Mostrar el registro sencillo del ítem
Evaluation of the energy recovery potential of thermoelectric generators in diesel engines
dc.contributor.author | Ramírez, Rafael | |
dc.contributor.other | Gutierrez, Alexis Sagastume | |
dc.contributor.other | Cabello Eras, Juan J. | |
dc.contributor.other | Valencia, Karen | |
dc.contributor.other | Hernandez, Brando | |
dc.contributor.other | Duarte Forero, Jorge | |
dc.date.accessioned | 2023-01-17T16:16:27Z | |
dc.date.available | 2023-01-17T16:16:27Z | |
dc.date.issued | 2019-09-12 | |
dc.date.submitted | 2019-02-02 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1162 | |
dc.description.abstract | Thermoelectric generation is an alternative to recover some of the wasted energy trough an exhaust of the internal combustion engines. This paper assesses the performance of a thermoelectric generator with 20 modules by implementing a waffle heat exchanger. Experimental results showed a variable range of power recovery from 57.87 W to 71.13 W for B10, B5, and Diesel. The highest energy conversion efficiency of the aforementioned thermoelectric device was of 3% with the highest load and the fastest rotational speed. Also, the recovery process reduced gaseous emissions such as CO, CO2, NO, NOX, and HC. Additionally, the smoke opacity per kWh is reduced at significant levels of operations such as 2.42% when using diesel, 2.65% when using B5 and 3% when using B10. However, when using biodiesel blends, NOx emissions were increased. Overall the biodiesel resulted in a higher power recovery performance versus the diesel. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Alagumalai, A., 2014. Internal combustion engines: Progress and prospects. Renew. Sustain. Energy Rev. 38, 561e571. | spa |
dc.source | Aranguren, P., Araiz, M., Astrain, D., Martínez, A., 2017. Thermoelectric generators for waste heat harvesting: a computational and experimental approach. Energy Convers. Manag. 148, 680e691. | spa |
dc.source | Darda, S., Papalas, T., Zabaniotou, A., 2019. Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J. Clean. Prod. 208, 575e588 | spa |
dc.source | He, W., Wang, S., 2017. Thermoelectric performance optimization when considering engine power loss caused by back pressure applied to engine exhaust waste heat recovery. Energy 133, 584e592. | spa |
dc.source | He, W., Wang, S., Zhang, X., Li, Y., Lu, C., 2015. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy 91, 1e9 | spa |
dc.source | In, B.D., Kim, H.I., Son, J.W., Lee, K.H., 2015. The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. Int. J. Heat Mass Transf. 86, 667e680. | spa |
dc.source | Kalam, M.A., Masjuki, H.H., 2002. Biodiesel from palmoil - an analysis of its properties and potential. Biomass Bioenergy 23, 471e479. | spa |
dc.source | Kim, T.Y., Negash, A., Cho, G., 2017. Direct contact thermoelectric generator (DCTEG): a concept for removing the contact resistance between thermoelectric modules and heat source. Energy Convers. Manag. 142, 20e27 | spa |
dc.source | Kim, T.Y., Negash, A.A., Cho, G., 2016. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manag. 124, 280e286. | spa |
dc.source | Kiziroglou, M.E., Wright, S.W., Toh, T.T., Mitcheson, P.D., Becker, T., Yeatman, E.M., 2014. Design and fabrication of heat storage thermoelectric harvesting devices. IEEE Trans. Ind. Electron. 61, 302e309. | spa |
dc.source | Lan, S., Yang, Z., Chen, R., Stobart, R., 2018. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl. Energy 210, 327e338. | spa |
dc.source | Lee, H., 2010. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. John Wiley & Sons, Hoboken, New Jersey. | spa |
dc.source | Li, W., Paul, M.C., Siviter, J., Montecucco, A., Knox, A.R., Sweet, T., Min, G., Baig, H., Mallick, T.K., Han, G., Gregory, D.H., Azough, F., Freer, R., 2016. Thermal performance of two heat exchangers for thermoelectric generators. Case Stud. Therm. Eng. 8, 164e175. | spa |
dc.source | Lion, S., Michos, C.N., Vlaskos, I., Rouaud, C., Taccani, R., 2017. A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications. Renew. Sustain. Energy Rev. 79, 691e708. | spa |
dc.source | Love, N.D., Szybist, J.P., Sluder, C.S., 2012. Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery. Appl. Energy 89, 322e328. | spa |
dc.source | Mao, G., Wang, Z., Hu, P., Ni, P., Wang, X., Gu, S.Q., 2011. Experimental research on the flame temperature of biodiesel fuel combustion in open-air conditions. In: 2011 International Conference on Electric Information and Control Engineering, ICEICE 2011 - Proceedings, pp. 2171e2174. | spa |
dc.source | Niu, Z., Diao, H., Yu, S., Jiao, K., Du, Q., Shu, G., 2014. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Convers. Manag. 85, 85e101. | spa |
dc.source | Ong, H.C., Masjuki, H.H., Mahlia, T.M.I., Silitonga, A.S., Chong, W.T., Yusaf, T., 2014. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69, 427e445. | spa |
dc.source | Osorio, J.D., Rivera-Alvarez, A., 2018. Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control. Energy 161, 649e662 | spa |
dc.source | Palash, S.M., Kalam, M.A., Masjuki, H.H., Masum, B.M., Rizwanul Fattah, I.M., Mofijur, M., 2013. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev. 23, 473e490. | spa |
dc.source | Patil, D.S., Arakerimath, R.R., Walke, P.V., 2018. Thermoelectric materials and heat exchangers for power generation e a review. Renew. Sustain. Energy Rev. 95, 1e22. | spa |
dc.source | Raman, L.A., Deepanraj, B., Rajakumar, S., Sivasubramanian, V., 2019. Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel 69e74. | spa |
dc.source | Rimkus, A., Melaika, M., Matijosius, J., 2017. Efficient and ecological indicators of CI engine fuelled with different diesel and LPG mixtures. In: Procedia Engineering. Elsevier Ltd, pp. 504e512 | spa |
dc.source | Su, C.Q., Wang, W.S., Liu, X., Deng, Y.D., 2014. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Stud. Therm. Eng. 4, 85e91. | spa |
dc.source | Temizer, I., Ilkiliç, C., 2016. The performance and analysis of the thermoelectric generator system used in diesel engines. Renew. Sustain. Energy Rev. 63, 141e151. | spa |
dc.source | Vale, S., Heber, L., Coelho, P.J., Silva, C.M., 2017. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation. Energy Convers. Manag. 133, 167e177. | spa |
dc.source | Verma, S., Das, L.M., Bhatti, S.S., Kaushik, S.C., 2017. A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels. Energy Convers. Manag. 151, 764e777 | spa |
dc.source | Zavaragh, H.G., Kaleli, A., Afshari, F., Amini, A., 2017. Optimization of heat transfer and efficiency of engine via air bubble injection inside engine cooling system. Appl. Therm. Eng. 123, 390e402. | spa |
dc.title | Evaluation of the energy recovery potential of thermoelectric generators in diesel engines | spa |
dcterms.bibliographicCitation | Energy recovery | spa |
dcterms.bibliographicCitation | Heat exchanger | spa |
dcterms.bibliographicCitation | Thermoelectric generator | spa |
dcterms.bibliographicCitation | Thermoelectric module | spa |
dcterms.bibliographicCitation | Internal combustion engine | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.jclepro.2019.118412 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |