Mostrar el registro sencillo del ítem
Evaluation of the Zinc Sulfate Catalytic Effect in Empty Fruit Bunches Pyrolysis
dc.contributor.author | Suárez Useche, María Alejandra | |
dc.contributor.other | Castillo Santiago, York | |
dc.contributor.other | B. Restrepo, Juan | |
dc.contributor.other | Albis Arrieta, Alberto Ricardo | |
dc.contributor.other | Agámez Salgado, Karen Patricia | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-11-15T19:10:46Z | |
dc.date.available | 2022-11-15T19:10:46Z | |
dc.date.issued | 2022-09-02 | |
dc.date.submitted | 2022-07-19 | |
dc.identifier.citation | Suárez Useche, M.A.; Castillo Santiago, Y.; Restrepo, J.B.; Albis Arrieta, A.R.; Agámez Salgado, K.P. Evaluation of the Zinc Sulfate Catalytic Effect in Empty Fruit Bunches Pyrolysis. Processes 2022, 10, 1748. https://doi.org/10.3390/ pr10091748 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/765 | |
dc.description.abstract | The effect of zinc sulfate as a catalyst on the pyrolysis of empty fruit bunches (EFB) from oil palm was assessed. Thus, a thermo-gravimetric analyzer coupled with a Fourier transform infrared spectroscopy (TG-FTIR) was used, while the percentage of catalyst varied between 0 wt% and 3 wt% at different heating rates (10, 30, and 50 K/min). The kinetic parameters (activation energy, pre-exponential factor, and reaction order) and activation energy distribution were calculated using three kinetic models. The thermogravimetric curves for the EFB pyrolysis showed three prominent peaks in which the maximum mass loss rate was mainly due to cellulose and lignin pyrolysis. On the other hand, FTIR analysis indicated that the main gaseous products were CO2, CO, H2O, CH4, NH3, acids, and aldehydes (CH3COOH). The samples with 2 wt% of catalyst presented higher activation energies in pseudo reactions 1 and 2, ranging between 181,500 kJ/mol–184,000 kJ/mol and 165,200 kJ/mol–165,600 kJ/mol, respectively. It was highlighted that the first pseudo reaction with an activation energy range between 179,500 kJ/mol and 184,000 kJ/mol mainly contributes to the cellulose pyrolysis, and the second pseudo reaction (165,200 kJ/mol–165,600 kJ/mol) could be ascribed to the hemicellulose pyrolysis. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Processes | spa |
dc.title | Evaluation of the Zinc Sulfate Catalytic Effect in Empty Fruit Bunches Pyrolysis | spa |
dcterms.bibliographicCitation | Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [CrossRef] | spa |
dcterms.bibliographicCitation | Loh, S.K. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 2017, 141, 285–298. [CrossRef] | spa |
dcterms.bibliographicCitation | Hoe, B.C.; Chan, E.S.; Ramanan, R.N.; Ooi, C.W. Direct recovery of palm carotene by liquid-liquid extraction. J. Food Eng. 2022, 313, 110755. [CrossRef] | spa |
dcterms.bibliographicCitation | Ramirez-Contreras, N.E.; Munar-Florez, D.A.; Garcia-Nuñez, J.A.; Mosquera-Montoya, M.; Faaij, A.P.C. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 2020, 258, 120757. [CrossRef] | spa |
dcterms.bibliographicCitation | González-Delgado, A.D.; Barajas-Solano, A.F.; Leon-Pulido, J. Evaluating the Sustainability and Inherent Safety of a Crude Palm Oil Production Process in North-Colombia. Appl. Sci. 2021, 11, 1046. [CrossRef] | spa |
dcterms.bibliographicCitation | Fedepalma. The Oil Palm Agribusiness in Colombia; Icolgraf: Bogotá, Colombia, 2019. | spa |
dcterms.bibliographicCitation | Khatun, R.; Reza, M.I.H.; Moniruzzaman, M.; Yaakob, Z. Sustainable oil palm industry: The possibilities. Renew. Sustain. Energy Rev. 2017, 76, 608–619. [CrossRef] | spa |
dcterms.bibliographicCitation | Furumo, P.R.; Aide, T.M. Characterizing commercial oil palm expansion in Latin America: Land use change and trade. Environ. Res. Lett. 2017, 12, 24008. [CrossRef] | spa |
dcterms.bibliographicCitation | Castiblanco, C.; Etter, A.; Aide, T.M. Oil palm plantations in Colombia: A model of future expansion. Environ. Sci. Policy 2013, 27, 172–183. [CrossRef] | spa |
dcterms.bibliographicCitation | Castanheira, É.G.; Acevedo, H.; Freire, F. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios. Appl. Energy 2014, 114, 958–967. [CrossRef] | spa |
dcterms.bibliographicCitation | Batlle, E.A.O.; Santiago, Y.C.; Venturini, O.J.; Palacio, J.C.E.; Lora, E.E.S.; Maya, D.M.Y.; Arrieta, A.R.A. Thermodynamic and environmental assessment of different scenarios for the insertion of pyrolysis technology in palm oil biorefineries. J. Clean. Prod. 2020, 250, 119544. [CrossRef] | spa |
dcterms.bibliographicCitation | Yan, M.; Hantoko, D.; Susanto, H.; Ardy, A.;Waluyo, J.;Weng, Z.; Lin, J. Hydrothermal treatment of empty fruit bunch and its pyrolysis characteristics. Biomass Convers. Biorefinery 2019, 9, 709–717. [CrossRef] | spa |
dcterms.bibliographicCitation | Garcia-Nunez, J.A.; Ramirez-Contreras, N.E.; Rodriguez, D.T.; Silva-Lora, E.; Frear, C.S.; Stockle, C.; Garcia-Perez, M. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resour. Conserv. Recycl. 2016, 110, 99–114. [CrossRef] | spa |
dcterms.bibliographicCitation | Marques, T.E.; Santiago, Y.C.; Renó, M.L.; Maya, D.M.Y.; Sphaier, L.A.; Shi, Y.; Ratner, A. Environmental and Energetic Evaluation of Refuse-Derived Fuel Gasification for Electricity Generation. Processes 2021, 9, 2255. [CrossRef] | spa |
dcterms.bibliographicCitation | Santiago, Y.C.; González, A.M.; Venturini, O.J.; Sphaier, L.A.; Batlle, E.A.O. Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system. Energy 2022, 244, 123103. [CrossRef] | spa |
dcterms.bibliographicCitation | Branca, C.; Di Blasi, C. Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes 2021, 9, 1907. [CrossRef] | spa |
dcterms.bibliographicCitation | Kalargaris, I.; Tian, G.; Gu, S. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process. Technol. 2017, 157, 108–115. [CrossRef] | spa |
dcterms.bibliographicCitation | Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [CrossRef] | spa |
dcterms.bibliographicCitation | Altantzis, A.-I.; Kallistridis, N.-C.; Stavropoulos, G.; Zabaniotou, A. Apparent Pyrolysis Kinetics and Index-Based Assessment of Pretreated Peach Seeds. Processes 2021, 9, 905. [CrossRef] | spa |
dcterms.bibliographicCitation | Basu, P. Biomass Gasification, Pyrolysis, and Torrefaction: Practical Design and Theory, 2nd ed.; Basu, P., Ed.; Elsevier Inc.: San Diego, CA, USA, 2013; ISBN 978-0-12-396488-5. | spa |
dcterms.bibliographicCitation | Fateh, T.; Richard, F.; Rogaume, T.; Joseph, P. Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. J. Anal. Appl. Pyrolysis 2016, 120, 423–433. [CrossRef] | spa |
dcterms.bibliographicCitation | Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers. Manag. 2015, 89, 251–259. [CrossRef] | spa |
dcterms.bibliographicCitation | Ordonez-Loza, J.; Chejne, F.; Jameel, A.G.A.; Telalovic, S.; Arrieta, A.A.; Sarathy, S.M. An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. J. Environ. Chem. Eng. 2021, 9, 106144. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, Y.; Akbarzadeh, A.; Chong, L.; Du, J.; Tahir, N.; Awasthi, M.K. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere 2022, 297, 134181. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Albis, A.; Ortiz, E.; Piñeres, I.; Osorio, J.; Monsalvo, J. Pirólisis de hemicelulosa catalizada por sulfato de zinc y sulfato férrico. Rev. ION 2018, 31, 37–49. [CrossRef] | spa |
dcterms.bibliographicCitation | Chen, W.-H.; Cheng, C.-L.; Lee, K.-T.; Lam, S.S.; Ong, H.C.; Ok, Y.S.; Saeidi, S.; Sharma, A.K.; Hsieh, T.-H. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation. Chemosphere 2021, 271, 129510. [CrossRef] | spa |
dcterms.bibliographicCitation | Rachel-Tang, D.Y.; Islam, A.; Taufiq-Yap, Y.H. Bio-oil production via catalytic solvolysis of biomass. RSC Adv. 2017, 7, 7820–7830. [CrossRef] | spa |
dcterms.bibliographicCitation | Li, C.; Ji, G.; Qu, Y.; Irfan, M.; Zhu, K.; Wang, X.; Li, A. Influencing mechanism of zinc mineral contamination on pyrolysis kinetic and product characteristics of corn biomass. J. Environ. Manage. 2021, 281, 111837. [CrossRef] | spa |
dcterms.bibliographicCitation | Mayer, Z.A.; Apfelbacher, A.; Hornung, A. Effect of sample preparation on the thermal degradation of metal-added biomass. J. Anal. Appl. Pyrolysis 2012, 94, 170–176. [CrossRef] | spa |
dcterms.bibliographicCitation | Ona, T.; Sonoda, T.; Shibata, M.; Fukazawa, K. Small-scale method to determine the content of wood components from multiple eucalypt samples. Tappi J. 1995, 78, 121–126. | spa |
dcterms.bibliographicCitation | ASTMD3172–07a; Standard Practice for Proximate Analysis of Coal and Coke. ASTMInternational: West Conshohocken, PA, USA, 2007. | spa |
dcterms.bibliographicCitation | Barbosa, K.P.; Chamorro, M.V.; Arrieta, A.A.; Ariza, I.P.; Ortíz, E.V. Evaluation of the effect of silicon on the carbonization process of Colombian semi-anthracites. J. Therm. Anal. Calorim. 2022. [CrossRef] | spa |
dcterms.bibliographicCitation | Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [CrossRef] | spa |
dcterms.bibliographicCitation | Hu, G.; Li, J.; Zhang, X.; Li, Y. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J. Environ. Manage. 2017, 192, 234–242. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Cheng, S.; Zhang, H.; Chang, F.; Zhang, F.;Wang, K.; Qin, Y.; Huang, T. Combustion behavior and thermochemical treatment scheme analysis of oil sludges and oil sludge semicokes. Energy 2019, 167, 575–587. [CrossRef] | spa |
dcterms.bibliographicCitation | Chang, G.; Huang, Y.; Xie, J.; Yang, H.; Liu, H.; Yin, X.; Wu, C. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers. Manag. 2016, 124, 587–597. [CrossRef] | spa |
dcterms.bibliographicCitation | Blaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger equation. Thermochim. Acta 2012, 540, 1–6. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, X.; Huang, Z.; Wei, M.; Lu, T.; Nong, D.; Zhao, J.; Gao, X.; Teng, L. Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly(lactic acid) and isoconversional kinetic analysis. Thermochim. Acta 2019, 672, 14–24. [CrossRef] | spa |
dcterms.bibliographicCitation | Chen, N.; Ren, J.; Ye, Z.; Xu, Q.; Liu, J.; Sun, S. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis. Bioresour. Technol. 2016, 221, 534–540. [CrossRef] | spa |
dcterms.bibliographicCitation | Martín-Lara, M.A.; Blázquez, G.; Zamora, M.C.; Calero, M. Kinetic modelling of torrefaction of olive tree pruning. Appl. Therm. Eng. 2017, 113, 1410–1418. [CrossRef] | spa |
dcterms.bibliographicCitation | Albis, A.; Ortiz, E.; Suárez, A.; Piñeres, I. TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum). J. Therm. Anal. Calorim. 2014, 115, 275–283. [CrossRef] | spa |
dcterms.bibliographicCitation | Yu, C.; Ren, S.;Wang, G.; Xu, J.; Teng, H.; Li, T.; Huang, C.;Wang, C. Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model. Int. J. Miner. Metall. Mater. 2022, 29, 464–472. [CrossRef] | spa |
dcterms.bibliographicCitation | Mishra, R.K.; Mohanty, K. Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Convers. Biorefinery 2018, 8, 799–812. [CrossRef] | spa |
dcterms.bibliographicCitation | Yu, J.; Paterson, N.; Blamey, J.; Millan, M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 2017, 191, 140–149. [CrossRef] | spa |
dcterms.bibliographicCitation | Meng, A.; Zhou, H.; Qin, L.; Zhang, Y.; Li, Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrolysis 2013, 104, 28–37. [CrossRef] | spa |
dcterms.bibliographicCitation | Chen,W.-H.; Eng, C.F.; Lin, Y.-Y.; Bach, Q.-V. Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Convers. Manag. 2020, 221, 113165. [CrossRef] | spa |
dcterms.bibliographicCitation | Salem, I.B.; Saleh, M.B.; Iqbal, J.; El Gamal, M.; Hameed, S. Date palm waste pyrolysis into biochar for carbon dioxide adsorption. Energy Rep. 2021, 7, 152–159. [CrossRef] | spa |
dcterms.bibliographicCitation | Yeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J. Energy Inst. 2019, 92, 27–37. [CrossRef] | spa |
dcterms.bibliographicCitation | Xing, D.; Li, J. Effects of Heat Treatment on Thermal Decomposition and Combustion Performance of Larix spp. Wood. BioResources 2014, 9, 4274–4287. [CrossRef] | spa |
dcterms.bibliographicCitation | Yu, S.; Yang, X.; Zhou, H.; Tan, Z.; Cong, K.; Zhang, Y.; Li, Q. Thermal and Kinetic Behaviors during Co-Pyrolysis of Microcrystalline Cellulose and Styrene–Butadiene–Styrene Triblock Copolymer. Processes 2021, 9, 1335. [CrossRef] | spa |
dcterms.bibliographicCitation | Arrieta, A.A.; Muñoz, E.O.; García, V.B.; Cantillo, A.G.; Chamorro, M.V.; Ochoa, G.V. Catalytic effect of CaCl2 and ZnSO4 on the pyrolysis of cedar sawdust. Chem. Eng. Trans. 2018, 65, 673–678. [CrossRef] | spa |
dcterms.bibliographicCitation | Sonobe, T.; Worasuwannarak, N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008, 87, 414–421. [CrossRef] | spa |
dcterms.bibliographicCitation | Gao, N.; Li, A.; Quan, C.; Du, L.; Duan, Y. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J. Anal. Appl. Pyrolysis 2013, 100, 26–32. [CrossRef] | spa |
dcterms.bibliographicCitation | Sheng, J.; Ji, D.; Yu, F.; Cui, L.; Zeng, Q.; Ai, N.; Ji, J. Influence of Chemical Treatment on Rice Straw Pyrolysis by TG-FTIR. IERI Procedia 2014, 8, 30–34. [CrossRef] | spa |
dcterms.bibliographicCitation | Shen, D.K.; Gu, S.; Luo, K.H.;Wang, S.R.; Fang, M.X. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour. Technol. 2010, 101, 6136–6146. [CrossRef] [PubMed] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/ pr10091748 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | pyrolysis | spa |
dc.subject.keywords | empty fruit bunches | spa |
dc.subject.keywords | biomass | spa |
dc.subject.keywords | catalyst | spa |
dc.subject.keywords | kinetics | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/draft | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |