Mostrar el registro sencillo del ítem
Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under differentworking fluids
dc.contributor.author | Valencia Ochoa, Guillermo | |
dc.contributor.other | Acevedo Peñaloza, Carlos | |
dc.contributor.other | Piero Rojas, Jhan | |
dc.date.accessioned | 2023-01-17T16:16:47Z | |
dc.date.available | 2023-01-17T16:16:47Z | |
dc.date.issued | 2019-10-25 | |
dc.date.submitted | 2019-09-05 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1163 | |
dc.description.abstract | This paper presents a thermo-economic analysis of a simple organic Rankine cycle (SORC) as a waste heat recovery (WHR) systems of a 2 MW stationary gas engine evaluating different working fluids. Initially, a systematic methodology was implemented to select three organic fluids according to environmental and safety criteria, as well as critical system operational conditions. Then, thermodynamic, exergy, and exergo-economic models of the system were developed under certain defined considerations, and a set of parametric studies are presented considering key variables of the system such as pump efficiency, turbine efficiency, pinch point condenser, and evaporator. The results show the influence of these variables on the combined power of the system (gas engine plus ORC), ORC exergetic efficiency, specific fuel consumption (∆BSFC), and exergo indicators such as the payback period (PBP), levelized cost of energy (LCOE), and the specific investment cost (SIC). The results revealed that heat transfer equipment had the highest exergy destruction cost rates representing 81.25% of the total system cost. On the other hand, sensitivity analyses showed that acetone presented better energetic and exergetic performance when the efficiency of the turbine, evaporator, and condenser pinch point was increased. However, toluene was the fluid with the best results when pump efficiency was increased. In terms of the cost of exergy destroyed by equipment, the results revealed that acetone was the working fluid that positively impacted cost reduction when pump efficiency was improved; and toluene, when turbine efficiency was increased. Finally, the evaporator and condenser pinch point increased all the economic indicators of the system. In this sense, the working fluid with the best performance in economic terms was acetone, when the efficiency of the turbine, pinch condenser, and pinch evaporator was enhanced. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.title | Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under differentworking fluids | spa |
dcterms.bibliographicCitation | 1. Hung, T.C.; Shai, T.Y.; Wang, S.K. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 1997, 22, 661–667. [CrossRef] | spa |
dcterms.bibliographicCitation | 2. Elzinga, D. Energy Technology Perspectives 2014: Harnessing Electricity’s Potential; Int. Energy Agency: Paris, France, 2013; p. 382. | spa |
dcterms.bibliographicCitation | 3. Hollander, J.M. The Energy-Environment Connection; Island Press: Wshington, DC, USA, 1992. | spa |
dcterms.bibliographicCitation | 4. Pick, M.J. The renewable energy strategies of oil majors—From oil to energy? Energy Strategy Rev. 2019, 26, 100370. [CrossRef] | spa |
dcterms.bibliographicCitation | 5. Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Mikulcic, H.; Kalogirou, S. Sustainable development using renewable energy technology. Renew. Energy 2020, 146, 2430–2437. | spa |
dcterms.bibliographicCitation | 6. Li, Z.; Lu, Y.; Huang, Y.; Qian, G.; Chen, F.; Yu, X.; Roskilly, A. Comparison study of Trilateral Rankine Cycle, Organic Flash Cycle and basic Organic Rankine Cycle for low grade heat recovery. Energy Procedia 2017, 142, 1441–1447 | spa |
dcterms.bibliographicCitation | 7. Raghulnath, D.; Saravanan, K.; Mahendran, J.; kumar, M.R.; Lakshmanan, P. Analysis and optimization of organic Rankine cycle for IC engine waste heat recovery system. Mater. Today Proc. 2019, 1, 1–7. | spa |
dcterms.bibliographicCitation | 8. Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66 | spa |
dcterms.bibliographicCitation | 9. Shi, L.; Shu, G.; Tian, H.; Deng, S. A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR). Renew. Sustain. Energy Rev. 2018, 92, 95–110 | spa |
dcterms.bibliographicCitation | 10. Hoang, A.T. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl. Energy 2018, 231, 138–166 | spa |
dcterms.bibliographicCitation | 11. Kwak, D.H.; Binns, M.; Kim, J.K. Integrated design and optimization of technologies for utilizing low grade heat in process industries. Appl. Energy 2014, 131, 307–322 | spa |
dcterms.bibliographicCitation | 12. Bao, J.; Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sustain. Energy Rev. 2013, 24, 325–342 | spa |
dcterms.bibliographicCitation | 13. Linke, P.; Papadopoulos, A.I.; Seferlis, P. Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review. Energies 2015, 8, 4755–4801 | spa |
dcterms.bibliographicCitation | 14. Larsen, U.; Pierobon, L.; Haglind, F.; Gabrielii, C. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection. Energy 2013, 55, 803–812 | spa |
dcterms.bibliographicCitation | 15. Zhu, S.; Deng, K.; Qu, S. Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery. Energy 2013, 58, 448–457 | spa |
dcterms.bibliographicCitation | 16. Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L. Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine. Energy Convers. Manag. 2016, 126, 217–227 | spa |
dcterms.bibliographicCitation | 17. Braimakis, K.; Karellas, S. Energetic optimization of regenerative Organic Rankine Cycle (ORC) configurations. Energy Convers. Manag. 2018, 159, 353–370 | spa |
dcterms.bibliographicCitation | 18. Peris, B.; Navarro-Esbrí, J.; Molés, F. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Appl. Therm. Eng. 2013, 61, 364–371. | spa |
dcterms.bibliographicCitation | 19. Scaccabarozzi, R.; Tavano, M.; Invernizzi, C.M.; Martelli, E. Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines. Energy 2018, 158, 396–416 | spa |
dcterms.bibliographicCitation | 20. Tian, H.; Shu, G.; Wei, H.; Liang, X.; Liu, L. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy 2012, 47, 125–136. | spa |
dcterms.bibliographicCitation | 21. Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406–3418 | spa |
dcterms.bibliographicCitation | 22. Andreasen, J.G.; Larsen, U.; Knudsen, T.; Pierobon, L.; Haglind, F. Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic rankine cycles. Energy 2014, 73, 204–213 | spa |
dcterms.bibliographicCitation | 23. Seyedkavoosi, S.; Javan, S.; Kota, K. Exergy-based optimization of an organic Rankine cycle ( ORC ) for waste heat recovery from an internal combustion engine ( ICE ). Appl. Therm. Eng. 2017, 126, 447–457 | spa |
dcterms.bibliographicCitation | 24. Yang, M.H.; Yeh, R.H. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Appl. Energy 2015, 149, 1–12 | spa |
dcterms.bibliographicCitation | 25. Yang, M.H.; Yeh, R.H. Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery. Energy 2015, 82, 256–268 | spa |
dcterms.bibliographicCitation | 26. Milani, S.M.; Saray, R.K.; Najafi, M. Exergo-economic analysis of different power-cycle configurations driven by heat recovery of a gas engine. Energy Convers. Manag. 2019, 186, 103–119 | spa |
dcterms.bibliographicCitation | 27. Quoilin, S.; Declaye, S.; Tchanche, B.F.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893 | spa |
dcterms.bibliographicCitation | 28. Imran, M.; Park, B.S.; Kim, H.J.; Lee, D.H.; Usman, M.; Heo, M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers. Manag. 2014, 87, 107–118. | spa |
dcterms.bibliographicCitation | 29. Shengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754 | spa |
dcterms.bibliographicCitation | 30. Feng, Y.; Zhang, Y.; Li, B.; Yang, J.; Shi, Y. Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC). Energy Convers. Manag. 2015, 96, 58–71 | spa |
dcterms.bibliographicCitation | 31. Le, V.L.; Kheiri, A.; Feidt, M.; Pelloux-Prayer, S. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid. Energy 2014, 78, 622–638 | spa |
dcterms.bibliographicCitation | 32. Chen, T.; Zhuge, W.; Zhang, Y.; Zhang, L. A novel cascade organic Rankine cycle (ORC) system for waste heat recovery of truck diesel engines. Energy Convers. Manag. 2017, 138, 210–223 | spa |
dcterms.bibliographicCitation | 33. Hou, G.; Bi, S.; Lin, M.; Zhang, J.; Xu, J. Minimum variance control of organic Rankine cycle based waste heat recovery. Energy Convers. Manag. 2014, 86, 576–586 | spa |
dcterms.bibliographicCitation | 34. Xi, H.; Li, M.J.; Xu, C.; He, Y.L. Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm. Energy 2013, 58, 473–482 | spa |
dcterms.bibliographicCitation | 35. Schuster, A.; Karellas, S.; Kakaras, E.; Spliethoff, H. Energetic and economic investigation of Organic Rankine Cycle applications. Appl. Therm. Eng. 2009, 29, 1809–1817 | spa |
dcterms.bibliographicCitation | 36. Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N.; Mirhadizadeh, S.A. Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 2017, 134, 135–155. | spa |
dcterms.bibliographicCitation | 37. Vivian, J.; Manente, G.; Lazzaretto, A. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources. Appl. Energy 2015, 156, 727–746 | spa |
dcterms.bibliographicCitation | 38. Shu, G.; Li, X.; Tian, H.; Liang, X.; Wei, H.; Wang, X. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Appl. Energy 2014, 119, 204–217 | spa |
dcterms.bibliographicCitation | 39. United Nations Environment Progamme UNEP. Montreal Protocol on Substances that Deplete the Ozone Layer. 1987. Available online: www.unep.org (accessed on 21 June 2019) | spa |
dcterms.bibliographicCitation | 40. UNFCCC. Text of the Kyoto Protocol. Available online: https://unfccc.int/kyoto-protocol-html-version (accessed on 10 July 2019). | spa |
dcterms.bibliographicCitation | 41. Song, J.; Song, Y.; Gu, C.w. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy 2015, 82, 976–985 | spa |
dcterms.bibliographicCitation | 42. Kölsch, B.; Radulovic, J. Utilisation of diesel engine waste heat by Organic Rankine Cycle. Appl. Therm. Eng. 2015, 78, 437–448 | spa |
dcterms.bibliographicCitation | 43. Neto, R.d.; Sotomonte, C.A.R.; Coronado, C.J.R.; Nascimento, M. Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Convers. Manag. 2016, 129, 168–179 | spa |
dcterms.bibliographicCitation | 44. Grelet, V.; Reiche, T.; Lemort, V.; Nadri, M.; Dufour, P. Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks. Appl. Energy 2016, 165, 878–892 | spa |
dcterms.bibliographicCitation | 45. Sung, T.; Kim, K.C. Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold. Appl. Therm. Eng. 2016, 100, 1031–1041 | spa |
dcterms.bibliographicCitation | 46. Michos, C.N.; Lion, S.; Vlaskos, I.; Taccani, R. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Convers. Manag. 2017, 132, 347–360 | spa |
dcterms.bibliographicCitation | 47. Valencia, G.; Alvarez, J.N.; Duarte, J. Multiobjective Optimization of a Plate Heat Exchanger in a Waste Heat Recovery Organic Rankine Cycle System for Natural Gas Engines. Entropy 2019, 21, 655. | spa |
dcterms.bibliographicCitation | 48. Valencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and Exergy Analysis of Different Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC. Energies 2019, 12, 2378. | spa |
dcterms.bibliographicCitation | 49. Wang, E.; Yu, Z.; Zhang, H.; Yang, F. A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines. Appl. Energy 2017, 190, 574–590 | spa |
dcterms.bibliographicCitation | 50. Shams Ghoreishi, S.M.; Akbari Vakilabadi, M.; Bidi, M.; Khoeini Poorfar, A.; Sadeghzadeh, M.; Ahmadi, M.H.; Ming, T. Analysis, economical and technical enhancement of an organic Rankine cycle recovering waste heat from an exhaust gas stream. Energy Sci. Eng. 2019, 7, 230–254 | spa |
dcterms.bibliographicCitation | 51. Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1996. | spa |
dcterms.bibliographicCitation | 52. El-emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444 | spa |
dcterms.bibliographicCitation | 53. Calise, F.; Capuozzo, C.; Carotenuto, A.; Vanoli, L. Thermoeconomic analysis and off-design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol. Energy 2014, 103, 595–609. | spa |
dcterms.bibliographicCitation | 54. Zare, V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138 | spa |
dcterms.bibliographicCitation | 55. Voros, N.G.; Kiranoudis, C.T.; Maroulis, Z.B. Solar energy exploitation for reverse osmosis desalination plants. Desalination 1998, 115, 83–101 | spa |
dcterms.bibliographicCitation | 56. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017 | spa |
dcterms.bibliographicCitation | 57. Tsatsaronis, G. Application of Thermoeconomics to the Design and Synthesis of Energy Plants. In Exergy, Energy System Analysis and Optimization - Volume II; Frangopoulos, C., Ed.; EOLSS Publications: Paris, France, 2006; pp. 162–174 | spa |
dcterms.bibliographicCitation | 58. Warren, S.; Junior, S.; Daniel, L. Product and Process Design Principles: Synthesis, Analysis, and Evaluation; John Wiley & Sons: Hoboken, NJ, USA, 2013. | spa |
dcterms.bibliographicCitation | 59. Val, C.d.; Silva, J.; Junior, S.d. Deep Water Cooled ORC for Offshore Floating Oil Platform Applications. Int. J. Thermodyn. 2017, 20, 229–237 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/app9214526 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | energy analysis | spa |
dc.subject.keywords | exergy analysis | spa |
dc.subject.keywords | organic Rankine cycle | spa |
dc.subject.keywords | waste heat recovery | spa |
dc.subject.keywords | natural gas engine | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |