Mostrar el registro sencillo del ítem
Histological Evaluation of Cassava Starch/Chicken Gelatin Membranes
dc.contributor.author | Valencia Llano, Carlos Humberto | |
dc.contributor.other | Castro, Jorge Iván | |
dc.contributor.other | Saavedra, Marcela | |
dc.contributor.other | Zapata, Paula A. | |
dc.contributor.other | Navia Porras, Diana Paola | |
dc.contributor.other | Flórez López, Edwin | |
dc.contributor.other | Caicedo, Carolina | |
dc.contributor.other | Calambas, Heidy Lorena | |
dc.contributor.other | Grande Tovar, Carlos David | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-11-14T21:44:46Z | |
dc.date.available | 2022-11-14T21:44:46Z | |
dc.date.issued | 2022-09-14 | |
dc.date.submitted | 2022-08-17 | |
dc.identifier.citation | Valencia-Llano, C.H.; Castro, J.I.; Saavedra, M.; Zapata, P.A.; Navia-Porras, D.P.; Flórez-López, E.; Caicedo, C.; Calambas, H.L.; Grande-Tovar, C.D. Histological Evaluation of Cassava Starch/Chicken Gelatin Membranes. Polymers 2022, 14, 3849. https:// doi.org/10.3390/polym14183849 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/759 | |
dc.description.abstract | The use of biopolymers for tissue engineering has recently gained attention due to the need for safer and highly compatible materials. Starch is one of the most used biopolymers for membrane preparation. However, incorporating other polymers into starch membranes introduces improvements, such as better thermal and mechanical resistance and increased water affinity, as we reported in our previous work. There are few reports in the literature on the biocompatibility of starch/chicken gelatin composites. We assessed the in vivo biocompatibility of the five composites (T1–T5) cassava starch/gelatin membranes with subdermal implantations in biomodels at 30, 60, and 90 days. The FT-IR spectroscopy analysis demonstrated the main functional groups for starch and chicken gelatin. At the same time, the thermal study exhibited an increase in thermal resistance for T3 and T4, with a remaining mass (~15 wt.%) at 800 C. The microstructure analysis for the T2–T4 demonstrated evident roughness changes with porosity presence due to starch and gelatin mixture. The decrease in the starch content in the composites also decreased the gelatinization heats for T3 and T4 (195.67, 196.40 J/g, respectively). Finally, the implantation results demonstrated that the formulations exhibited differences in the degradation and resorption capacities according to the starch content, which is easily degraded by amylases. However, the histological results showed that the samples demonstrated almost complete reabsorption without a severe immune response, indicating a high in vivo biocompatibility. These results show that the cassava starch/chicken gelatin composites are promising membrane materials for tissue engineering applications. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Polymers | spa |
dc.title | Histological Evaluation of Cassava Starch/Chicken Gelatin Membranes | spa |
dcterms.bibliographicCitation | Umesh, M.; Shanmugam, S.; Kikas, T.; Lan Chi, N.T.; Pugazhendhi, A. Progress in Bio-Based Biodegradable Polymer as the Effective Replacement for the Engineering Applicators. J. Clean. Prod. 2022, 362, 132267. [CrossRef] | spa |
dcterms.bibliographicCitation | Osorio, L.L.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Sofi, H.S.; Ashraf, R.; Beigh, M.A.; Sheikh, F.A. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. Adv. Exp. Med. Biol. 2018, 1078, 49–78. [PubMed] | spa |
dcterms.bibliographicCitation | Osmani, R.A.M.; Singh, E.; Jadhav, K.; Jadhav, S.; Banerjee, R. 23—Biopolymers and Biocomposites: Nature’s Tools forWound Healing and Tissue Engineering. In Applications of Advanced Green Materials; Ahmed, S., Ed.;Woodhead Publishing in Materials; Woodhead Publishing: Duxford, UK, 2021; pp. 573–630. ISBN 978-0-12-820484-9. | spa |
dcterms.bibliographicCitation | Pandit, A.; Kumar, R. A Review on Production, Characterization and Application of Bacterial Cellulose and Its Biocomposites. J. Polym. Environ. 2021, 29, 2738–2755. [CrossRef] | spa |
dcterms.bibliographicCitation | Formela, K.; Hejna, A.; Piszczyk, Ł.; Saeb, M.R.; Colom, X. Processing and Structure–Property Relationships of Natural Rubber/Wheat Bran Biocomposites. Cellulose 2016, 23, 3157–3175. [CrossRef] | spa |
dcterms.bibliographicCitation | Hejna, A.; Sulyman, M.; Przybysz, M.; Saeb, M.R.; Klein, M.; Formela, K. On the Correlation of Lignocellulosic Filler Composition with the Performance Properties of Poly ("-Caprolactone) Based Biocomposites. Waste Biomass Valoriz. 2020, 11, 1467–1479. [CrossRef] | spa |
dcterms.bibliographicCitation | Bilal, M.; Rasheed, T.; Nabeel, F.; Iqbal, H. Bionanocomposites from Biofibers and Biopolymers. In Biofibers and Biopolymers for Biocomposites; Springer: Cham, Switzerland, 2020; pp. 135–157. | spa |
dcterms.bibliographicCitation | Jouyandeh, M.; Vahabi, H.; Rabiee, N.; Rabiee, M.; Bagherzadeh, M.; Saeb, M.R. Green Composites in Bone Tissue Engineering. Emergent Mater. 2022, 5, 603–620. [CrossRef] | spa |
dcterms.bibliographicCitation | Zarski, A.; Bajer, K.; Kapu´sniak, J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers 2021, 13, 832. [CrossRef] | spa |
dcterms.bibliographicCitation | Hanashiro, I. Fine Structure of Amylose. In Starch; Springer: Tokyo, Japan, 2015; pp. 41–60. | spa |
dcterms.bibliographicCitation | Kong, X. Fine Structure of Amylose and Amylopectin. In Starch Structure, Functionality and Application in Foods; Springer: Singapore, 2020; pp. 29–39. | spa |
dcterms.bibliographicCitation | Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47, 254–263. [CrossRef] | spa |
dcterms.bibliographicCitation | Sarder, R.; Piner, E.; Rios, D.C.; Chacon, L.; Artner, M.A.; Barrios, N.; Argyropoulos, D. Copolymers of Starch, a Sustainable Template for Biomedical Applications: A Review. Carbohydr. Polym. 2022, 278, 118973. [CrossRef] | spa |
dcterms.bibliographicCitation | Quintanilla de Stéfano, J.C.; Abundis-Correa, V.; Herrera-Flores, S.D.; Alvarez, A.J. PH-Sensitive Starch-Based Hydrogels: Synthesis and Effect of Molecular Components on Drug Release Behavior. Polymers 2020, 12, 1974. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Xu, Y.; Zi, Y.; Lei, J.; Mo, X.; Shao, Z.;Wu, Y.; Tian, Y.; Li, D.; Mu, C. PH-Responsive Nanoparticles Based on Cholesterol/Imidazole Modified Oxidized-Starch for Targeted Anticancer Drug Delivery. Carbohydr. Polym. 2020, 233, 115858. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Guo, L.; Liang, Z.; Yang, L.; Du,W.; Yu, T.; Tang, H.; Li, C.; Qiu, H. The Role of Natural Polymers in Bone Tissue Engineering. J. Control. Release 2021, 338, 571–582. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Abd El-Ghany, N.A.; Aziz, M.S.A.; Abdel-Aziz, M.M.; Mahmoud, Z. Antimicrobial and Swelling Behaviors of Novel Biodegradable Corn Starch Grafted/Poly (4-Acrylamidobenzoic Acid) Copolymers. Int. J. Biol. Macromol. 2019, 134, 912–920. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Huang, Z.-F.; Zhang, X.-Q.; Zhang, X.-Y.; Yang, B.;Wang, K.;Wang, S.-Q.; Yuan, J.-Y.; Tao, L.;Wei, Y. Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. J. Nanosci. Nanotechnol. 2018, 18, 2345–2351. [CrossRef] | spa |
dcterms.bibliographicCitation | Shahriarpanah, S.; Nourmohammadi, J.; Amoabediny, G. Fabrication and Characterization of Carboxylated Starch-Chitosan Bioactive Scaffold for Bone Regeneration. Int. J. Biol. Macromol. 2016, 93, 1069–1078. [CrossRef] | spa |
dcterms.bibliographicCitation | Leonor, I.B.; Rodrigues, M.T.; Gomes, M.E.; Reis, R.L. In Situ Functionalization of Wet-spun Fibre Meshes for Bone Tissue Engineering. J. Tissue Eng. Regen. Med. 2011, 5, 104–111. [CrossRef] | spa |
dcterms.bibliographicCitation | Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and Gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557. [CrossRef] | spa |
dcterms.bibliographicCitation | Lv, L.-C.; Huang, Q.-Y.; Ding, W.; Xiao, X.-H.; Zhang, H.-Y.; Xiong, L.-X. Fish Gelatin: The Novel Potential Applications. J. Funct. Foods 2019, 63, 103581. [CrossRef] | spa |
dcterms.bibliographicCitation | Baziwane, D.; He, Q. Gelatin: The Paramount Food Additive. Food Rev. Int. 2003, 19, 423–435. [CrossRef] | spa |
dcterms.bibliographicCitation | Djagny, K.B.; Wang, Z.; Xu, S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries. Crit. Rev. Food Sci. Nutr. 2001, 41, 481–492. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Deng, Y.; Wang, H.; Zhang, L.; Li, Y.; Wei, S. In Situ Synthesis and in Vitro Biocompatibility of Needle-like Nano-Hydroxyapatite in Agar–Gelatin Co-Hydrogel. Mater. Lett. 2013, 104, 8–12. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, C.-Y.; Kuo, Z.-K.; Hsieh, M.-K.; Ke, L.-Y.; Chen, C.-C.; Cheng, C.-M.; Lai, P.-L. Cell Migration of Preosteoblast Cells on a Clinical Gelatin Sponge for 3D Bone Tissue Engineering. Biomed. Mater. 2019, 15, 15005. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Wang, H.; Boerman, O.C.; Sariibrahimoglu, K.; Li, Y.; Jansen, J.A.; Leeuwenburgh, S.C.G. Comparison of Micro-vs. Nanostructured Colloidal Gelatin Gels for Sustained Delivery of Osteogenic Proteins: Bone Morphogenetic Protein-2 and Alkaline Phosphatase. Biomaterials 2012, 33, 8695–8703. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Van Nieuwenhove, I.; Salamon, A.; Adam, S.; Dubruel, P.; Van Vlierberghe, S.; Peters, K. Gelatin- and Starch-Based Hydrogels. Part B: In Vitro Mesenchymal Stem Cell Behavior on the Hydrogels. Carbohydr. Polym. 2017, 161, 295–305. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Bombin, A.D.J.; Dunne, N.J.; McCarthy, H.O. Electrospinning of Natural Polymers for the Production of Nanofibres for Wound Healing Applications. Mater. Sci. Eng. C 2020, 114, 110994. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ye, S.; Jiang, L.; Su, C.; Zhu, Z.;Wen, Y.; Shao,W. Development of Gelatin/Bacterial Cellulose Composite Sponges as Potential Natural Wound Dressings. Int. J. Biol. Macromol. 2019, 133, 148–155. [CrossRef] | spa |
dcterms.bibliographicCitation | de Paula de Lima Lima, T.; Passos, M.F. Skin Wounds, the Healing Process, and Hydrogel-Based Wound Dressings: A Short Review. J. Biomater. Sci. Polym. Ed. 2021, 32, 1910–1925. [CrossRef] | spa |
dcterms.bibliographicCitation | Sakthiguru, N.; Sithique, M.A. Fabrication of Bioinspired Chitosan/Gelatin/Allantoin Biocomposite Film forWound Dressing Application. Int. J. Biol. Macromol. 2020, 152, 873–883. [CrossRef] | spa |
dcterms.bibliographicCitation | Adeli, H.; Khorasani, M.T.; Parvazinia, M. Wound Dressing Based on Electrospun PVA/Chitosan/Starch Nanofibrous Mats: Fabrication, Antibacterial and Cytocompatibility Evaluation and in Vitro Healing Assay. Int. J. Biol. Macromol. 2019, 122, 238–254. [CrossRef] | spa |
dcterms.bibliographicCitation | Zoran, L.; Marija, B.; Radomir, M.; Stevo, M.; Marko, M.; Igor, D. Comparison of Resorbable Membranes for Guided Bone Regeneration of Human and Bovine Origin. Acta Vet. Brno. 2014, 64, 477–492. [CrossRef] | spa |
dcterms.bibliographicCitation | Castro, J.I.; Navia-Porras, D.P.; Arbeláez Cortés, J.A.; Mina Hernández, J.H.; Grande-Tovar, C.D. Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for Food-Packaging Applications. Molecules 2022, 27, 2264. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Podshivalov, A.; Zakharova, M.; Glazacheva, E.; Uspenskaya, M. Gelatin/Potato Starch Edible Biocomposite Films: Correlation between Morphology and Physical Properties. Carbohydr. Polym. 2017, 157, 1162–1172. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Biswal, D.R.; Singh, R.P. Characterisation of Carboxymethyl Cellulose and Polyacrylamide Graft Copolymer. Carbohydr. Polym. 2004, 57, 379–387. [CrossRef] | spa |
dcterms.bibliographicCitation | Tongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of Carboxymethyl Cellulose Concentration on Physical Properties of Biodegradable Cassava Starch-Based Films. Chem. Cent. J. 2011, 5, 6. [CrossRef] | spa |
dcterms.bibliographicCitation | Hanani, Z.N.; Roos, Y.; Kerry, J. Fourier Transform Infrared (FTIR) Spectroscopic Analysis of Biodegradable Gelatin Films Immersed in Water. In Proceedings of the 11th International Congress on Engineering and Food, ICEF11, Athens, Greece, 22–26 May 2011. | spa |
dcterms.bibliographicCitation | Ahmadi, A.; Ahmadi, P.; Ehsani, A. Development of an Active Packaging System Containing Zinc Oxide Nanoparticles for the Extension of Chicken Fillet Shelf Life. Food Sci. Nutr. 2020, 8, 5461–5473. [CrossRef] | spa |
dcterms.bibliographicCitation | Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [CrossRef] | spa |
dcterms.bibliographicCitation | Walker, M. Investigating the Colloidal Properties of Drum-Dried Wheat Starches in Low-Fat Oil-In-Water Emulsions. Master’s Thesis, The University of Guelph, Guelph, ON, Canada, 2021. | spa |
dcterms.bibliographicCitation | Schick, C. Differential Scanning Calorimetry (DSC) of Semicrystalline Polymers. Anal. Bioanal. Chem. 2009, 395, 1589–1611. [CrossRef] | spa |
dcterms.bibliographicCitation | Jenkins, P.J.; Donald, A.M. Gelatinisation of Starch: A Combined SAXS/WAXS/DSC and SANS Study. Carbohydr. Res. 1998, 308, 133–147. [CrossRef] | spa |
dcterms.bibliographicCitation | Fuentes, C.; Kang, I.; Lee, J.; Song, D.; Sjöö, M.; Choi, J.; Lee, S.; Nilsson, L. Fractionation and Characterization of Starch Granules Using Field-Flow Fractionation (FFF) and Differential Scanning Calorimetry (DSC). Anal. Bioanal. Chem. 2019, 411, 3665–3674. [CrossRef] | spa |
dcterms.bibliographicCitation | Andrade, M.M.P.; De Oliveira, C.S.; Colman, T.A.D.; Da Costa, F.J.O.G.; Schnitzler, E. Effects of Heat-Moisture Treatment on Organic Cassava Starch: Thermal, Rheological and Structural Study. J. Therm. Anal. Calorim. 2014, 115, 2115–2122. [CrossRef] | spa |
dcterms.bibliographicCitation | Cooke, D.; Gidley, M.J. Loss of Crystalline and Molecular Order during Starch Gelatinisation: Origin of the Enthalpic Transition. Carbohydr. Res. 1992, 227, 103–112. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, L.Z.; Liu, L.; Holmes, J.; Kerry, J.F.; Kerry, J.P. Assessment of Film-forming Potential and Properties of Protein and Polysaccharide-based Biopolymer Films. Int. J. Food Sci. Technol. 2007, 42, 1128–1138. [CrossRef] | spa |
dcterms.bibliographicCitation | Loo, C.P.Y.; Sarbon, N.M. Chicken Skin Gelatin Films with Tapioca Starch. Food Biosci. 2020, 35, 100589. [CrossRef] | spa |
dcterms.bibliographicCitation | Mendes, J.F.; Paschoalin, R.T.; Carmona, V.B.; Neto, A.R.S.; Marques, A.C.P.; Marconcini, J.M.; Mattoso, L.H.C.; Medeiros, E.S.; Oliveira, J.E. Biodegradable Polymer Blends Based on Corn Starch and Thermoplastic Chitosan Processed by Extrusion. Carbohydr. Polym. 2016, 137, 452–458. [CrossRef] | spa |
dcterms.bibliographicCitation | Moreno, O.; Díaz, R.; Atarés, L.; Chiralt, A. Influence of the Processing Method and Antimicrobial Agents on Properties of Starch-gelatin Biodegradable Films. Polym. Int. 2016, 65, 905–914. [CrossRef] | spa |
dcterms.bibliographicCitation | Tongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Sriburi, P.; Rachtanapun, P. Mechanical and Physical Properties of Cassava Starch-Gelatin Composite Films. Int. J. Polym. Mater. 2012, 61, 778–792. [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, J.H.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical Characterization of Porcine Bone-Derived Grafting Material and Comparison with Bovine Xenografts for Dental Applications. J. Periodontal Implant Sci. 2017, 47, 388–401. [CrossRef] | spa |
dcterms.bibliographicCitation | Naguleswaran, S.; Li, J.; Vasanthan, T.; Bressler, D.; Hoover, R. Amylolysis of Large and Small Granules of Native Triticale, Wheat and Corn Starches Using a Mixture of -Amylase and Glucoamylase. Carbohydr. Polym. 2012, 88, 864–874. [CrossRef] | spa |
dcterms.bibliographicCitation | Cano, A.; Jiménez, A.; Cháfer, M.; Gónzalez, C.; Chiralt, A. Effect of Amylose: Amylopectin Ratio and Rice Bran Addition on Starch Films Properties. Carbohydr. Polym. 2014, 111, 543–555. [CrossRef] | spa |
dcterms.bibliographicCitation | Becerra, J.; Rodriguez, M.; Leal, D.; Noris-Suarez, K.; Gonzalez, G. Chitosan-Collagen-Hydroxyapatite Membranes for Tissue Engineering. J. Mater. Sci. Mater. Med. 2022, 33, 18. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Mosleh, Y.; de Zeeuw, W.; Nijemeisland, M.; Bijleveld, J.C.; van Duin, P.; Poulis, J.A. The Structure–Property Correlations in Dry Gelatin Adhesive Films. Adv. Eng. Mater. 2021, 23, 2000716. [CrossRef] | spa |
dcterms.bibliographicCitation | Valencia, G.A.; Luciano, C.G.; Lourenço, R.V.; Bittante, A.M.Q.B.; do Amaral Sobral, P.J. Morphological and Physical Properties of Nano-Biocomposite Films Based on Collagen Loaded with Laponite®. Food Packag. Shelf Life 2019, 19, 24–30. [CrossRef] | spa |
dcterms.bibliographicCitation | Andonegi, M.; Peñalba, M.; de la Caba, K.; Guerrero, P. ZnO Nanoparticle-Incorporated Native Collagen Films with Electro- Conductive Properties. Mater. Sci. Eng. C 2020, 108, 110394. [CrossRef] | spa |
dcterms.bibliographicCitation | Qamruzzaman, M.; Ahmed, F.; Mondal, M.I.H. An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects. J. Polym. Environ. 2022, 30, 19–50. [CrossRef] | spa |
dcterms.bibliographicCitation | Araújo, M.A.; Cunha, A.M.; Mota, M. Enzymatic Degradation of Starch-Based Thermoplastic Compounds Used in Protheses: Identification of the Degradation Products in Solution. Biomaterials 2004, 25, 2687–2693. [CrossRef] | spa |
dcterms.bibliographicCitation | Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [CrossRef] | spa |
dcterms.bibliographicCitation | Van Putten, S.M.; Ploeger, D.T.A.; Popa, E.R.; Bank, R.A. Macrophage Phenotypes in the Collagen-Induced Foreign Body Reaction in Rats. Acta Biomater. 2013, 9, 6502–6510. [CrossRef] | spa |
dcterms.bibliographicCitation | Luttikhuizen, D.T.; Harmsen, M.C.; Van Luyn, M.J.A. Cellular and Molecular Dynamics in the Foreign Body Reaction. Tissue Eng. 2006, 12, 1955–1970. [CrossRef] | spa |
dcterms.bibliographicCitation | Du, W.; Zhang, Z.; Gao, W.; Li, Z. Porous Organosilicone Modified Gelatin Hybrids with Controllable and Homogeneous in Vitro Degradation Behaviors for Potential Application as Skin Regeneration Scaffold. Polym. Int. 2019, 68, 1411–1419. [CrossRef] | spa |
dcterms.bibliographicCitation | Ozeki, M.; Tabata, Y. In Vivo Degradability of Hydrogels Prepared from Different Gelatins by Various Cross-Linking Methods. J. Biomater. Sci. Polym. Ed. 2005, 16, 549–561. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Blaine, G. Absorbable Gelatin Sponge in Experimental Surgery. Lancet 1951, 2, 427–429. [CrossRef] | spa |
dcterms.bibliographicCitation | Cegielski, M.; Izykowska, I.; Podhorska-Okolow, M.; Zabel, M.; Dziegiel, P. Development of Foreign Body Giant Cells in Response to Implantation of Spongostan®as a Scaffold for Cartilage Tissue Engineering. In Vivo 2008, 22, 203–206. [PubMed] | spa |
dcterms.bibliographicCitation | Ye, Q.; Harmsen, M.C.; Ren, Y.; Bank, R.A. The Role of Collagen Receptors Endo180 and DDR-2 in the Foreign Body Reaction against Non-Crosslinked Collagen and Gelatin. Biomaterials 2011, 32, 1339–1350. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Samperio, G.; Garay, C.; Guitrón, A.; Vega, J. Modelo Para La Valoración Cuantitativa de La Cicatrización. Estudio Piloto Con Miel de Abeja. Cir. Gen. 2015, 27, 114–119. | spa |
dcterms.bibliographicCitation | Valencia-Llano, C.H.; López-Tenorio, D.; Grande-Tovar, C.D. Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers 2022, 14, 2672. [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/polym14183849 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | biocompatibility | spa |
dc.subject.keywords | biocomposite | spa |
dc.subject.keywords | cassava starch | spa |
dc.subject.keywords | chicken gelatin | spa |
dc.subject.keywords | composite membranes | spa |
dc.subject.keywords | tissue engineering | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/draft | spa |
dc.type.spa | Animación | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |