Mostrar el registro sencillo del ítem
Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020
dc.contributor.author | Peña, A.R | |
dc.contributor.other | Cambronel, D.M | |
dc.contributor.other | Ochoa, G.V | |
dc.contributor.other | Henríquez, L.V | |
dc.date.accessioned | 2022-11-14T21:44:32Z | |
dc.date.available | 2022-11-14T21:44:32Z | |
dc.date.issued | 2022-09-27 | |
dc.date.submitted | 2022-05-17 | |
dc.identifier.citation | Pena, A. R., Cambronel, D. M., Ochoa, G. V., & Henríquez, L. V. (2022). Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020. International Journal of Energy Economics and Policy, 12(5), 132–137. https://doi.org/10.32479/ijeep.13293 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/758 | |
dc.description.abstract | Waste heat recovery (WHR) technologies have become vital to promote efficient operation in energy systems. The present investigation presents a bibliometric analysis of the research trends in the WHR field in the last decade (2010-2020). The study implements advanced methodologies to gather relevant information for interested readers on this topic. Results indicated that WHR technologies have registered more than 14,000 articles in the selected timeline with an increasing tendency. Moreover, the number of citations escalated to more than 25% in 2020, using 2010 as the baseline. Three primary research clusters stated that power cycles are the most cited topic in the WHR field. The journal “Energy” featured the highest citation margin, whereas the most relevant author from the database was Bejan et al. Lastly, China is leading the progress in the number of articles and subsequently the citation score, which is primary promoted by the “Chinese Academy of Science.” The study identified that the reduction of citations of WHR topics in the last 5 years might be primarily attributed to a transition in a more complex concept of multigeneration. In conclusion, the area of WHR technologies has maintained an increased interest in academia in the last 10 years while contributing to the exploitation of power cycle proposals, turbomachinery, heat exchangers, among others. Also, WHR plays a central role in the development of the next generation of multigeneration units. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | International Journal of Energy Economics and Policy | spa |
dc.title | Research Trends of Waste Heat Recovery Technologies: A Bibliometric Analysis from 2010 to 2020 | spa |
dcterms.bibliographicCitation | Alibaba, M., Pourdarbani, R., Manesh, M.H.K., Ochoa, G.V., Forero, J.D. (2020), Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon, 6, e03758. | spa |
dcterms.bibliographicCitation | Bae, C., Kim, J. (2017), Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36, 3389-3413. | spa |
dcterms.bibliographicCitation | Bao, J., Zhao, L. (2013), A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325-342. | spa |
dcterms.bibliographicCitation | Bejan, A., Tsatsaronis, G., Moran, M.J. (1996), Thermal Design and Optimization. Hoboken, New Jersey: Wiley. | spa |
dcterms.bibliographicCitation | Chen, H., Goswami, D.Y., Stefanakos, E.K. (2010), A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews, 14, 3059-3067. | spa |
dcterms.bibliographicCitation | Chu, W., Bennett, K., Cheng, J., Chen, Y., Wang, Q. (2019) Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger. Applied Thermal Engineering, 146, 805-814. | spa |
dcterms.bibliographicCitation | Dai, Y., Wang, J., Gao, L. (2009), Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management, 50, 576-582. | spa |
dcterms.bibliographicCitation | Demirbas, A. (2008), Emissions from combustion of biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30, 170-178. | spa |
dcterms.bibliographicCitation | Diaz, G.A., Duarte, J.O., García, J., Rincón, A., Fontalvo, A., Bula, A., Padilla, R.V. (2017), Maximum power from fluid flow by applying the first and second laws of thermodynamics. The Journal of Energy Resources Technology, 139, 4035021. | spa |
dcterms.bibliographicCitation | Duarte, J., Amador, G., García, J., Fontalvo, A., Vásquez, R., Sanjuan, M., González, A. (2014), Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137-147. | spa |
dcterms.bibliographicCitation | Duarte, J., García, J., Jiménez, J., Sanjuan, M.E., Bula, A., González, J. (2017), Auto-ignition control in spark-ignition engines using internal model control structure. Journal of Energy Resources Technology, Transactions of the ASME, 139, 022201. | spa |
dcterms.bibliographicCitation | Gutierrez, J.C., Valencia, G., Duarte, J. (2020), Regenerative organic rankine cycle as bottoming cycle of an industrial gas engine: Traditional and advanced exergetic analysis. Applied Sciences, 10, 4411. | spa |
dcterms.bibliographicCitation | Herrera, M., Castro, E., Duarte, J., Fontalvo, A., Vásquez, R. (2018), Análisis Exergético de un Ciclo Brayton Supercrítico con Dióxido de Carbono Como Fluido de Trabajo. Research Paper. | spa |
dcterms.bibliographicCitation | Hung, T.C., Shai, T.Y., Wang, S.K. (1997), A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 22, 661-667. | spa |
dcterms.bibliographicCitation | Jamel, M.S., Abd Rahman, A., Shamsuddin, A.H. (2013), Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renewable and Sustainable Energy Reviews, 20, 71-81. | spa |
dcterms.bibliographicCitation | Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K. (2006), Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40, 5181-5192. | spa |
dcterms.bibliographicCitation | Marchionni, M., Chai, L., Bianchi, G., Tassou, S.A. (2019), Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems. Applied Thermal Engineering, 161, 114190. | spa |
dcterms.bibliographicCitation | Mouaky, A., Rachek, A. (2020), Energetic, exergetic and exergeoeconomic assessment of a hybrid solar/biomass poylgeneration system: A case study of a rural community in a semi-arid climate. Renewable Energy, 158, 280-296. | spa |
dcterms.bibliographicCitation | Muk, H., He, B. (2007), Spark ignition natural gas engines a review. Energy Conversion and Management, 48, 608-618. | spa |
dcterms.bibliographicCitation | Orozco, T., Herrera, M., Duarte, J. (2019), CFD study of heat exchangers applied in Brayton cycles: A case study in supercritical condition using carbon dioxide as working fluid. The International Review on Modelling and Simulations, 12, 72. | spa |
dcterms.bibliographicCitation | Orozco, W., Acuña, N., Duarte, J. (2019), Characterization of emissions in low displacement diesel engines using biodiesel and energy recovery system. The International Review of Mechanical Engineering, 13, 420-426. | spa |
dcterms.bibliographicCitation | Pacheco, E.C., Forero, J.D., Lascano, A.F. (2018), Análisis exergético de un ciclo Brayton supercrítico con dióxido de carbono como fluido de trabajo Exergetic analysis of a supercritical Brayton cycle with carbon dioxide as working fluid. Inge CUC, 14, 159-170. | spa |
dcterms.bibliographicCitation | Quoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P., Lemort, V. (2013), Techno-economic survey of organic rankine cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 22, 168-186. | spa |
dcterms.bibliographicCitation | Ramirez, R., Gutiérrez, A.S, Eras, J.J.C, Valencia, K., Hernández, B., Forero, J.D. (2019), Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Journal of Cleaner Production, 241, 118412. | spa |
dcterms.bibliographicCitation | Saleh, B., Koglbauer, G., Wendland, M., Fischer, J. (2007), Working fluids for low-temperature organic Rankine cycles. Energy, 32, 1210-1221. | spa |
dcterms.bibliographicCitation | Sultan, U., Zhang, Y., Farooq, M., Imran, M., Khan, A.A., Zhuge, W., Khan, T.A., Yousaf, M.H., Ali, Q. (2021), Qualitative assessment and global mapping of supercritical CO2 power cycle technology. Sustainable Energy Technologies and Assessments, 43, 100978. | spa |
dcterms.bibliographicCitation | Tchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G. (2011), Low-grade heat conversion into power using organic Rankine cycles a review of various applications. Renewable and Sustainable Energy Reviews, 15, 3963-3979. | spa |
dcterms.bibliographicCitation | Valencia, G., Acevedo, C., Duarte, J. (2020), Combustion and performance study of low-displacement compression ignition engines operating with diesel-biodiesel blends. Applied Sciences, 10, 907. | spa |
dcterms.bibliographicCitation | Valencia, G., Cárdenas, J., Duarte, J. (2020), Exergy, economic, and life-cycle assessment of orc system for waste heat recovery in a natural gas internal combustion engine. Resources, 9, 2. | spa |
dcterms.bibliographicCitation | Vasquez, R., Chean, Y., Too, S., Benito, R., Stein, W. (2015), Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Applied Energy, 148, 348-365. | spa |
dcterms.bibliographicCitation | Wang, E.H., Zhang, H.G., Fan, B.Y., Ouyang, M.G., Zhao, Y., Mu, Q.H. (2011), Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy, 36, 3406-3418. | spa |
dcterms.bibliographicCitation | Yonoff, R.E., Ochoa, G.V., Cardenas-Escorcia, Y., Silva-Ortega, J.I., Meriño-Stand, L. (2019), Research trends in proton exchange membrane fuel cells during 2008-2018: A bibliometric analysis. Heliyon, 5, e01724. | spa |
dcterms.bibliographicCitation | Yu, A., Su, W., Lin, X., Zhou, N. (2021), Recent trends of supercritical CO2Brayton cycle: Bibliometric analysis and research review. Nuclear Engineering and Technology, 53, 699-714. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.32479/ijeep.13293 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Bibliometrics, Waste Heat Recovery, Energy, Multigeneration | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/draft | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |