.B.; de Carvalho, P.S.P. Biocompatibility and Osteopromotor Factor of Bovine Integral Bone—a Microscopic and Histometric Analysis. Front. Oral Maxillofac. Med. 2021, 3, 33. [CrossRef]spa
dcterms.bibliographicCitationSheikh, Z.; Hamdan, N.; Ikeda, Y.; Grynpas, M.; Ganss, B.; Glogauer, M. Natural Graft Tissues and Synthetic Biomaterials for Periodontal and Alveolar Bone Reconstructive Applications: A Review. Biomater. Res. 2017, 21, 1–20. [CrossRef]spa
dcterms.bibliographicCitationPrecheur, H.V. Bone Graft Materials. Dent. Clin. N. Am. 2007, 51, 729–746. [CrossRef]spa
dcterms.bibliographicCitationTahmasebi, E.; Alam, M.; Yazdanian, M.; Tebyanian, H.; Yazdanian, A.; Seifalian, A.; Mosaddad, S.A. Current Biocompatible Materials in Oral Regeneration: A Comprehensive Overview of Composite Materials. J. Mater. Res. Technol. 2020, 9, 11731–11755. [CrossRef]spa
dcterms.bibliographicCitationRodríguez, Á.E.; Nowzari, H. The Long-Term Risks and Complications of Bovine-Derived Xenografts. Rev. La Asoc. Dent. Mex. 2020, 77, 108–116. [CrossRef]spa
dcterms.bibliographicCitationMarina, A.; Gentile, P.; Chiono, V.; Ciardelli, G. Acta Biomaterialia Collagen for Bone Tissue Regeneration. Acta Biomater. 2012, 8, 3191–3200. [CrossRef]spa
dcterms.bibliographicCitationWalters, B.D.; Stegemann, J.P. Strategies for Directing the Structure and Function of Three-Dimensional Collagen Biomaterials across Length Scales. Acta Biomater. 2014, 10, 1488–1501. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKouketsu, A.; Matsui, K.; Kawai, T.; Ezoe, Y.; Yanagisawa, T.; Yasuda, A.; Takahashi, T.; Kamakura, S. Octacalcium Phosphate Collagen Composite Stimulates the Expression and Activity of Osteogenic Factors to Promote Bone Regeneration. J. Tissue Eng. Regen. Med. 2020, 14, 99–107. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLu, Y.; Li, M.; Long, Z.; Yang, D.; Guo, S.; Li, J.; Liu, D.; Gao, P.; Chen, G.;Wang, Z. Collagen/ -TCP Composite as a Bone-Graft Substitute for Posterior Spinal Fusion in Rabbit Model: A Comparison Study. Biomed. Mater. 2019, 14, 1–19. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationVajgel, A.; Mardas, N.; Farias, B.C.; Petrie, A.; Cimões, R.; Donos, N. A Systematic Review on the Critical Size Defect Model. Clin. Oral Implant. Res. 2014, 25, 879–893. [CrossRef]spa
dcterms.bibliographicCitationFerreira, V.; Umasi, E.; Santos, A.; Veras, C.; Rampazzo, G.; Faverani, L. Calvaria Critical Size Defects Regeneration Using Collagen Membranes to Assess the Osteopromotive Principle: An Animal Study. Membranes 2022, 12, 1–16.spa
dcterms.bibliographicCitationValencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers 2022, 14, 2672. [CrossRef]spa
dcterms.bibliographicCitationElizalde-Mota, M.K.; Hernández-Romero, C.; Rocha-Rocha, V.M.; Mayoral-García, V.A. Cambios Dimensionales En Técnicas de Preservación Alveolar Bartee y Bio-Col Con Xenoinjerto Inteross®. Int. J. Odontostomatol. 2021, 15, 370–376. [CrossRef]spa
dcterms.bibliographicCitationShaheen, M.Y.; Basudan, A.M.; Niazy, A.A.; van den Beucken, J.J.; Jansen, J.A.; Alghamdi, H.S. Histological and Histomorphometric Analyses of Bone Regeneration in Osteoporotic Rats Using a Xenograft Material. Materials 2021, 14, 222. [CrossRef]spa
dcterms.bibliographicCitationKim, D.; Hong, H.; Lin, J.; Nevins, M. Evaluation of the Bone-Regenerating Effects of Two Anorganic Bovine Bone Grafts in a Critical-Sized Alveolar Ridge Defect Model. Int. J. Periodontics Restor. Dent. 2017, 37, e234–e244. [CrossRef]spa
dcterms.bibliographicCitationJain, G.; Blaauw, D.; Chang, S. A Comparative Study of Two Bone Graft Substitutes—InterOss® Collagen and OCS-B Collagen®. J. Funct. Biomater. 2022, 13, 28. [CrossRef]spa
dcterms.bibliographicCitationPannarale, L.; Morini, S.; D’Ubaldo, E.; Gaudio, E.; Marinozzi, G. SEM Corrosion-casts Study of the Microcirculation of the Flat Bones in the Rat. Anat. Rec. An. Off. Publ. Am. Assoc. Anat. 1997, 247, 462–471. [CrossRef]spa
dcterms.bibliographicCitationLee, D.S.H.; Pai, Y.; Chang, S. Physicochemical Characterization of InterOss® and Bio-Oss® Anorganic Bovine Bone Grafting Material for Oral Surgery–A Comparative Study. Mater. Chem. Phys. 2014, 146, 99–104. [CrossRef]spa
dcterms.bibliographicCitationWerner, J.; Linner-Krˇcmar, B.; Friess, W.; Greil, P. Mechanical Properties and in Vitro Cell Compatibility of Hydroxyapatite Ceramics with Graded Pore Structure. Biomaterials 2002, 23, 4285–4294. [CrossRef]spa
dcterms.bibliographicCitationRyan, A.J.; Gleeson, J.P.; Matsiko, A.; Thompson, E.M.; O’Brien, F.J. Effect of Different Hydroxyapatite Incorporation Methods on the Structural and Biological Properties of Porous Collagen Scaffolds for Bone Repair. J. Anat. 2015, 227, 732–745. [CrossRef]spa
dcterms.bibliographicCitationSlósarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C. FTIR and XRD Evaluation of Carbonated Hydroxyapatite Powders Synthesized by Wet Methods. J. Mol. Struct. 2005, 744, 657–661. [CrossRef]spa
dcterms.bibliographicCitationLee, J.H.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical Characterization of Porcine Bone-Derived Grafting Material and Comparison with Bovine Xenografts for Dental Applications. J. Periodontal Implant. Sci. 2017, 47, 388–401. [CrossRef]spa
dcterms.bibliographicCitationRiaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR Analysis of Natural and Synthetic Collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [CrossRef]spa
dcterms.bibliographicCitationAhmadi, A.; Ahmadi, P.; Ehsani, A. Development of an Active Packaging System Containing Zinc Oxide Nanoparticles for the Extension of Chicken Fillet Shelf Life. Food Sci. Nutr. 2020, 8, 5461–5473. [CrossRef]spa
dcterms.bibliographicCitationStani, C.; Vaccari, L.; Mitri, E.; Birarda, G. FTIR Investigation of the Secondary Structure of Type I Collagen: New Insight into the Amide III Band. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 118006. [CrossRef]spa
dcterms.bibliographicCitationSafandowska, M.; Pietrucha, K. Effect of Fish Collagen Modification on Its Thermal and Rheological Properties. Int. J. Biol. Macromol. 2013, 53, 32–37. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSionkowska, A.; Kozłowska, J. Characterization of Collagen/Hydroxyapatite Composite Sponges as a Potential Bone Substitute. Int. J. Biol. Macromol. 2010, 47, 483–487. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLeón-Mancilla, B.H.; Araiza-Téllez, M.A.; Flores-Flores, J.O.; Piña-Barba, M.C. Physico-Chemical Characterization of Collagen Scaffolds for Tissue Engineering. J. Appl. Res. Technol. 2016, 14, 77–85. [CrossRef]spa
dcterms.bibliographicCitationRochdi, A.; Foucat, L.; Renou, J.-P. NMR and DSC Studies during Thermal Denaturation of Collagen. Food Chem. 2000, 69, 295–299. [CrossRef]spa
dcterms.bibliographicCitationRabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction. Nanomaterials 2020, 10, 1627. [CrossRef]spa
dcterms.bibliographicCitationAccorsi-Mendonça, T.; Conz, M.B.; Barros, T.C.; Sena, L.Á.D.; Soares, G.D.A.; Granjeiro, J.M. Physicochemical Characterization of Two Deproteinized Bovine Xenografts. Braz. Oral Res. 2008, 22, 5–10. [CrossRef]spa
dcterms.bibliographicCitationBecerra, J.; Rodriguez, M.; Leal, D.; Noris-Suarez, K.; Gonzalez, G. Chitosan-Collagen-Hydroxyapatite Membranes for Tissue Engineering. J. Mater. Sci. Mater. Med. 2022, 33, 18. [CrossRef]spa
dcterms.bibliographicCitationValencia, G.A.; Luciano, C.G.; Lourenço, R.V.; Bittante, A.M.Q.B.; do Amaral Sobral, P.J. Morphological and Physical Properties of Nano-Biocomposite Films Based on Collagen Loaded with Laponite®. Food Packag. Shelf Life 2019, 19, 24–30. [CrossRef]spa
dcterms.bibliographicCitationAndonegi, M.; Peñalba, M.; de la Caba, K.; Guerrero, P. ZnO Nanoparticle-Incorporated Native Collagen Films with Electro- Conductive Properties. Mater. Sci. Eng. C 2020, 108, 110394. [CrossRef]spa
dcterms.bibliographicCitationChen, J.; Li, L.; Yi, R.; Xu, N.; Gao, R.; Hong, B. Extraction and Characterization of Acid-Soluble Collagen from Scales and Skin of Tilapia (Oreochromis Niloticus). LWT-Food Sci. Technol. 2016, 66, 453–459. [CrossRef]spa
dcterms.bibliographicCitationChatzipetros, E.; Yfanti, Z.; Christopoulos, P.; Donta, C.; Damaskos, S.; Tsiambas, E.; Tsiourvas, D.; Kalogirou, E.M.; Tosios, K.I.; Tsiklakis, K. Imaging of Nano-Hydroxyapatite/Chitosan Scaffolds Using a Cone Beam Computed Tomography Device on Rat Calvarial Defects with Histological Verification. Clin. Oral Investig. 2020, 24, 437–446. [CrossRef]spa
dcterms.bibliographicCitationAgrali, O.B.; Yildirim, S.; Ozener, H.O.; Köse, K.N.; Ozbeyli, D.; Soluk-Tekkesin, M.; Kuru, L. Evaluation of the Effectiveness of Esterified Hyaluronic Acid Fibers on Bone Regeneration in Rat Calvarial Defects. Biomed. Res. Int. 2018, 2018, 1–8. [CrossRef]spa
dcterms.bibliographicCitationSchmitz, J.P.; Hollinger, J.O. The Critical Size Defect as an Experimental Model for Craniomandibulofacial Nonunions. Clin. Orthop. Relat. Res. 1986, 205, 299–308. [CrossRef]spa
dcterms.bibliographicCitationGosain, A.K.; Song, L.; Yu, P.; Mehrara, B.J.; Maeda, C.Y.; Gold, L.I.; Longaker, M.T. Osteogenesis in Cranial Defects: Reassessment of the Concept of Critical Size and the Expression of TGF- Isoforms. Plast. Reconstr. Surg. 2000, 106, 360–371. [CrossRef]spa
dcterms.bibliographicCitationTovar, N.; Jimbo, R.; Gangolli, R.; Perez, L.; Manne, L.; Yoo, D.; Lorenzoni, F.; Witek, L.; Coelho, P.G. Evaluation of Bone Response to Various Anorganic Bovine Bone Xenografts: An Experimental Calvaria Defect Study. Int. J. Oral Maxillofac. Surg. 2014, 43, 251–260. [CrossRef]spa
dcterms.bibliographicCitationComuzzi, L.; Tumedei, M.; Piattelli, A.; Tartaglia, G.; Del Fabbro, M. Radiographic Analysis of Graft Dimensional Changes in Transcrestal Maxillary Sinus Augmentation: A Retrospective Study. Materials 2022, 15, 2964. [CrossRef]spa
dcterms.bibliographicCitationManfro, R.; Fonseca, F.S.; Bortoluzzi, M.C.; Sendyk,W.R. Comparative, Histological and Histomorphometric Analysis of Three Anorganic Bovine Xenogenous Bone Substitutes: Bio-Oss, Bone-Fill and Gen-Ox Anorganic. J. Maxillofac. Oral Surg. 2014, 13, 464–470. [CrossRef]spa
dcterms.bibliographicCitationSaran, U.; Gemini Piperni, S.; Chatterjee, S. Role of Angiogenesis in Bone Repair. Arch. Biochem. Biophys. 2014, 561, 109–117. [CrossRef]spa
dcterms.bibliographicCitationFernández, T.; Olave, G.; Valencia, C.H.; Arce, S.; Quinn, J.M.W.; Thouas, G.A.; Chen, Q.-Z. Effects of Calcium Phosphate/Chitosan Composite on Bone Healing in Rats: Calcium Phosphate Induces Osteon Formation. Tissue Eng. Part A 2014, 20, 1948–1960. [CrossRef]spa
dcterms.bibliographicCitationFernández, M.P.R.; Gehrke, S.A.; Martinez, C.P.A.; Guirado, J.L.C.; de Aza, P.N. SEM-EDX Study of the Degradation Process of Two Xenograft Materials Used in Sinus Lift Procedures. Materials 2017, 10, 542. [CrossRef]spa
dcterms.bibliographicCitationLi, Y.; Liu, Y.; Li, R.; Bai, H.; Zhu, Z.; Zhu, L.; Zhu, C.; Che, Z.; Liu, H.; Wang, J.; et al. Collagen-Based Biomaterials for Bone Tissue Engineering. Mater. Des. 2021, 210, 110049. [CrossRef]spa
dcterms.bibliographicCitationTwardowski, T.; Fertala, A.; Orgel, J.; San Antonio, J. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers. Curr. Pharm. Des. 2007, 13, 3608–3621. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKeil, C.; Gollmer, B.; Zeidler-Rentzsch, I.; Gredes, T.; Heinemann, F. Histological Evaluation of Extraction Sites Grafted with Bio-Oss Collagen: Randomized Controlled Trial. Ann. Anat. 2021, 237, 151722. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationWessing, B.; Lettner, S.; Zechner,W. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 87–100. [CrossRef]spa
dcterms.bibliographicCitationSbricoli, L.; Guazzo, R.; Annunziata, M.; Gobbato, L.; Bressan, E.; Nastri, L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials 2020, 13, 786. [CrossRef]spa
dcterms.bibliographicCitationFeher, B.; Apaza Alccayhuaman, K.A.; Strauss, F.J.; Lee, J.-S.; Tangl, S.; Kuchler, U.; Gruber, R. Osteoconductive Properties of Upside-down Bilayer Collagen Membranes in Rat Calvarial Defects. Int. J. Implant. Dent. 2021, 7, 1–10. [CrossRef]spa
dcterms.bibliographicCitationRamires, G.A.D.; Helena, J.T.; De Oliveira, J.C.S.; Faverani, L.P.; Bassi, A.P.F. Evaluation of Guided Bone Regeneration in Critical Defects Using Bovine and Porcine Collagen Membranes: Histomorphometric and Immunohistochemical Analyses. Int. J. Biomater. 2021, 2021, 1–9. [CrossRef]spa
dcterms.bibliographicCitationDu Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The Arrive Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/ molecules27185745
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsbone substitutesspa
dc.subject.keywordscollagen membranesspa
dc.subject.keywordscritical size defectsspa
dc.subject.keywordsxenograftsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Químicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por