Mostrar el registro sencillo del ítem

dc.contributor.authorPeña, A.R
dc.contributor.otherCambronel, D.M
dc.contributor.otherOchoa, G.V
dc.contributor.otherHenríquez, L.V
dc.date.accessioned2022-11-14T21:44:32Z
dc.date.available2022-11-14T21:44:32Z
dc.date.issued2022-09-27
dc.date.submitted2022-05-17
dc.identifier.citationPena, A. R., Cambronel, D. M., Ochoa, G. V., & Henríquez, L. V. (2022). Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020. International Journal of Energy Economics and Policy, 12(5), 132–137. https://doi.org/10.32479/ijeep.13293spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/758
dc.description.abstractWaste heat recovery (WHR) technologies have become vital to promote efficient operation in energy systems. The present investigation presents a bibliometric analysis of the research trends in the WHR field in the last decade (2010-2020). The study implements advanced methodologies to gather relevant information for interested readers on this topic. Results indicated that WHR technologies have registered more than 14,000 articles in the selected timeline with an increasing tendency. Moreover, the number of citations escalated to more than 25% in 2020, using 2010 as the baseline. Three primary research clusters stated that power cycles are the most cited topic in the WHR field. The journal “Energy” featured the highest citation margin, whereas the most relevant author from the database was Bejan et al. Lastly, China is leading the progress in the number of articles and subsequently the citation score, which is primary promoted by the “Chinese Academy of Science.” The study identified that the reduction of citations of WHR topics in the last 5 years might be primarily attributed to a transition in a more complex concept of multigeneration. In conclusion, the area of WHR technologies has maintained an increased interest in academia in the last 10 years while contributing to the exploitation of power cycle proposals, turbomachinery, heat exchangers, among others. Also, WHR plays a central role in the development of the next generation of multigeneration units.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceInternational Journal of Energy Economics and Policyspa
dc.titleResearch Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020spa
dcterms.bibliographicCitationAlibaba, M., Pourdarbani, R., Manesh, M.H.K., Ochoa, G.V., Forero, J.D. (2020), Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6, e03758.spa
dcterms.bibliographicCitationBae, C., Kim, J. (2017), Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36, 3389-3413.spa
dcterms.bibliographicCitationBao, J., Zhao, L. (2013), A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325-342.spa
dcterms.bibliographicCitationBejan, A., Tsatsaronis, G., Moran, M.J. (1996), Thermal Design and Optimization. Hoboken, New Jersey: Wiley.spa
dcterms.bibliographicCitationChen, H., Goswami, D.Y., Stefanakos, E.K. (2010), A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews, 14, 3059-3067.spa
dcterms.bibliographicCitationChu, W., Bennett, K., Cheng, J., Chen, Y., Wang, Q. (2019) Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger. Applied Thermal Engineering, 146, 805-814.spa
dcterms.bibliographicCitationDai, Y., Wang, J., Gao, L. (2009), Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management, 50, 576-582.spa
dcterms.bibliographicCitationDemirbas, A. (2008), Emissions from combustion of biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30, 170-178.spa
dcterms.bibliographicCitationDiaz, G.A., Duarte, J.O., García, J., Rincón, A., Fontalvo, A., Bula, A., Padilla, R.V. (2017), Maximum power from fluid flow by applying the first and second laws of thermodynamics. The Journal of Energy Resources Technology, 139, 4035021.spa
dcterms.bibliographicCitationDuarte, J., Amador, G., García, J., Fontalvo, A., Vásquez, R., Sanjuan, M., González, A. (2014), Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137-147.spa
dcterms.bibliographicCitationDuarte, J., García, J., Jiménez, J., Sanjuan, M.E., Bula, A., González, J. (2017), Auto-ignition control in spark-ignition engines using internal model control structure. Journal of Energy Resources Technology, Transactions of the ASME, 139, 022201.spa
dcterms.bibliographicCitationGutierrez, J.C., Valencia, G., Duarte, J. (2020), Regenerative organic rankine cycle as bottoming cycle of an industrial gas engine: Traditional and advanced exergetic analysis. Applied Sciences, 10, 4411.spa
dcterms.bibliographicCitationHerrera, M., Castro, E., Duarte, J., Fontalvo, A., Vásquez, R. (2018), Análisis Exergético de un Ciclo Brayton Supercrítico con Dióxido de Carbono Como Fluido de Trabajo. Research Paper.spa
dcterms.bibliographicCitationHung, T.C., Shai, T.Y., Wang, S.K. (1997), A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 22, 661-667.spa
dcterms.bibliographicCitationJamel, M.S., Abd Rahman, A., Shamsuddin, A.H. (2013), Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renewable and Sustainable Energy Reviews, 20, 71-81.spa
dcterms.bibliographicCitationLogan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K. (2006), Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40, 5181-5192.spa
dcterms.bibliographicCitationMarchionni, M., Chai, L., Bianchi, G., Tassou, S.A. (2019), Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems. Applied Thermal Engineering, 161, 114190.spa
dcterms.bibliographicCitationMouaky, A., Rachek, A. (2020), Energetic, exergetic and exergeoeconomic assessment of a hybrid solar/biomass poylgeneration system: A case study of a rural community in a semi-arid climate. Renewable Energy, 158, 280-296.spa
dcterms.bibliographicCitationMuk, H., He, B. (2007), Spark ignition natural gas engines a review. Energy Conversion and Management, 48, 608-618.spa
dcterms.bibliographicCitationOrozco, T., Herrera, M., Duarte, J. (2019), CFD study of heat exchangers applied in Brayton cycles: A case study in supercritical condition using carbon dioxide as working fluid. The International Review on Modelling and Simulations, 12, 72.spa
dcterms.bibliographicCitationOrozco, W., Acuña, N., Duarte, J. (2019), Characterization of emissions in low displacement diesel engines using biodiesel and energy recovery system. The International Review of Mechanical Engineering, 13, 420-426.spa
dcterms.bibliographicCitationPacheco, E.C., Forero, J.D., Lascano, A.F. (2018), Análisis exergético de un ciclo Brayton supercrítico con dióxido de carbono como fluido de trabajo Exergetic analysis of a supercritical Brayton cycle with carbon dioxide as working fluid. Inge CUC, 14, 159-170.spa
dcterms.bibliographicCitationQuoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P., Lemort, V. (2013), Techno-economic survey of organic rankine cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 22, 168-186.spa
dcterms.bibliographicCitationRamirez, R., Gutiérrez, A.S, Eras, J.J.C, Valencia, K., Hernández, B., Forero, J.D. (2019), Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Journal of Cleaner Production, 241, 118412.spa
dcterms.bibliographicCitationSaleh, B., Koglbauer, G., Wendland, M., Fischer, J. (2007), Working fluids for low-temperature organic Rankine cycles. Energy, 32, 1210-1221.spa
dcterms.bibliographicCitationSultan, U., Zhang, Y., Farooq, M., Imran, M., Khan, A.A., Zhuge, W., Khan, T.A., Yousaf, M.H., Ali, Q. (2021), Qualitative assessment and global mapping of supercritical CO2 power cycle technology. Sustainable Energy Technologies and Assessments, 43, 100978.spa
dcterms.bibliographicCitationTchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G. (2011), Low-grade heat conversion into power using organic Rankine cycles a review of various applications. Renewable and Sustainable Energy Reviews, 15, 3963-3979.spa
dcterms.bibliographicCitationValencia, G., Acevedo, C., Duarte, J. (2020), Combustion and performance study of low-displacement compression ignition engines operating with diesel-biodiesel blends. Applied Sciences, 10, 907.spa
dcterms.bibliographicCitationValencia, G., Cárdenas, J., Duarte, J. (2020), Exergy, economic, and life-cycle assessment of orc system for waste heat recovery in a natural gas internal combustion engine. Resources, 9, 2.spa
dcterms.bibliographicCitationVasquez, R., Chean, Y., Too, S., Benito, R., Stein, W. (2015), Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Applied Energy, 148, 348-365.spa
dcterms.bibliographicCitationWang, E.H., Zhang, H.G., Fan, B.Y., Ouyang, M.G., Zhao, Y., Mu, Q.H. (2011), Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy, 36, 3406-3418.spa
dcterms.bibliographicCitationYonoff, R.E., Ochoa, G.V., Cardenas-Escorcia, Y., Silva-Ortega, J.I., Meriño-Stand, L. (2019), Research trends in proton exchange membrane fuel cells during 2008-2018: A bibliometric analysis. Heliyon, 5, e01724.spa
dcterms.bibliographicCitationYu, A., Su, W., Lin, X., Zhou, N. (2021), Recent trends of supercritical CO2Brayton cycle: Bibliometric analysis and research review. Nuclear Engineering and Technology, 53, 699-714.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.audiencePúblico generalspa
dc.identifier.doi10.32479/ijeep.13293
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsBibliometrics, Waste Heat Recovery, Energy, Multigenerationspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/draftspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por