Mostrar el registro sencillo del ítem

dc.contributor.authorUnfried-Silgado, Jimy
dc.contributor.otherTorres-Ardila, Alexander
dc.contributor.otherCarrasco-García, Juan Carlos
dc.contributor.otherRodríguez-Fernández, Johnnatan
dc.date.accessioned2023-03-09T15:49:55Z
dc.date.available2023-03-09T15:49:55Z
dc.date.issued2018-11-04
dc.date.submitted2016-02-17
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1177
dc.description.abstractIn this work were studied the effects of shoulder geometry of tool on microstructure evolution and mechanical properties of friction stir welded joints of AA1100 aluminum alloy using a milling machine. Three designs of shoulder geometry were evaluated with the aim to induce different distributions of thermal cycles in welding regions. Thermal cycles were measured using thermocouples and a data system acquisition. A microstructural characterization and crystallographic analysis of the welded regions were carried out using optical, scanning electron microscopy, and electron backscattering diffraction. The mechanical properties were measured by transverse tension, guided bend and hardness tests. The weldability behavior was established based on the experimental data. Results showed that the features shoulder tools produced an important effect on the thermal cycles, generating a plasticized wide region and biggest grain size in stir zone when compared with flat shoulder tool.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleEffects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1spa
dc.title.alternativeEfectos de la geometría del hombro de la herramienta sobre las propiedades mecánicas de juntas soldadas por fricción-agitación de aleación de aluminio AA1100spa
dcterms.bibliographicCitation[1] Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templemith, P. and Dawes, C.J., Patent Application, No. 9125978.8, 1991spa
dcterms.bibliographicCitation[2] Nandan, R., DebRoy, T. and Bhadeshia, H.K.D.H., Recent advances in friction-stir welding – Process, weldment structure and properties. Progress in Materials Science. 53(6), pp. 980-1023, 2008. DOI: 10.1016/j.pmatsci.2008.05.001spa
dcterms.bibliographicCitation[3] Çam, G. and Mistikoglu, S., Recent developments in friction stir welding of al-alloys. J. of Materi Eng and Perform, 23(6), pp. 1936-1953, 2014. DOI: 10.1007/s11665-014-0968-xspa
dcterms.bibliographicCitation[4] Mishra, R.S. and Ma, Z.Y., Review: Friction stir welding and processing. Materials Science and Engineering, 50, pp. 1-78, 2005. DOI: 0.1016/j.mser.2005.07.001spa
dcterms.bibliographicCitation[5] Threadgill, P.L., Leonard, A.J., Shercliff, H.R. and Withers, P.J., Friction stir welding of aluminium alloys. International Material reviews, 54(2), pp. 49-93, 2009. DOI: 10.1179/174328009X411136spa
dcterms.bibliographicCitation[6] Zimmer-Chevret, S., Langlois, L., Laye, J. and Bigot, R., Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque. International Journal of Advanced Manufacturing Technology, 47(1-2), pp. 201-215, 2010. DOI: 10.1007/s00170-009-2188-3spa
dcterms.bibliographicCitation[7] Singh-Sidhu, M. and Singh-Chatha, S., Friction stir welding – process and its variables: A review. International Journal of Emerging Technology and Advanced Engineering. [online]. 2(12), pp. 275-279, 2012. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.2731&rep= rep1&type=pdfspa
dcterms.bibliographicCitation[8] Zimmer, S., Langlois, L., Laye, J. et al., Influence of processing parameters on the tool and workpiece mechanical interaction during friction stir welding. International Journal of Material Forming, 2(1), pp. 299-302, 2009. DOI: 10.1007/s12289-009-0496-7spa
dcterms.bibliographicCitation[9] Mohanty, H.K., Mahapatra, M.M., Kumar, P. et al., Effect of Tool Shoulder and Pin Probe Profiles on Friction Stirred Aluminum Welds – a Comparative Study. Journal of Marine Science and Application, 11(2), pp. 200-207, 2012. DOI: 10.1007/s11804-012-1123-4spa
dcterms.bibliographicCitation[10] Mohanty, H.K., Mahapatra, M.M., Kumar, P. et al., Modeling the effects of tool shoulder and probe profile geometries on friction stirred aluminum welds using response surface methodology. Journal of Marine Science and Application, 11(4), pp. 493-503, 2012. DOI: 10.1007/s11804-012-1160-zspa
dcterms.bibliographicCitation[11] Fujii, H., Cui, L., Maeda, M. and Nogi, K., Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Materials Science and Engineering: A, 419 (1–2), pp. 25-31, 2006. DOI: 10.1016/j.msea.2005.11.045spa
dcterms.bibliographicCitation[12] Liu, H., Fujii, H., Maeda, M. and Nogi, K. Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy. Journal of Materials Science Letters, 22 (6), pp. 441-444, 2003. DOI: 10.1023/A:1022959627794spa
dcterms.bibliographicCitation[13] Zapata, J., Valderrama, J., Hoyos, E. and López, D., Mechanical properties comparison of friction stir welding butt joints of AA1100 made in a conventional milling machine and a FSW machine. DYNA, [online]. 80(182), pp. 115-123, 2013. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012- 73532013000600014spa
dcterms.bibliographicCitation[14] Buglioni, L., Tufaro, L. and Svoboda, H., Thermal cycles and residual stresses in FSW of aluminum alloys: Experimental measurements and numerical models. Procedia Materials Science, 9, pp. 87-96, 2015. DOI: 10.1016/j.mspro.2015.04.011spa
dcterms.bibliographicCitation[15] Sakthivel, T., Sengar, G. and Mukhopadhyay, J., Effect of welding speed on microstructure and mechanical properties of friction-stir –welded aluminum. Int. J. Adv. Manuf. Technol., 43(5), pp. 468-473, 2009. DOI: 10.1007/s00170-008-1727-7spa
dcterms.bibliographicCitation[16] Liu, H., Fujii, H., Maeda, M. and Nogi, K. Friction stir welding characteristics of two aluminum alloys. Trans. Nonferrous Met. Soc. China, [online]. 13(5), pp. 1108-1111, 2003. Available at: http://www.cqvip.com/qk/85276x/200305/8542003.htmlspa
dcterms.bibliographicCitation[17] Scheneider, J.A., Temperature distribution and resulting metal flow. Chapter 3: Friction stir welding and processing, Ed. Mishra, R.S. and Mahoney M.W., ASM International, 37 P. 2007. DOI: 10.1361/fswp2007p037spa
dcterms.bibliographicCitation[18] Arbegast, W.J., A flow-partitioned deformation zone model for defect formation during friction stirs welding. Scripta Materialia, 58, pp. 372-376, 2008. DOI: 10.1016/j.scriptamat.2007.10.031spa
dcterms.bibliographicCitation[19] Sato, Y.S., Urata, M., and Kokawa, H., Parameters controlling microstructure and hardness during friction-stir welding of precipitationhardenable aluminum alloy 6063. Metall. Mat. Trans. A, 33A, pp. 625-635, 2002. DOI: 10.1007/s11661-002-0124-3spa
dcterms.bibliographicCitation[20] Gourdet, S. and Montheillet, F., A model of continuous dynamic recrystallization. Acta Mat. 51, pp. 2685-2699, 2003. DOI: 10.1016/S1359- 6454(03)00078-8spa
dcterms.bibliographicCitation[21] Reynolds, A.P., Microstructure development in aluminum alloy friction stir welds. Chapter 4: Friction stir welding and processing. ASM international, 2007. DOI: 10.1361/fswp2007p051spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.15446/dyna.v84n200.55787
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsFriction Stir Welding, aluminum alloys, tools, microstructure, mechanical properties.spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por