Mostrar el registro sencillo del ítem
SNAr Reactions on 2-Amino-4,6-dichloropyrimidine-5-carbaldehyde
dc.contributor.author | Trilleras, Jorge | |
dc.contributor.other | Pérez Gamboa, Alfredo | |
dc.contributor.other | Quiroga, Jairo | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-11-15T19:11:22Z | |
dc.date.available | 2022-11-15T19:11:22Z | |
dc.date.issued | 2022-08-12 | |
dc.date.submitted | 2022-06-30 | |
dc.identifier.citation | Trilleras, J.; Pérez- Gamboa, A.; Quiroga, J. SNAr Reactions on 2-Amino-4,6- dichloropyrimidine-5-carbaldehyde. Molbank 2022, 2022, M1426. https:// doi.org/10.3390/M1426 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/767 | |
dc.description.abstract | We report the experimental results of unexpected aromatic nucleophilic substitution reaction products on 2-amino-4,6-dichloropyrimidine-5-carbaldehyde. The isolated compounds are products of amination, solvolysis, and condensation processes under mild and environmentally friendly conditions, due to the influence of structural factors of the starting pyrimidine and a high concentration of alkoxide ions. This method allows the building of pyrimidine-based compound precursors of N-heterocyclic systems. | spa |
dc.description.sponsorship | Universidad del Altántico | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Molbank | spa |
dc.title | SNAr Reactions on 2-Amino-4,6-dichloropyrimidine-5-carbaldehyde | spa |
dcterms.bibliographicCitation | Frank, É.; Sz˝oll˝osi, G. Nitrogen-Containing Heterocycles as Significant Molecular Scaffolds for Medicinal and Other Applications. Molecules 2021, 26, 4617. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Kerru, N.; Gummidi, L.; Maddila, S.; Kumar Gangu, K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Madia, V.N.; Nicolai, A.; Messore, A.; De Leo, A.; Ialongo, D.; Tudino, V.; Saccoliti, F.; De Vita, D.; Scipione, L.; Artico, M.; et al. Design, Synthesis and Biological Evaluation of New Pyrimidine Derivatives as Anticancer Agents. Molecules 2021, 26, 771. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Dolšak, A.; Mrgole, K.; Sova, M. Microwave-Assisted Regioselective Suzuki Coupling of 2,4-Dichloropyrimidines with Aryl and Heteroaryl Boronic Acids. Catalysts 2021, 11, 439. [CrossRef] | spa |
dcterms.bibliographicCitation | Kharlamova, A.D.; Abel, A.S.; Averin, A.D.; Maloshitskaya, O.A.; Roznyatovskiy, V.A.; Savelyev, E.N.; Orlinson, B.S.; Novakov, I.A.; Beletskaya, I.P.Mono- and Diamination of 4,6-Dichloropyrimidine, 2,6-Dichloropyrazine and 1,3-Dichloroisoquinoline with Adamantane-Containing Amines. Molecules 2021, 26, 1910. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Jadhav, M.; Sankhe, K.; Bhandare, R.R.; Edis, Z.; Bloukh, S.H.; Khan, T.A. Synthetic Strategies of Pyrimidine-Based Scaffolds as Aurora Kinase and Polo-like Kinase Inhibitors. Molecules 2021, 26, 5170. [CrossRef] | spa |
dcterms.bibliographicCitation | Drewry, D.H.; Annor-Gyamfi, J.K.; Wells, C.I.; Pickett, J.E.; Dederer, V.; Preuss, F.; Mathea, S.; Axtman, A.D. Identification of pyrimidine-based lead compounds for understudied kinases implicated in driving neurodegeneration. J. Med. Chem. 2022, 65, 1313–1328. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Jansa, P.; Holý, A.; Draˆcínnský, M.; Kolman, V.; Janeba, Z.; Kostecká, P.; Kmoníˆcková, E.; Zídek, Z. 5-Substituted 2-amino-4,6- dihydroxypyrimidines and 2-amino-4,6-dichloropyrimidines: Synthesis and inhibitory effects on immune-activated nitric oxide production. Med. Chem. Res. 2014, 23, 4482–4490. [CrossRef] | spa |
dcterms.bibliographicCitation | Quiroga, J.; Trilleras, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J.; de la Torre, J.M. 4-Aminopyrimidine-5-carbaldehydes as intermediates in a Friedländer type synthesis of 7-arylpyrido[2,3-d]pyrimidines. ARKIVOC Online J. Org. Chem. 2009, 9–27. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhang, Y.-M.; Gu, M.; Ma, H.; Tang, J.; Lu, W.; Nan, F.-J. An Efficient Synthesis of 2-Chloropyrimidines via Pd-catalyzed Regioselective Dechlorination of 2,4-Dichloropyrimidines in the Presence of NaHCO3. Chin. J. Chem. 2008, 26, 962–964. [CrossRef] | spa |
dcterms.bibliographicCitation | Mittersteiner, M.; Farias, F.F.S.; Bonacorso, H.G.; Martins, M.A.P.; Zanatta, N. Ultrasound-assisted synthesis of pyrimidines and their fused derivatives: A review. Ultrason. Sonochem. 2021, 79, 105683. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Marinescu, M. Biginelli Reaction Mediated Synthesis of Antimicrobial Pyrimidine Derivatives and Their Therapeutic Properties. Molecules 2021, 26, 6022. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Thomas, J. Delia. Grignard Reactions Involving Halogenated Pyrimidines. J. Heterocycl. Chem. 2013, 50, 735–745. [CrossRef] | spa |
dcterms.bibliographicCitation | Bhaskaran, S.; Padusha, M.S.A.; Sajith, A.M. Application of Palladium Based Precatalytic Systems in the Suzuki-Miyaura Cross-Coupling Reactions of Chloro- Heterocycles. ChemistrySelect 2020, 5, 9005–9016. [CrossRef] | spa |
dcterms.bibliographicCitation | Malik, A.; Rasool, N.; Kanwal, I.; Hashmi, M.A.; Zahoor, A.F.; Ahmad, G.; Altaf, A.A.; Shah, S.A.A.; Sultan, S.; Zakaria, Z.A. Suzuki–miyaura reactions of (4-bromophenyl)-4,6-dichloropyrimidine through commercially available palladium catalyst: Synthesis, optimization and their structural aspects identification through computational studies. Processes 2020, 8, 1341. [CrossRef] | spa |
dcterms.bibliographicCitation | Kim, J.; Cho, Y.S.; Min, S.-J. Facile Synthesis of 2-Amino-4-alkoxypyrimidines via Consecutive Nucleophilic Aromatic Substitution (SNAr) Reactions. Bull. Korean Chem. Soc. 2016, 37, 1998–2008. [CrossRef] | spa |
dcterms.bibliographicCitation | Kim, J.; Kim, Y.J.; Londhe, A.M.; Pae, A.N.; Choo, H.; Kim, H.J.; Min, S.-J. Synthesis and Biological Evaluation of Disubstituted Pyrimidines as Selective 5-HT2C Agonists. Molecules 2019, 24, 3234. [CrossRef] | spa |
dcterms.bibliographicCitation | Bruening, F.; Lovelle, L.E. Highly Regioselective Organocatalytic SNAr Amination of 2,4-Dichloropyrimidine and Related Heteroaryl Chlorides. Eur. J. Org. Chem. 2017, 2017, 3222–3228. [CrossRef] | spa |
dcterms.bibliographicCitation | Quiroga, J.; Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Marchal, A.; Cobo, J. Microwave-assisted synthesis of pyrazolo[3,4- d]pyrimidines from 2-amino-4,6-dichloropyrimidine-5-carbaldehyde under solvent-free conditions. Tetrahedron Lett. 2008, 49, 3257–3259. [CrossRef] | spa |
dcterms.bibliographicCitation | Yadav, G.D.; Wagh, D.P. Claisen-Schmidt Condensation using Green Catalytic Processes: A Critical Review. ChemistrySelect 2020, 5, 9059–9085. [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/M1426 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | amination | spa |
dc.subject.keywords | dichloropyrimidines | spa |
dc.subject.keywords | aromatic substitution | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/draft | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Química | spa |
dc.publisher.sede | Sede Norte | spa |