Mostrar el registro sencillo del ítem

dc.contributor.authorValbuena, Sonia
dc.contributor.otherVega, Carlos A.
dc.date.accessioned2022-11-15T19:11:11Z
dc.date.available2022-11-15T19:11:11Z
dc.date.issued2022-09-13
dc.date.submitted2022-07-19
dc.identifier.citationValbuena, S.; Vega, C.A. Using a Separable Mathematical Entropy to Construct Entropy-Stable Schemes for a Reduced Blood Flow Model. Mathematics 2022, 10, 3314. https://doi.org/10.3390/ math10183314spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/766
dc.description.abstractThe aim of this paper is to derive a separable entropy for a one-dimensional reduced blood flow model, which will be used to treat the symmetrizability of the model in full generality and for constructing entropy conservative fluxes, which are one of the essential building blocks of designing entropy-stable schemes. Time discretization is conducted by implicit–explicit (IMEX) Runge–Kutta schemes, but solutions for nonlinear systems will not be required due to the particular form of the source term. To validate the numerical schemes obtained, some numerical tests are presented.spa
dc.description.sponsorshipUniversidad del Atlánticospa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMathematicsspa
dc.titleUsing a Separable Mathematical Entropy to Construct Entropy-Stable Schemes for a Reduced Blood Flow Modelspa
dcterms.bibliographicCitationSherwin, S.J.; Franke, V.; Peiró, J.; Parker, K. One-dimensional modelling of a vascular network in space—Time variables. J. Eng. Math. 2003, 47, 217–250. [CrossRef]spa
dcterms.bibliographicCitationFormaggia, L.; Nobile, F.; Quarteroni, A.; Veneziani, A. Multiscale modelling of the circulatory system: A preliminar analysis. Comput. Vis. Sci. 1999, 2, 75–83. [CrossRef]spa
dcterms.bibliographicCitationDelestre, O.; Lagrée, P.Y. A ’well-balanced’ finite volume scheme for blood flow simulation. Int. J. Numer. Methods Fluids 2013, 72, 177–205. [CrossRef]spa
dcterms.bibliographicCitationShapiro, A.H. Steady flow in collapsible tubes. J. Biomech. Eng. 1977, 99, 126–147. [CrossRef]spa
dcterms.bibliographicCitationGuigo, A.R.; Delestre, O.; Fullana, J.M.; Lagrée, P.Y. Low-Shapiro hydrostatic reconstruction tecnique for blood flow simulation in large arteries with varying geometrical and mechanical properties. J. Comput. Phys. 2017, 331, 108–136. [CrossRef]spa
dcterms.bibliographicCitationFormaggia, L.; Gerbeau, J.F.; Nobile, F.; Quarteroni, A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessel. Comput. Methods Appl. Mech. Eng. 2001, 191, 561–582. [CrossRef]spa
dcterms.bibliographicCitationMock, M.S. Systems of conservation laws of mixed type. J. Differ. Equ. 1980, 37, 70–88. [CrossRef]spa
dcterms.bibliographicCitationBürger, R.; Valbuena, S.; Vega, C. A well-balanced and entropy stable scheme for a reduced blood flow model. Numer. Meth. Part Differ. Equ. 2021, submitted.spa
dcterms.bibliographicCitationFjordholm, U.S.; Mishra, S.; Tadmor, E. Arbitrary high-order essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM J. Numer. Anal. 2012, 50, 544–573. [CrossRef]spa
dcterms.bibliographicCitationHarten, A. On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 1983, 49, 151–164. [CrossRef]spa
dcterms.bibliographicCitationPuelz, C.; Cˇ anic´, S.; Rivière, B.; Rusin, C. Comparison of reduced models for blood flow using Runge-Kutta discontinuos Galerkin methods. Appl. Numer. Math. 2017, 115, 114–141. [CrossRef]spa
dcterms.bibliographicCitationVega, C.; Valbuena, S. Numerical approximations of the Keyfitz-Kranzer type models by using entropy stable schemes. J. Numer. Anal. Ind. Appl. Math. 2020, 3–4, 1–15.spa
dcterms.bibliographicCitationLuo, J.; Shu, C.W.; Zhang, Q. A priori error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. ESAIM: Math. Model. Numer. Anal. 2015, 49, 991–1018. [CrossRef]spa
dcterms.bibliographicCitationZhang, Q.; Shu, C.W. Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. SIAM J. Numer. Anal. 2006, 44, 1703–1720. [CrossRef]spa
dcterms.bibliographicCitationBarth, T.J. Numerical methods for gas-dynamics systems on unstructured meshes. In An Introduction to Recent Developments in Theory and Numerics of Conservation Laws; Kroner, D., Ohlberger, M., Rohde, C., Eds.; Springer: Berlin, Germany, 1999; Volume 5, pp. 195–285. [CrossRef]spa
dcterms.bibliographicCitationTadmor, E. The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math. Comput. 1987, 49, 91–103. [CrossRef]spa
dcterms.bibliographicCitationFjordholm, U.S.; Mishra, S.; Tadmor, E. Energy preserving and energy stable schemes for the shallow water equations. In Foundations of Computational Mathematics, Hong Kong 2008; London Mathematical Society Lecture Note Series; Cucker, F., Pinkus, A., Todd, M., Eds.; Cambridge University Press: Cambridge, UK, 2009; Volume 363, pp. 93–139. [CrossRef]spa
dcterms.bibliographicCitationTadmor, E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 2003, 12, 451–512. [CrossRef]spa
dcterms.bibliographicCitationLefloch, P.G.; Mercier, J.M.; Rohde, C. Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 2002, 40, 1968–1992. [CrossRef]spa
dcterms.bibliographicCitationFjordholm, U.S.; Mishra, S.; Tadmor, E. ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 2013, 13, 139–159. [CrossRef]spa
dcterms.bibliographicCitationPareschi, L.; Russo, G. Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems with Relaxation. J. Sci. Comput. 2005, 25, 129–155. [CrossRef]spa
dcterms.bibliographicCitationBoscarino, S.; Filbet, F.; Russo, G. High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations. J. Sci. Comput. 2016, 68, 975–1001. [CrossRef]spa
dcterms.bibliographicCitationBoscarino, S.; Bürger, R.; Mulet, P.; Russo, G.; Villada, L.M. Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems. SIAM J. Sci. Comput. 2015, 37, B305–B331. [CrossRef]spa
dcterms.bibliographicCitationGottlieb, S.; Shu, C.W.; Tadmor, E. Strong stability-preserving high-order time discretization methods. SIAM Rev. 2001, 43, 89–112. [CrossRef]spa
dcterms.bibliographicCitationWomersley, J. On the oscillatory motion of a viscous liquid in thin-walled elastic tube: I. Philos. Mag. 1955, 46, 199–221. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/ math10183314
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsblood flow modelspa
dc.subject.keywordsentropy pairspa
dc.subject.keywordssymmetrizabilityspa
dc.subject.keywordsentropy conservative fluxspa
dc.subject.keywordsIMEX schemesspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineLicenciatura en Matemáticasspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por