Mostrar el registro sencillo del ítem

dc.contributor.authorSuárez Useche, María Alejandra
dc.contributor.otherCastillo Santiago, York
dc.contributor.otherB. Restrepo, Juan
dc.contributor.otherAlbis Arrieta, Alberto Ricardo
dc.contributor.otherAgámez Salgado, Karen Patricia
dc.coverage.spatialColombia
dc.date.accessioned2022-11-15T19:10:46Z
dc.date.available2022-11-15T19:10:46Z
dc.date.issued2022-09-02
dc.date.submitted2022-07-19
dc.identifier.citationSuárez Useche, M.A.; Castillo Santiago, Y.; Restrepo, J.B.; Albis Arrieta, A.R.; Agámez Salgado, K.P. Evaluation of the Zinc Sulfate Catalytic Effect in Empty Fruit Bunches Pyrolysis. Processes 2022, 10, 1748. https://doi.org/10.3390/ pr10091748spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/765
dc.description.abstractThe effect of zinc sulfate as a catalyst on the pyrolysis of empty fruit bunches (EFB) from oil palm was assessed. Thus, a thermo-gravimetric analyzer coupled with a Fourier transform infrared spectroscopy (TG-FTIR) was used, while the percentage of catalyst varied between 0 wt% and 3 wt% at different heating rates (10, 30, and 50 K/min). The kinetic parameters (activation energy, pre-exponential factor, and reaction order) and activation energy distribution were calculated using three kinetic models. The thermogravimetric curves for the EFB pyrolysis showed three prominent peaks in which the maximum mass loss rate was mainly due to cellulose and lignin pyrolysis. On the other hand, FTIR analysis indicated that the main gaseous products were CO2, CO, H2O, CH4, NH3, acids, and aldehydes (CH3COOH). The samples with 2 wt% of catalyst presented higher activation energies in pseudo reactions 1 and 2, ranging between 181,500 kJ/mol–184,000 kJ/mol and 165,200 kJ/mol–165,600 kJ/mol, respectively. It was highlighted that the first pseudo reaction with an activation energy range between 179,500 kJ/mol and 184,000 kJ/mol mainly contributes to the cellulose pyrolysis, and the second pseudo reaction (165,200 kJ/mol–165,600 kJ/mol) could be ascribed to the hemicellulose pyrolysis.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceProcessesspa
dc.titleEvaluation of the Zinc Sulfate Catalytic Effect in Empty Fruit Bunches Pyrolysisspa
dcterms.bibliographicCitationPareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [CrossRef]spa
dcterms.bibliographicCitationLoh, S.K. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 2017, 141, 285–298. [CrossRef]spa
dcterms.bibliographicCitationHoe, B.C.; Chan, E.S.; Ramanan, R.N.; Ooi, C.W. Direct recovery of palm carotene by liquid-liquid extraction. J. Food Eng. 2022, 313, 110755. [CrossRef]spa
dcterms.bibliographicCitationRamirez-Contreras, N.E.; Munar-Florez, D.A.; Garcia-Nuñez, J.A.; Mosquera-Montoya, M.; Faaij, A.P.C. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 2020, 258, 120757. [CrossRef]spa
dcterms.bibliographicCitationGonzález-Delgado, A.D.; Barajas-Solano, A.F.; Leon-Pulido, J. Evaluating the Sustainability and Inherent Safety of a Crude Palm Oil Production Process in North-Colombia. Appl. Sci. 2021, 11, 1046. [CrossRef]spa
dcterms.bibliographicCitationFedepalma. The Oil Palm Agribusiness in Colombia; Icolgraf: Bogotá, Colombia, 2019.spa
dcterms.bibliographicCitationKhatun, R.; Reza, M.I.H.; Moniruzzaman, M.; Yaakob, Z. Sustainable oil palm industry: The possibilities. Renew. Sustain. Energy Rev. 2017, 76, 608–619. [CrossRef]spa
dcterms.bibliographicCitationFurumo, P.R.; Aide, T.M. Characterizing commercial oil palm expansion in Latin America: Land use change and trade. Environ. Res. Lett. 2017, 12, 24008. [CrossRef]spa
dcterms.bibliographicCitationCastiblanco, C.; Etter, A.; Aide, T.M. Oil palm plantations in Colombia: A model of future expansion. Environ. Sci. Policy 2013, 27, 172–183. [CrossRef]spa
dcterms.bibliographicCitationCastanheira, É.G.; Acevedo, H.; Freire, F. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios. Appl. Energy 2014, 114, 958–967. [CrossRef]spa
dcterms.bibliographicCitationBatlle, E.A.O.; Santiago, Y.C.; Venturini, O.J.; Palacio, J.C.E.; Lora, E.E.S.; Maya, D.M.Y.; Arrieta, A.R.A. Thermodynamic and environmental assessment of different scenarios for the insertion of pyrolysis technology in palm oil biorefineries. J. Clean. Prod. 2020, 250, 119544. [CrossRef]spa
dcterms.bibliographicCitationYan, M.; Hantoko, D.; Susanto, H.; Ardy, A.;Waluyo, J.;Weng, Z.; Lin, J. Hydrothermal treatment of empty fruit bunch and its pyrolysis characteristics. Biomass Convers. Biorefinery 2019, 9, 709–717. [CrossRef]spa
dcterms.bibliographicCitationGarcia-Nunez, J.A.; Ramirez-Contreras, N.E.; Rodriguez, D.T.; Silva-Lora, E.; Frear, C.S.; Stockle, C.; Garcia-Perez, M. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resour. Conserv. Recycl. 2016, 110, 99–114. [CrossRef]spa
dcterms.bibliographicCitationMarques, T.E.; Santiago, Y.C.; Renó, M.L.; Maya, D.M.Y.; Sphaier, L.A.; Shi, Y.; Ratner, A. Environmental and Energetic Evaluation of Refuse-Derived Fuel Gasification for Electricity Generation. Processes 2021, 9, 2255. [CrossRef]spa
dcterms.bibliographicCitationSantiago, Y.C.; González, A.M.; Venturini, O.J.; Sphaier, L.A.; Batlle, E.A.O. Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system. Energy 2022, 244, 123103. [CrossRef]spa
dcterms.bibliographicCitationBranca, C.; Di Blasi, C. Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes 2021, 9, 1907. [CrossRef]spa
dcterms.bibliographicCitationKalargaris, I.; Tian, G.; Gu, S. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process. Technol. 2017, 157, 108–115. [CrossRef]spa
dcterms.bibliographicCitationAl Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [CrossRef]spa
dcterms.bibliographicCitationAltantzis, A.-I.; Kallistridis, N.-C.; Stavropoulos, G.; Zabaniotou, A. Apparent Pyrolysis Kinetics and Index-Based Assessment of Pretreated Peach Seeds. Processes 2021, 9, 905. [CrossRef]spa
dcterms.bibliographicCitationBasu, P. Biomass Gasification, Pyrolysis, and Torrefaction: Practical Design and Theory, 2nd ed.; Basu, P., Ed.; Elsevier Inc.: San Diego, CA, USA, 2013; ISBN 978-0-12-396488-5.spa
dcterms.bibliographicCitationFateh, T.; Richard, F.; Rogaume, T.; Joseph, P. Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. J. Anal. Appl. Pyrolysis 2016, 120, 423–433. [CrossRef]spa
dcterms.bibliographicCitationMa, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers. Manag. 2015, 89, 251–259. [CrossRef]spa
dcterms.bibliographicCitationOrdonez-Loza, J.; Chejne, F.; Jameel, A.G.A.; Telalovic, S.; Arrieta, A.A.; Sarathy, S.M. An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. J. Environ. Chem. Eng. 2021, 9, 106144. [CrossRef]spa
dcterms.bibliographicCitationWang, Y.; Akbarzadeh, A.; Chong, L.; Du, J.; Tahir, N.; Awasthi, M.K. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere 2022, 297, 134181. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAlbis, A.; Ortiz, E.; Piñeres, I.; Osorio, J.; Monsalvo, J. Pirólisis de hemicelulosa catalizada por sulfato de zinc y sulfato férrico. Rev. ION 2018, 31, 37–49. [CrossRef]spa
dcterms.bibliographicCitationChen, W.-H.; Cheng, C.-L.; Lee, K.-T.; Lam, S.S.; Ong, H.C.; Ok, Y.S.; Saeidi, S.; Sharma, A.K.; Hsieh, T.-H. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation. Chemosphere 2021, 271, 129510. [CrossRef]spa
dcterms.bibliographicCitationRachel-Tang, D.Y.; Islam, A.; Taufiq-Yap, Y.H. Bio-oil production via catalytic solvolysis of biomass. RSC Adv. 2017, 7, 7820–7830. [CrossRef]spa
dcterms.bibliographicCitationLi, C.; Ji, G.; Qu, Y.; Irfan, M.; Zhu, K.; Wang, X.; Li, A. Influencing mechanism of zinc mineral contamination on pyrolysis kinetic and product characteristics of corn biomass. J. Environ. Manage. 2021, 281, 111837. [CrossRef]spa
dcterms.bibliographicCitationMayer, Z.A.; Apfelbacher, A.; Hornung, A. Effect of sample preparation on the thermal degradation of metal-added biomass. J. Anal. Appl. Pyrolysis 2012, 94, 170–176. [CrossRef]spa
dcterms.bibliographicCitationOna, T.; Sonoda, T.; Shibata, M.; Fukazawa, K. Small-scale method to determine the content of wood components from multiple eucalypt samples. Tappi J. 1995, 78, 121–126.spa
dcterms.bibliographicCitationASTMD3172–07a; Standard Practice for Proximate Analysis of Coal and Coke. ASTMInternational: West Conshohocken, PA, USA, 2007.spa
dcterms.bibliographicCitationBarbosa, K.P.; Chamorro, M.V.; Arrieta, A.A.; Ariza, I.P.; Ortíz, E.V. Evaluation of the effect of silicon on the carbonization process of Colombian semi-anthracites. J. Therm. Anal. Calorim. 2022. [CrossRef]spa
dcterms.bibliographicCitationVyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [CrossRef]spa
dcterms.bibliographicCitationHu, G.; Li, J.; Zhang, X.; Li, Y. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J. Environ. Manage. 2017, 192, 234–242. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCheng, S.; Zhang, H.; Chang, F.; Zhang, F.;Wang, K.; Qin, Y.; Huang, T. Combustion behavior and thermochemical treatment scheme analysis of oil sludges and oil sludge semicokes. Energy 2019, 167, 575–587. [CrossRef]spa
dcterms.bibliographicCitationChang, G.; Huang, Y.; Xie, J.; Yang, H.; Liu, H.; Yin, X.; Wu, C. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers. Manag. 2016, 124, 587–597. [CrossRef]spa
dcterms.bibliographicCitationBlaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger equation. Thermochim. Acta 2012, 540, 1–6. [CrossRef]spa
dcterms.bibliographicCitationWang, X.; Huang, Z.; Wei, M.; Lu, T.; Nong, D.; Zhao, J.; Gao, X.; Teng, L. Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly(lactic acid) and isoconversional kinetic analysis. Thermochim. Acta 2019, 672, 14–24. [CrossRef]spa
dcterms.bibliographicCitationChen, N.; Ren, J.; Ye, Z.; Xu, Q.; Liu, J.; Sun, S. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis. Bioresour. Technol. 2016, 221, 534–540. [CrossRef]spa
dcterms.bibliographicCitationMartín-Lara, M.A.; Blázquez, G.; Zamora, M.C.; Calero, M. Kinetic modelling of torrefaction of olive tree pruning. Appl. Therm. Eng. 2017, 113, 1410–1418. [CrossRef]spa
dcterms.bibliographicCitationAlbis, A.; Ortiz, E.; Suárez, A.; Piñeres, I. TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum). J. Therm. Anal. Calorim. 2014, 115, 275–283. [CrossRef]spa
dcterms.bibliographicCitationYu, C.; Ren, S.;Wang, G.; Xu, J.; Teng, H.; Li, T.; Huang, C.;Wang, C. Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model. Int. J. Miner. Metall. Mater. 2022, 29, 464–472. [CrossRef]spa
dcterms.bibliographicCitationMishra, R.K.; Mohanty, K. Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Convers. Biorefinery 2018, 8, 799–812. [CrossRef]spa
dcterms.bibliographicCitationYu, J.; Paterson, N.; Blamey, J.; Millan, M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 2017, 191, 140–149. [CrossRef]spa
dcterms.bibliographicCitationMeng, A.; Zhou, H.; Qin, L.; Zhang, Y.; Li, Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrolysis 2013, 104, 28–37. [CrossRef]spa
dcterms.bibliographicCitationChen,W.-H.; Eng, C.F.; Lin, Y.-Y.; Bach, Q.-V. Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Convers. Manag. 2020, 221, 113165. [CrossRef]spa
dcterms.bibliographicCitationSalem, I.B.; Saleh, M.B.; Iqbal, J.; El Gamal, M.; Hameed, S. Date palm waste pyrolysis into biochar for carbon dioxide adsorption. Energy Rep. 2021, 7, 152–159. [CrossRef]spa
dcterms.bibliographicCitationYeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J. Energy Inst. 2019, 92, 27–37. [CrossRef]spa
dcterms.bibliographicCitationXing, D.; Li, J. Effects of Heat Treatment on Thermal Decomposition and Combustion Performance of Larix spp. Wood. BioResources 2014, 9, 4274–4287. [CrossRef]spa
dcterms.bibliographicCitationYu, S.; Yang, X.; Zhou, H.; Tan, Z.; Cong, K.; Zhang, Y.; Li, Q. Thermal and Kinetic Behaviors during Co-Pyrolysis of Microcrystalline Cellulose and Styrene–Butadiene–Styrene Triblock Copolymer. Processes 2021, 9, 1335. [CrossRef]spa
dcterms.bibliographicCitationArrieta, A.A.; Muñoz, E.O.; García, V.B.; Cantillo, A.G.; Chamorro, M.V.; Ochoa, G.V. Catalytic effect of CaCl2 and ZnSO4 on the pyrolysis of cedar sawdust. Chem. Eng. Trans. 2018, 65, 673–678. [CrossRef]spa
dcterms.bibliographicCitationSonobe, T.; Worasuwannarak, N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008, 87, 414–421. [CrossRef]spa
dcterms.bibliographicCitationGao, N.; Li, A.; Quan, C.; Du, L.; Duan, Y. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J. Anal. Appl. Pyrolysis 2013, 100, 26–32. [CrossRef]spa
dcterms.bibliographicCitationSheng, J.; Ji, D.; Yu, F.; Cui, L.; Zeng, Q.; Ai, N.; Ji, J. Influence of Chemical Treatment on Rice Straw Pyrolysis by TG-FTIR. IERI Procedia 2014, 8, 30–34. [CrossRef]spa
dcterms.bibliographicCitationShen, D.K.; Gu, S.; Luo, K.H.;Wang, S.R.; Fang, M.X. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour. Technol. 2010, 101, 6136–6146. [CrossRef] [PubMed]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/ pr10091748
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordspyrolysisspa
dc.subject.keywordsempty fruit bunchesspa
dc.subject.keywordsbiomassspa
dc.subject.keywordscatalystspa
dc.subject.keywordskineticsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por