Show simple item record

dc.contributor.authorRamírez, Rafael
dc.contributor.otherGutierrez, Alexis Sagastume
dc.contributor.otherCabello Eras, Juan J.
dc.contributor.otherValencia, Karen
dc.contributor.otherHernandez, Brando
dc.contributor.otherDuarte Forero, Jorge
dc.date.accessioned2023-01-17T16:16:27Z
dc.date.available2023-01-17T16:16:27Z
dc.date.issued2019-09-12
dc.date.submitted2019-02-02
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1162
dc.description.abstractThermoelectric generation is an alternative to recover some of the wasted energy trough an exhaust of the internal combustion engines. This paper assesses the performance of a thermoelectric generator with 20 modules by implementing a waffle heat exchanger. Experimental results showed a variable range of power recovery from 57.87 W to 71.13 W for B10, B5, and Diesel. The highest energy conversion efficiency of the aforementioned thermoelectric device was of 3% with the highest load and the fastest rotational speed. Also, the recovery process reduced gaseous emissions such as CO, CO2, NO, NOX, and HC. Additionally, the smoke opacity per kWh is reduced at significant levels of operations such as 2.42% when using diesel, 2.65% when using B5 and 3% when using B10. However, when using biodiesel blends, NOx emissions were increased. Overall the biodiesel resulted in a higher power recovery performance versus the diesel.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceAlagumalai, A., 2014. Internal combustion engines: Progress and prospects. Renew. Sustain. Energy Rev. 38, 561e571.spa
dc.sourceAranguren, P., Araiz, M., Astrain, D., Martínez, A., 2017. Thermoelectric generators for waste heat harvesting: a computational and experimental approach. Energy Convers. Manag. 148, 680e691.spa
dc.sourceDarda, S., Papalas, T., Zabaniotou, A., 2019. Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J. Clean. Prod. 208, 575e588spa
dc.sourceHe, W., Wang, S., 2017. Thermoelectric performance optimization when considering engine power loss caused by back pressure applied to engine exhaust waste heat recovery. Energy 133, 584e592.spa
dc.sourceHe, W., Wang, S., Zhang, X., Li, Y., Lu, C., 2015. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy 91, 1e9spa
dc.sourceIn, B.D., Kim, H.I., Son, J.W., Lee, K.H., 2015. The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. Int. J. Heat Mass Transf. 86, 667e680.spa
dc.sourceKalam, M.A., Masjuki, H.H., 2002. Biodiesel from palmoil - an analysis of its properties and potential. Biomass Bioenergy 23, 471e479.spa
dc.sourceKim, T.Y., Negash, A., Cho, G., 2017. Direct contact thermoelectric generator (DCTEG): a concept for removing the contact resistance between thermoelectric modules and heat source. Energy Convers. Manag. 142, 20e27spa
dc.sourceKim, T.Y., Negash, A.A., Cho, G., 2016. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manag. 124, 280e286.spa
dc.sourceKiziroglou, M.E., Wright, S.W., Toh, T.T., Mitcheson, P.D., Becker, T., Yeatman, E.M., 2014. Design and fabrication of heat storage thermoelectric harvesting devices. IEEE Trans. Ind. Electron. 61, 302e309.spa
dc.sourceLan, S., Yang, Z., Chen, R., Stobart, R., 2018. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl. Energy 210, 327e338.spa
dc.sourceLee, H., 2010. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. John Wiley & Sons, Hoboken, New Jersey.spa
dc.sourceLi, W., Paul, M.C., Siviter, J., Montecucco, A., Knox, A.R., Sweet, T., Min, G., Baig, H., Mallick, T.K., Han, G., Gregory, D.H., Azough, F., Freer, R., 2016. Thermal performance of two heat exchangers for thermoelectric generators. Case Stud. Therm. Eng. 8, 164e175.spa
dc.sourceLion, S., Michos, C.N., Vlaskos, I., Rouaud, C., Taccani, R., 2017. A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications. Renew. Sustain. Energy Rev. 79, 691e708.spa
dc.sourceLove, N.D., Szybist, J.P., Sluder, C.S., 2012. Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery. Appl. Energy 89, 322e328.spa
dc.sourceMao, G., Wang, Z., Hu, P., Ni, P., Wang, X., Gu, S.Q., 2011. Experimental research on the flame temperature of biodiesel fuel combustion in open-air conditions. In: 2011 International Conference on Electric Information and Control Engineering, ICEICE 2011 - Proceedings, pp. 2171e2174.spa
dc.sourceNiu, Z., Diao, H., Yu, S., Jiao, K., Du, Q., Shu, G., 2014. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Convers. Manag. 85, 85e101.spa
dc.sourceOng, H.C., Masjuki, H.H., Mahlia, T.M.I., Silitonga, A.S., Chong, W.T., Yusaf, T., 2014. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69, 427e445.spa
dc.sourceOsorio, J.D., Rivera-Alvarez, A., 2018. Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control. Energy 161, 649e662spa
dc.sourcePalash, S.M., Kalam, M.A., Masjuki, H.H., Masum, B.M., Rizwanul Fattah, I.M., Mofijur, M., 2013. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev. 23, 473e490.spa
dc.sourcePatil, D.S., Arakerimath, R.R., Walke, P.V., 2018. Thermoelectric materials and heat exchangers for power generation e a review. Renew. Sustain. Energy Rev. 95, 1e22.spa
dc.sourceRaman, L.A., Deepanraj, B., Rajakumar, S., Sivasubramanian, V., 2019. Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel 69e74.spa
dc.sourceRimkus, A., Melaika, M., Matijosius, J., 2017. Efficient and ecological indicators of CI engine fuelled with different diesel and LPG mixtures. In: Procedia Engineering. Elsevier Ltd, pp. 504e512spa
dc.sourceSu, C.Q., Wang, W.S., Liu, X., Deng, Y.D., 2014. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Stud. Therm. Eng. 4, 85e91.spa
dc.sourceTemizer, I., Ilkiliç, C., 2016. The performance and analysis of the thermoelectric generator system used in diesel engines. Renew. Sustain. Energy Rev. 63, 141e151.spa
dc.sourceVale, S., Heber, L., Coelho, P.J., Silva, C.M., 2017. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation. Energy Convers. Manag. 133, 167e177.spa
dc.sourceVerma, S., Das, L.M., Bhatti, S.S., Kaushik, S.C., 2017. A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels. Energy Convers. Manag. 151, 764e777spa
dc.sourceZavaragh, H.G., Kaleli, A., Afshari, F., Amini, A., 2017. Optimization of heat transfer and efficiency of engine via air bubble injection inside engine cooling system. Appl. Therm. Eng. 123, 390e402.spa
dc.titleEvaluation of the energy recovery potential of thermoelectric generators in diesel enginesspa
dcterms.bibliographicCitationEnergy recoveryspa
dcterms.bibliographicCitationHeat exchangerspa
dcterms.bibliographicCitationThermoelectric generatorspa
dcterms.bibliographicCitationThermoelectric modulespa
dcterms.bibliographicCitationInternal combustion enginespa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.jclepro.2019.118412
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por