Mostrar el registro sencillo del ítem

dc.contributor.authorA.A, Abud,
dc.contributor.otherB, Abi,
dc.contributor.otherR, Acciarri,
dc.contributor.otherM.A, Acero,
dc.contributor.otherG, Adamov,
dc.contributor.otherD, Adams,
dc.contributor.otherM, Adinolfi,
dc.contributor.otherA, Aduszkiewicz,
dc.contributor.otherZ, Ahmad,
dc.contributor.otherJ, Ahmed,
dc.contributor.otherT, Alion,
dc.contributor.otherS.A, Monsalve,
dc.contributor.otherM, Alrashed,
dc.contributor.otherC, Alt,
dc.contributor.otherA, Alton,
dc.contributor.otherP, Amedo,
dc.contributor.otherJ, Anderson,
dc.contributor.otherC, Andreopoulos,
dc.contributor.otherM.P, Andrews,
dc.contributor.otherF, Andrianala,
dc.contributor.otherS, Andringa,
dc.contributor.otherN, Anfimov,
dc.contributor.otherA, Ankowski,
dc.contributor.otherM, Antonova,
dc.contributor.otherS, Antusch,
dc.contributor.otherFernandez, Aranda- A
dc.contributor.otherA, Ariga,
dc.contributor.otherL.O, Arnold,
dc.contributor.otherM.A, Arroyave,
dc.contributor.otherJ, Asaadi,
dc.date.accessioned2022-12-20T23:05:46Z
dc.date.available2022-12-20T23:05:46Z
dc.date.issued2021-03-26
dc.date.submitted2021-01-14
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1161
dc.description.abstractThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceInstrumentsspa
dc.titleDeep underground neutrino experiment (DUNE) near detector conceptual design reportspa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE,” JINST 15 no. 08, (2020) T08008, arXiv:2002.02967 [physics.ins-det].spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics,” arXiv:2002.03005 [hep-ex].spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV Far Detector Single-phase Technology,” JINST 15 no. 08, (2020) T08010, arXiv:2002.03010 [physics.ins-det].spa
dcterms.bibliographicCitationDUNE Collaboration, R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1601.05471 [physics.ins-det].spa
dcterms.bibliographicCitationDUNE Collaboration, R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1512.06148 [physics.ins-det].spa
dcterms.bibliographicCitationDUNE Collaboration, J. Strait et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1601.05823 [physics.ins-det].spa
dcterms.bibliographicCitationDUNE Collaboration, R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE),” arXiv:1601.02984 [physics.ins-det].spa
dcterms.bibliographicCitationHEPAP Subcommittee Collaboration, S. Ritz et al., “Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context,”.spa
dcterms.bibliographicCitationA. Friedland and S. W. Li, “Understanding the energy resolution of liquid argon neutrino detectors,” Phys. Rev. D99 no. 3, (2019) 036009, arXiv:1811.06159 [hep-ph].spa
dcterms.bibliographicCitationP. Franzini and M. Moulson, “The Physics of DAFNE and KLOE,” Ann. Rev. Nucl. Part. Sci. 56 (2006) 207–251, arXiv:hep-ex/0606033 [hep-ex].spa
dcterms.bibliographicCitationR. A. Smith and E. J. Moniz, “NEUTRINO REACTIONS ON NUCLEAR TARGETS,” Nucl. Phys. B43 (1972) 605. [Erratum: Nucl. Phys.B101,547(1975)].spa
dcterms.bibliographicCitationA. Bodek, M. E. Christy, and B. Coopersmith, “Effective spectral function for quasielastic scattering on nuclei from 21 H to 208 82 Pb,” AIP Conf. Proc. 1680 (2015) 020003, arXiv:1409.8545 [nucl-th].spa
dcterms.bibliographicCitationMINERvA Collaboration, D. Ruterbories et al., “Measurement of Quasielastic-Like Neutrino Scattering at hE i 3.5 GeV on a Hydrocarbon Target,” Phys. Rev. D99 no. 1, (2019) 012004, arXiv:1811.02774 [hep-ex].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target,” Phys. Rev. Lett. 121 no. 17, (2018) 171802, arXiv:1807.07891 [hep-ex].spa
dcterms.bibliographicCitationNOvA Collaboration, M. A. Acero et al., “New constraints on oscillation parameters from e appearance and μ disappearance in the NOvA experiment,” Phys. Rev. D98 (2018) 032012, arXiv:1806.00096 [hep-ex].spa
dcterms.bibliographicCitationJ. Wolcott, “Impact of cross section modeling on NOvA oscillation analyses.” https://indico.cern.ch/event/703880/contributions/3159021/attachments/ 1735451/2806895/2018-10-17_Wolcott_XS_unc_on_NOvA_osc_-_NuInt.pdf, 2018.spa
dcterms.bibliographicCitationD. Jena, “MINERvA adventures in flux determination,” in NuInt 2018, Fermilab. Oct., 2018. https://indico.cern.ch/event/703880/contributions/3159052/attachments/ 1735968/2817449/NuInt2018_DeepikaJena_Flux.pdf.spa
dcterms.bibliographicCitationMiniBooNE Collaboration, A. A. Aguilar-Arevalo et al., “Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section on Mineral Oil at E 1 GeV,” Phys. Rev. D82 (2010) 092005, arXiv:1007.4730 [hep-ex].spa
dcterms.bibliographicCitationK2K Collaboration, R. Gran et al., “Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions,” Phys. Rev. D74 (2006) 052002, arXiv:hep-ex/0603034 [hep-ex].spa
dcterms.bibliographicCitationMINOS Collaboration, P. Adamson et al., “Study of quasielastic scattering using charged-current μ-iron interactions in the MINOS near detector,” Phys. Rev. D91 no. 1, (2015) 012005, arXiv:1410.8613 [hep-ex].spa
dcterms.bibliographicCitationM. Martini, M. Ericson, and G. Chanfray, “Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis,” Phys. Rev. D87 no. 1, (2013) 013009, arXiv:1211.1523 [hep-ph].spa
dcterms.bibliographicCitationNOvA Collaboration, P. Adamson et al., “First measurement of muon-neutrino disappearance in NOvA,” Phys. Rev. D93 no. 5, (2016) 051104, arXiv:1601.05037 [hep-ex].spa
dcterms.bibliographicCitationC. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Meth. A614 (2010) 87–104, arXiv:0905.2517 [hep-ph].spa
dcterms.bibliographicCitationA. Bodek and J. L. Ritchie, “Further Studies of Fermi Motion Effects in Lepton Scattering from Nuclear Targets,” Phys. Rev. D24 (1981) 1400.spa
dcterms.bibliographicCitationS. Dytman, “Neutrino event generators,” AIP Conf. Proc. 896 no. 1, (2007) 178–184.spa
dcterms.bibliographicCitationJ. Nieves, J. E. Amaro, and M. Valverde, “Inclusive quasi-elastic neutrino reactions,” Phys. Rev. C70 (2004) 055503, arXiv:nucl-th/0408005 [nucl-th]. [Erratum: Phys. Rev.C72,019902(2005)].spa
dcterms.bibliographicCitationR. Gran, “Model Uncertainties for Valencia RPA Effect for MINERvA,” arXiv:1705.02932 [hep-ex].spa
dcterms.bibliographicCitationJ. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, “Inclusive Charged–Current Neutrino–Nucleus Reactions,” Phys. Rev. C83 (2011) 045501, arXiv:1102.2777 [hep-ph].spa
dcterms.bibliographicCitationR. Gran, J. Nieves, F. Sanchez, and M. J. Vicente Vacas, “Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV,” Phys. Rev. D88 no. 11, (2013) 113007, arXiv:1307.8105 [hep-ph].spa
dcterms.bibliographicCitationJ. Schwehr, D. Cherdack, and R. Gran, “GENIE implementation of IFIC Valencia model for QE-like 2p2h neutrino-nucleus cross section,” arXiv:1601.02038 [hep-ph].spa
dcterms.bibliographicCitationM. Alam et al., “GENIE Production Release 2.10.0,” arXiv:1512.06882 [hep-ph].spa
dcterms.bibliographicCitationA. Bercellie, “Pion production at MINERvA.” https://indico.cern.ch/event/703880/contributions/3157434/attachments/ 1734544/2808228/Minerva_LE_Pions_NUINT2018.pdf, 2018.spa
dcterms.bibliographicCitationMINERvA Collaboration, O. Altinok et al., “Measurement of μ charged-current single 0 production on hydrocarbon in the few-GeV region using MINERvA,” Phys. Rev. D96 no. 7, (2017) 072003, arXiv:1708.03723 [hep-ex].spa
dcterms.bibliographicCitationL. Aliaga, O. Altinok, A. Bercellie, A. Bodek, A. Bravar, et al., “Single neutral pion production by charged-current ¯ μ interactions on hydrocarbon at hE i = 3.6 GeV.” 2015.spa
dcterms.bibliographicCitationMINERvA Collaboration, C. L. McGivern et al., “Cross sections for μ and ¯ μ induced pion production on hydrocarbon in the few-GeV region using MINERvA,” Phys. Rev. D94 no. 5, (2016) 052005, arXiv:1606.07127 [hep-ex].spa
dcterms.bibliographicCitationNOvA and MINOS collaborations, “Private communication.”.spa
dcterms.bibliographicCitationM. Day and K. S. McFarland, “Differences in quasielastic cross sections of muon and electron neutrinos,” Phys. Rev. D 86 (Sep, 2012) 053003. http://link.aps.org/doi/10.1103/PhysRevD.86.053003.spa
dcterms.bibliographicCitationX.-G. Lu, L. Pickering, S. Dolan, G. Barr, D. Coplowe, Y. Uchida, D. Wark, M. Wascko, A. Weber, and T. Yuan, “Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy,” Phys. Rev. C 94 no. 1, (2016) 015503, arXiv:1512.05748 [nucl-th].spa
dcterms.bibliographicCitationA. P. Furmanski and J. T. Sobczyk, “Neutrino energy reconstruction from one muon and one proton events,” Phys. Rev. C 95 no. 6, (2017) 065501, arXiv:1609.03530 [hep-ex].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K,” Phys. Rev. D98 no. 3, (2018) 032003, arXiv:1802.05078 [hep-ex].spa
dcterms.bibliographicCitationS. Dolan, U. Mosel, K. Gallmeister, L. Pickering, and S. Bolognesi, “Sensitivity of Neutrino-Nucleus Interaction Measurements to 2p2h Excitations,” Phys. Rev. C 98 no. 4, (2018) 045502, arXiv:1804.09488 [hep-ex].spa
dcterms.bibliographicCitationMINERvA Collaboration, X. Lu et al., “Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at hE i = 3 GeV,” Phys. Rev. Lett. 121 no. 2, (2018) 022504, arXiv:1805.05486 [hep-ex].spa
dcterms.bibliographicCitationS. Dolan, “Exploring Nuclear Effects in Neutrino-Nucleus Interactions Using Measurements of Transverse Kinematic Imbalance from T2K and MINERvA,” arXiv:1810.06043 [hep-ex].spa
dcterms.bibliographicCitationX.-G. Lu and J. T. Sobczyk, “Identification of nuclear effects in neutrino and antineutrino interactions on nuclei using generalized final-state correlations,” Phys. Rev. C 99 no. 5, (2019) 055504, arXiv:1901.06411 [hep-ph].spa
dcterms.bibliographicCitationL. Harewood and R. Gran, “Elastic hadron-nucleus scattering in neutrino-nucleus reactions and transverse kinematics measurements,” arXiv:1906.10576 [hep-ex].spa
dcterms.bibliographicCitationT. Cai, X.-G. Lu, and D. Ruterbories, “Pion-proton correlation in neutrino interactions on nuclei,” Phys. Rev. D 100 (2019) 073010, arXiv:1907.11212 [hep-ex].spa
dcterms.bibliographicCitationMINERvA Collaboration, T. Cai et al., “Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions,” Phys. Rev. D 101 no. 9, (2020) 092001, arXiv:1910.08658 [hep-ex].spa
dcterms.bibliographicCitationMINERvA Collaboration, D. Coplowe et al., “Probing Nuclear Effects with Neutrino-induced Charged-Current Neutral Pion Production,” arXiv:2002.05812 [hep-ex].spa
dcterms.bibliographicCitationX.-G. Lu, D. Coplowe, R. Shah, G. Barr, D. Wark, and A. Weber, “Reconstruction of Energy Spectra of Neutrino Beams Independent of Nuclear Effects,” Phys. Rev. D 92 no. 5, (2015) 051302, arXiv:1507.00967 [hep-ex].spa
dcterms.bibliographicCitationH. Duyang, B. Guo, S. R. Mishra, and R. Petti, “A Novel Approach to Neutrino-Hydrogen Measurements,” arXiv:1809.08752 [hep-ph].spa
dcterms.bibliographicCitationH. Duyang, B. Guo, S. Mishra, and R. Petti, “A Precise Determination of (Anti)neutrino Fluxes with (Anti)neutrino-Hydrogen Interactions,” Phys. Lett. B 795 (2019) 424–431, arXiv:1902.09480 [hep-ph].spa
dcterms.bibliographicCitationL. Munteanu, S. Suvorov, S. Dolan, D. Sgalaberna, S. Bolognesi, S. Manly, G. Yang, C. Giganti, K. Iwamoto, and C. Jesús-Valls, “A new method for an improved anti-neutrino energy reconstruction with charged-current interactions in next-generation detectors,” arXiv:1912.01511 [physics.ins-det].spa
dcterms.bibliographicCitationP. Hamacher-Baumann, X.-G. Lu, and J. Martín-Albo, “Neutrino-hydrogen interactions with a high-pressure TPC,” arXiv:2005.05252 [physics.ins-det].spa
dcterms.bibliographicCitationC. M. Marshall, K. S. McFarland, and C. Wilkinson, “Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment,” arXiv:1910.10996 [hep-ex].spa
dcterms.bibliographicCitationS.R.Mishra, “Probing Hadron Structure with Neutrino Experiments.”. Review talk presented at Workshop on Hadron Structure Functions and Parton Distributions, Fermilab, April, 1990; World Scientific, 84-123 (1990), Ed. D. Geesaman et al.; Nevis Preprint # 1426, June 1990.spa
dcterms.bibliographicCitationMINERvA Collaboration, J. Devan et al., “Measurements of the Inclusive Neutrino and Antineutrino Charged Current Cross Sections in MINERvA Using the Low- Flux Method,” Phys. Rev. D 94 no. 11, (2016) 112007, arXiv:1610.04746 [hep-ex].spa
dcterms.bibliographicCitationArgonCube Collaboration, C. Amsler et al., “ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors,” Tech. Rep. CERN-SPSC-2015-009. SPSC-I-243, CERN, Geneva, Feb, 2015. https://cds.cern.ch/record/1993255.spa
dcterms.bibliographicCitationJ. Asaadi et al., “First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers,” arXiv:1801.08884 [physics.ins-det].spa
dcterms.bibliographicCitationA. Krieger, D. Dwyer, M. Garcia-Sciveres, D. Gnani, and C. Grace, “A micropower readout ASIC for pixelated liquid Ar TPCs,” in Topical Workshop on Electronics for Particle Physics. 2017. https://pos.sissa.it/313.spa
dcterms.bibliographicCitationM. Auger, Y. Chen, A. Ereditato, D. Goeldi, I. Kreslo, D. Lorca, M. Luethi, T. Mettler, J. R. Sinclair, and M. S. Weber, “ArCLight-A Compact Dielectric Large-Area Photon Detector,” Instruments 2 no. 1, (2018) 3, arXiv:1711.11409 [physics.ins-det].spa
dcterms.bibliographicCitationM. Auger, R. Berner, Y. Chen, A. Ereditato, D. Goeldi, P. P. Koller, I. Kreslo, D. Lorca, T. Mettler, F. Piastra, J. R. Sinclair, M. Weber, , C. Wilkinson, D. A. Dwyer, S. Kohn, P. Madigan, C. M. Marshall, and J. Asaadi, “A Concept for the Fourth DUNE Far Detector Module,” DUNE doc 10419, 2018. https://docs.dunescience.org/cgi-bin/ private/ShowDocument?docid=10419&asof=2019-11-1.spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., “The Single-Phase ProtoDUNE Technical Design Report,” arXiv:1706.07081 [physics.ins-det].spa
dcterms.bibliographicCitationA. Ereditato, C. C. Hsu, S. Janos, I. Kreslo, M. Messina, C. Rudolf von Rohr, B. Rossi, T. Strauss, M. S. Weber, and M. Zeller, “Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC,” JINST 8 (2013) P07002, arXiv:1304.6961 [physics.ins-det].spa
dcterms.bibliographicCitationM. Zeller et al., “First measurements with ARGONTUBE, a 5m long drift Liquid Argon TPC,” Nucl. Instrum. Meth. A718 (2013) 454–458.spa
dcterms.bibliographicCitationA. Ereditato et al., “Performance of cryogenic charge readout electronics with the ARGONTUBE LAr TPC,” JINST 9 no. 11, (2014) P11022, arXiv:1408.7046 [physics.ins-det].spa
dcterms.bibliographicCitationLArIAT Collaboration, F. Cavanna, M. Kordosky, J. Raaf, and B. Rebel, “LArIAT: Liquid Argon In A Testbeam.” arXiv:1406.5560, 2014.spa
dcterms.bibliographicCitationM. Auger et al., “ProtoDUNE-ND: proposal to place the ArgonCube 2x2 Demonstrator on-axis in NuMI,” DUNE doc 12571, 2019. https://docs.dunescience.org/cgi-bin/ private/ShowDocument?docid=12571N&asof=2019-11-1.spa
dcterms.bibliographicCitationP. Adamson et al., “Long-Baseline Neutrino Facility (LBNF)/DUNE Conceptual Design Report: Annex 3A_opt,” DUNE doc 4559, 2017. http://docs.dunescience.org/cgi-bin/ShowDocument?docid=4559&asof=2019-7-15.spa
dcterms.bibliographicCitationM. Convery et al., “Accelerator/Experiment Operations - FY 2017,”.spa
dcterms.bibliographicCitationK. Mahn, C. Marshall, and C. Wilkinson, “Progress in Measurements of 0.1-10 GeV Neutrino-Nucleus Scattering and Anticipated Results from Future Experiments,” Ann. Rev. Nucl. Part. Sci. 68 (2018) 105–129, arXiv:1803.08848 [hep-ex].spa
dcterms.bibliographicCitationC. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Methods A no. 614, (2010) 87–104.spa
dcterms.bibliographicCitationR. Acciarri et al., “Design and construction of the microboone detector,” Journal of Instrumentation 12 no. 02, (2017) P02017. http://stacks.iop.org/1748-0221/12/i=02/a=P02017.spa
dcterms.bibliographicCitationICARUS Collaboration, F. Varanini, “ICARUS detector: present and future,” EPJ Web Conf. 164 (2017) 07017.spa
dcterms.bibliographicCitationMicroBooNE Collaboration, R. Acciarri et al., “The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector,” Eur. Phys. J. C78 no. 1, (2018) 82, arXiv:1708.03135 [hep-ex].spa
dcterms.bibliographicCitationParticle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D98 no. 3, (2018) 030001.spa
dcterms.bibliographicCitationD. Goeldi, “A Novel Liquid Argon Time Projection Chamber Detector: The ArgonCube Concept,” JINST Thesis TH002 (2018) .spa
dcterms.bibliographicCitationMINERvA Collaboration, L. Aliaga et al., “Design, Calibration, and Performance of the MINERvA Detector,” Nucl.Instrum.Meth. A743 (2014) 130–159, arXiv:1305.5199 [physics.ins-det].spa
dcterms.bibliographicCitationMicroBooNE Collaboration, P. Abratenko et al., “Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering,” JINST 12 no. 10, (2017) P10010, arXiv:1703.06187 [physics.ins-det].spa
dcterms.bibliographicCitationT. Heindl, T. Dandl, A. Fedenev, M. Hofmann, R. Krücken, L. Oberauer, W. Potzel, J. Wieser, and A. Ulrich, “Table-top setup for investigating the scintillation properties of liquid argon,” JINST 6 (2011) P02011, arXiv:1511.07720 [physics.ins-det].spa
dcterms.bibliographicCitationE. Grace and J. A. Nikkel, “Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon,” Nucl. Instrum. Meth. A867 (2017) 204–208, arXiv:1502.04213 [physics.ins-det].spa
dcterms.bibliographicCitationS. Kubota, M. Hishida, M. Suzuki, and J.-z. Ruan(Gen), “Dynamical behavior of free electrons in the recombination process in liquid argon, krypton, and xenon,” Phys. Rev. B 20 (Oct, 1979) 3486–3496. https://link.aps.org/doi/10.1103/PhysRevB.20.3486.spa
dcterms.bibliographicCitationA. Hitachi, T. Takahashi, N. Funayama, K. Masuda, J. Kikuchi, and T. Doke, “Effect of ionization density on the time dependence of luminescence from liquid argon and xenon,” Phys. Rev. B 27 (May, 1983) 5279–5285. https://link.aps.org/doi/10.1103/PhysRevB.27.5279.spa
dcterms.bibliographicCitationMINERvA Collaboration, J. Park et al., “Measurement of Neutrino Flux from Neutrino-Electron Elastic Scattering,” Phys. Rev. D93 no. 11, (2016) 112007, arXiv:1512.07699 [physics.ins-det].spa
dcterms.bibliographicCitationMINERvA Collaboration, E. Valencia et al., “Constraint of the MINER A medium energy neutrino flux using neutrino-electron elastic scattering,” Phys. Rev. D 100 no. 9, (2019) 092001, arXiv:1906.00111 [hep-ex].spa
dcterms.bibliographicCitationNA61/SHINE Collaboration, A. Laszlo, “The NA61/SHINE Experiment at the CERN SPS,” Nucl. Phys. A830 (2009) 559C–562C, arXiv:0907.4493 [nucl-ex].spa
dcterms.bibliographicCitationR. Belusevic and D. Rein, “Neutrino Reactions in the Low Y Region,” Phys. Rev. D 38 (1988) 2753–2757.spa
dcterms.bibliographicCitationW. G. Seligman, A Next-to-Leading Order QCD Analysis of Neutrino - Iron Structure Functions at the Tevatron. PhD thesis, Nevis Labs, Columbia U., 1997.spa
dcterms.bibliographicCitationNuTeV Collaboration, M. Tzanov et al., “Precise measurement of neutrino and anti-neutrino differential cross sections,” Phys. Rev. D 74 (2006) 012008, arXiv:hep-ex/0509010.spa
dcterms.bibliographicCitationMINOS Collaboration, P. Adamson et al., “Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector,” Phys.Rev. D81 (2010) 072002, arXiv:0910.2201 [hep-ex].spa
dcterms.bibliographicCitationA. Bodek, U. Sarica, D. Naples, and L. Ren, “Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low Method,” Eur.Phys.J. C72 (2012) 1973, arXiv:1201.3025 [hep-ex].spa
dcterms.bibliographicCitationJ. Nieves, M. Valverde, and M. J. Vicente Vacas, “Inclusive nucleon emission induced by quasi-elastic neutrino-nucleus interactions,” Phys. Rev. C73 (2006) 025504, arXiv:hep-ph/0511204 [hep-ph].spa
dcterms.bibliographicCitationO. Lalakulich, K. Gallmeister, and U. Mosel, “Neutrino- and antineutrino-induced reactions with nuclei between 1 and 50 GeV,” Phys. Rev. C86 (2012) 014607, arXiv:1205.1061 [nucl-th].spa
dcterms.bibliographicCitationU. Mosel, O. Lalakulich, and K. Gallmeister, “Energy reconstruction in the long-baseline neutrino experiment,” Phys. Rev. Lett. 112 (Apr, 2014) 151802. http://link.aps.org/doi/10.1103/PhysRevLett.112.151802spa
dcterms.bibliographicCitationU. Mosel, O. Lalakulich, and K. Gallmeister, “Reaction mechanisms at MINERvA,” Phys. Rev. D89 no. 9, (2014) 093003, arXiv:1402.0297 [nucl-th].spa
dcterms.bibliographicCitationALICE Collaboration, G. Dellacasa et al., “ALICE: Technical design report of the time projection chamber,”.spa
dcterms.bibliographicCitationJ. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events,” Nucl. Instrum. Meth. A622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].spa
dcterms.bibliographicCitationD. A. Dwyer et al., “LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers,” JINST 13 no. 10, (2018) P10007, arXiv:1808.02969 [physics.ins-det].spa
dcterms.bibliographicCitationD. Gonzalez-Diaz, F. Monrabal, and S. Murphy, “Gaseous and dual-phase time projection chambers for imaging rare processes,” Nucl. Instrum. Meth. A878 (2018) 200–255, arXiv:1710.01018 [physics.ins-det].spa
dcterms.bibliographicCitationR. Chandrasekharan, A. Knecht, M. Messina, C. Regenfus, and A. Rubbia, “High efficiency detection of argon scintillation light of 128 nm using LAAPDs,” in Proceedings, 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference: El Conquistador Resort, Puerto Rico, October 23-29, 2005, no. 1, pp. 181–185. 2005. arXiv:physics/0511093 [physics.ins-det].spa
dcterms.bibliographicCitationA. Neumeier et al., “Intense infrared scintillation of liquid Ar-Xe mixtures,” EPL 106 no. 3, (2014) 32001, arXiv:1511.07722 [physics.ins-det].spa
dcterms.bibliographicCitationF. Simon, C. Soldner, and L. Weuste, “T3B — an experiment to measure the time structure of hadronic showers,” JINST 8 (2013) P12001, arXiv:1309.6143 [physics.ins-det].spa
dcterms.bibliographicCitationCALICE Collaboration, C. Adloff et al., “Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype,” JINST 5 (2010) P05004, arXiv:1003.2662 [physics.ins-det].spa
dcterms.bibliographicCitationT2K UK Collaboration, D. Allan et al., “The Electromagnetic Calorimeter for the T2K Near Detector ND280,” JINST 8 (2013) P10019, arXiv:1308.3445 [physics.ins-det].spa
dcterms.bibliographicCitationL. Emberger and F. Simon, “A highly granular calorimeter concept for long baseline near detectors,” J. Phys. Conf. Ser. 1162 no. 1, (2019) 012033, arXiv:1810.03677 [physics.ins-det].spa
dcterms.bibliographicCitationJ. Kvasnicka, “Data acquisition system for the CALICE AHCAL calorimeter,” Journal of Instrumentation 12 no. 03, (Mar, 2017) C03043–C03043. https://doi.org/10.1088%2F1748-0221%2F12%2F03%2Fc03043.spa
dcterms.bibliographicCitationH. Abramowicz et al., “The International Linear Collider Technical Design Report - Volume 4: Detectors,” arXiv:1306.6329 [physics.ins-det].spa
dcterms.bibliographicCitationS. C. D. Lorenzo, S. Callier, J. Fleury, F. Dulucq, C. D. la Taille, G. M. Chassard, L. Raux, and N. Seguin-Moreau, “SPIROC: design and performances of a dedicated very front-end electronics for an ILC analog hadronic CALorimeter (AHCAL) prototype with SiPM read-out,” Journal of Instrumentation 8 no. 01, (Jan, 2013) C01027–C01027. https://doi.org/10.1088%2F1748-0221%2F8%2F01%2Fc01027.spa
dcterms.bibliographicCitationMPD-Collaboration, “Multi Purpose Detector Solenoidal Magnet Technical Design Report,” tech. rep., ASG Superconductors, 2019. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved= 2ahUKEwiW4o-lvOHrAhVPoHIEHUSIAlEQFjAAegQIAhAB&url=http%3A%2F%2Fmpd.jinr.ru% 2Fwp-content%2Fuploads%2F2019%2F09%2FMAGNET-TDR-aug_2019.pdf&usg= AOvVaw11oXj6JBDExkKou3bidaay.spa
dcterms.bibliographicCitationJ. Layter, “Results from pep-4 tpc,” in Electroweak Effects at High Energies, pp. 201–213.spa
dcterms.bibliographicCitationPEP4 Collaboration, D. H. Stork, “First Operation of the TPC Facility at PEP,” J. Phys. Colloq. 43 no. C3, (1982) 42.spa
dcterms.bibliographicCitationTPC/Two Gamma Collaboration, R. J. Madaras et al., “SPATIAL RESOLUTION OF THE PEP-4 TIME PROJECTION CHAMBER,” IEEE Trans. Nucl. Sci. 30 (1983) 76–81.spa
dcterms.bibliographicCitationALICE Collaboration, C. W. Fabjan et al., “ALICE: Physics performance report, volume II,” J. Phys. G32 (2006) 1295–2040.spa
dcterms.bibliographicCitationNA49 Collaboration, M. Makariev, “Pion production in p + C collisions at 158-GeV/c beam momentum.,” AIP Conf.Proc. 899 (2007) 203.spa
dcterms.bibliographicCitationC. Grupen, “Physics of particle detection,” AIP Conf. Proc. 536 no. 1, (2000) 3–34, arXiv:physics/9906063 [physics].spa
dcterms.bibliographicCitationC. Lippmann, “Performance of the ALICE Time Projection Chamber,” Phys. Procedia 37 (2012) 434–441.spa
dcterms.bibliographicCitationALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC,” Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].spa
dcterms.bibliographicCitationDUNE Collaboration, C. Vilela, “Generating Mock Data,” tech. rep., 2019. https://indico.fnal.gov/event/21568/contribution/1/material/slides/0.pdf.spa
dcterms.bibliographicCitationMINERvA Collaboration, P. A. Rodrigues et al., “Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer,” Phys. Rev. Lett. 116 (2016) 071802, arXiv:1511.05944 [hep-ex].spa
dcterms.bibliographicCitationGEANT4 Collaboration, S. Agostinelli et al., “GEANT4: A Simulation toolkit,” Nucl. Instrum. Meth. A 506 (2003) 250–303.spa
dcterms.bibliographicCitation“Garsoft redmine repository.” https://cdcvs.fnal.gov/redmine/projects/garsoft. Accessed Feb. 19, 2019.spa
dcterms.bibliographicCitationC. Marshall, “Neutron reconstruction from time of flight in the MPD calorimeter,” DUNE doc 19033, 2020. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=19033.spa
dcterms.bibliographicCitationA. Rogozhnikov, “Reweighting with Boosted Decision Trees,” J. Phys. Conf. Ser. 762 no. 1, (2016) 012036, arXiv:1608.05806 [physics.data-an].spa
dcterms.bibliographicCitationA. N. Tikhonov and V. I. Arsenin, Solutions of ill-posed problems / Andrey N. Tikhonov and Vasiliy Y. Arsenin ; translation editor, Fritz John. Winston ; distributed solely by Halsted Press Washington : New York, 1977.spa
dcterms.bibliographicCitationP. Hansen, The L-Curve and Its Use in the Numerical Treatment of Inverse Problems, vol. 4, pp. 119–142. WIT Press, 01, 2001.spa
dcterms.bibliographicCitationK. Smith, A. Broadbent, M. Greenslade, S. Harrison, D. Jenkins, J. Ross, A. Street, M. Townsend, J. Wiatrzyk, and J. Franzini, “Progress in the design and manufacture of the KLOE solenoid for the DAPHNE ring at Frascati,” IEEE Trans. Appl. Supercond. 7 no. 2, (1997) 630–632.spa
dcterms.bibliographicCitationM. Modena, “The DAPHNE cryogenic system,”.spa
dcterms.bibliographicCitationM. Adinolfi et al., “The KLOE electromagnetic calorimeter,” Nucl. Instrum. Meth. A482 (2002) 364–386.spa
dcterms.bibliographicCitationKLOE Collaboration, A. Ceccarelli, S. Dell’Agnello, A. Di Virgilio, and S. Moccia, “Survey and alignment of the KLOE experiment at DAPHNE,” eConf C971013 (1997) 025.spa
dcterms.bibliographicCitationM. Anelli et al., “Measurement and simulation of the neutron response and detection efficiency of a Pb-scintillating fiber calorimeter,” IEEE Trans. Nucl. Sci. 55 (2008) 1409–1412.spa
dcterms.bibliographicCitationG. A. et al., “A Proposal to Enhance the DUNE Near Detector Complex,” DUNE doc 13262, 2019. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13262.spa
dcterms.bibliographicCitationA. Blondel et al., “A fully active fine grained detector with three readout views,” JINST 13 no. 02, (2018) P02006, arXiv:1707.01785 [physics.ins-det].spa
dcterms.bibliographicCitationK. Wood, G. Yang, and J. Palomino, “Studies of muon and electron angular resolution and pi-zero containment in the 3DST,” DUNE doc 19972, 2018. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=19972.spa
dcterms.bibliographicCitationJ. Park, Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux. PhD thesis, U. Rochester, 2013.spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “T2K ND280 Upgrade - Technical Design Report,” arXiv:1901.03750 [physics.ins-det].spa
dcterms.bibliographicCitationO. Mineev et al., “Beam test results of 3D fine-grained scintillator detector prototype for a T2K ND280 neutrino active target,” Nucl. Instrum. Meth. A923 (2019) 134–138, arXiv:1808.08829 [physics.ins-det].spa
dcterms.bibliographicCitationO. Basille et al., “Baby MIND Readout Electronics Architecture for Accelerator Neutrino Particle Physics Detectors Employing Silicon Photomultipliers,” JPS Conf. Proc. 27 (2019) 011011.spa
dcterms.bibliographicCitationCALICE Collaboration, J. Kvasnicka and I. Polak, “LED Calibration Systems for CALICE Hadron Calorimeter,” Phys. Procedia 37 (2012) 402–409.spa
dcterms.bibliographicCitationH. B. et al., “Study of neutron interaction in a scintillator tracker using LANL neutron beam,” DUNE doc 15763, 2019. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=15763.spa
dcterms.bibliographicCitationR. Petti, “Precision Measurements of Fundamental Interactions with (Anti)Neutrinos,” in Proceedings, 27th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2019): Torino, Italy, April 8-12, 2019. 2019. arXiv:1910.05995 [hep-ex].spa
dcterms.bibliographicCitationA. Sergi, “NA62 Spectrometer: A Low Mass Straw Tracker,” Phys. Procedia 37 (2012) 530–534.spa
dcterms.bibliographicCitationSHiP Collaboration, M. Anelli et al., “A facility to Search for Hidden Particles (SHiP) at the CERN SPS,” arXiv:1504.04956 [physics.ins-det].spa
dcterms.bibliographicCitationH. Nishiguchi et al., “Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system,” Nucl. Instrum. Meth. A845 (2017) 269–272.spa
dcterms.bibliographicCitationMu2e Collaboration, M. Lee, “The Straw-tube Tracker for the Mu2e Experiment,” Nucl. Part. Phys. Proc. 273-275 (2016) 2530–2532.spa
dcterms.bibliographicCitationP. Gianotti et al., “The Straw Tube Trackers of the PANDA Experiment,” in Proceedings, 3rd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA 2013): Marseille, France, June 23-27, 2013. 2013. arXiv:1307.4537 [physics.ins-det].spa
dcterms.bibliographicCitationG. De Geronimo, J. Fried, S. Li, J. Metcalfe, N. Nambiar, E. Vernon, and V. Polychronakos, “VMM1 - An ASIC for Micropattern Detectors,” IEEE Trans. Nucl. Sci. 60 (2013) 2314–2321.spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “The T2K Experiment,” Nucl. Instrum. Meth. A659 (2011) 106–135, arXiv:1106.1238 [physics.ins-det].spa
dcterms.bibliographicCitationM. S. Dixit, J. Dubeau, J. P. Martin, and K. Sachs, “Position sensing from charge dispersion in micropattern gas detectors with a resistive anode,” Nucl. Instrum. Meth. A518 (2004) 721–727, arXiv:physics/0307152 [physics].spa
dcterms.bibliographicCitationD. Attié et al., “Performances of a resistive MicroMegas module for the Time Projection Chambers of the T2K Near Detector upgrade,” arXiv:1907.07060 [physics.ins-det].spa
dcterms.bibliographicCitationT2K ND280 TPC Collaboration, N. Abgrall et al., “Time Projection Chambers for the T2K Near Detectors,” Nucl. Instrum. Meth. A637 (2011) 25–46, arXiv:1012.0865 [physics.ins-det].spa
dcterms.bibliographicCitationI. Giomataris, R. De Oliveira, S. Andriamonje, S. Aune, G. Charpak, P. Colas, A. Giganon, P. Rebourgeard, and P. Salin, “Micromegas in a bulk,” Nucl. Instrum. Meth. A560 (2006) 405–408, arXiv:physics/0501003 [physics].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector,” Phys. Rev. D89 (2014) 092003, arXiv:1403.2552 [hep-ex]. [Phys. Rev.D89,099902(2014)].spa
dcterms.bibliographicCitationP. Baron, D. Calvet, E. Delagnes, X. de la Broise, A. Delbart, F. Druillole, E. Monmarthe, E. Mazzucato, F. Pierre, and M. Zito, “AFTER, an ASIC for the readout of the large T2K time projection chambers,” IEEE Trans. Nucl. Sci. 55 (2008) 1744–1752.spa
dcterms.bibliographicCitationNOMAD Collaboration, J. Altegoer et al., “The NOMAD experiment at the CERN SPS,” Nucl. Instrum. Meth. A404 (1998) 96–128.spa
dcterms.bibliographicCitationNOMAD Collaboration, Q. Wu et al., “A Precise measurement of the muon neutrino-nucleon inclusive charged current cross-section off an isoscalar target in the energy range 2.5 < E(nu) < 40-GeV by NOMAD,” Phys.Lett. B660 (2008) 19–25, arXiv:0711.1183 [hep-ex].spa
dcterms.bibliographicCitationC. Jung, S. Manly, C. Mauger, D. Sgalaberna, and G. Yang, “3DST-S White Paper,” DUNE doc 16103, 2019. https://docs.dunescience.org/cgi-bin/private/ RetrieveFile?docid=16103&filename=3DST_S__white_paper-v1.pdf&version=1.spa
dcterms.bibliographicCitationHolin, A., “NUMI beam lessons and work in progress MINOS/MINOS+,” 2017. https://indico.cern.ch/event/674901/contributions/2799260/attachments/ 1565380/2466505/beam_27Nov2017CERN-CENF-NDmeeting.pdf.spa
dcterms.bibliographicCitationN. Collaboration, “"three-neutrino fit based on data available in november 2018",” 2018. http://www.nu-fit.org/?q=node/177.spa
dcterms.bibliographicCitationR. Gluckstern, “Uncertainties in track momentum and direction, due to multiple scattering and measurement errors,” Nucl. Instrum. Meth. 24 (1963) 381–389.spa
dcterms.bibliographicCitationMINERvA Collaboration, M. Elkins et al., “Neutron measurements from anti-neutrino hydrocarbon reactions,” arXiv:1901.04892 [hep-ex].spa
dcterms.bibliographicCitationS. Dolan, “Talk at ect* modeling neutrino-nucleus interacrtions, “transverse variables, qe and 2p2h”,” 2018. https://indico.ectstar.eu/event/19/contributions/409/ attachments/313/414/sdolanTalk.pdf.spa
dcterms.bibliographicCitationNOMAD Collaboration, P. Astier et al., “Final NOMAD results on muon-neutrino —> tau-neutrino and electron-neutrino —> tau-neutrino oscillations including a new search for tau-neutrino appearance using hadronic tau decays,” Nucl. Phys. B611 (2001) 3–39, arXiv:hep-ex/0106102 [hep-ex].spa
dcterms.bibliographicCitationNOMAD Collaboration, D. Naumov et al., “A Study of strange particles produced in neutrino neutral current interactions in the NOMAD experiment,” Nucl. Phys. B700 (2004) 51–68, arXiv:hep-ex/0409037 [hep-ex].spa
dcterms.bibliographicCitationNuSTEC Collaboration, L. Alvarez-Ruso et al., “NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering,” Prog. Part. Nucl. Phys. 100 (2018) 1–68, arXiv:1706.03621 [hep-ph].spa
dcterms.bibliographicCitationJ. Amaro, M. Barbaro, J. Caballero, R. González-Jiménez, G. Megias, and I. Ruiz Simo, “Electron- versus neutrino-nucleus scattering,” arXiv:1912.10612 [nucl-th].spa
dcterms.bibliographicCitationS. Dolan, S. Bolognesi, D. Sgalaberna, G. Megias, M. Barbaro, and J. Caballero, “Constraining neutrino interactions on an argon target using carbon data in modern nuclear models,” DUNE doc 16058, 2019. https://docs.dunescience.org/cgi-bin/private/RetrieveFile?docid=16058& filename=Carbon_to_Argon_Extrapolation_160919_DUNEDocDBSubmit.pdf&version=1.spa
dcterms.bibliographicCitationP. B. et al., “Enhancing the LBNF/DUNE Physics Program,” European Particle Physics Strategy Update 2018-2020 131, 2019. https://indico.cern.ch/event/765096/contributions/3295805/.spa
dcterms.bibliographicCitationM. Bishai, “Determining the Neutrino Flux from Accelerator Neutrino Beams,” Nucl. Phys. B Proc. Suppl. 229-232 (2012) 210–214.spa
dcterms.bibliographicCitationMINERvA Collaboration, L. Aliaga et al., “Neutrino Flux Predictions for the NuMI Beam,” Phys. Rev. D94 no. 9, (2016) 092005, arXiv:1607.00704 [hep-ex]. [Addendum: Phys. Rev.D95,no.3,039903(2017)].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “T2K neutrino flux prediction,” Phys.Rev. D87 no. 1, (2013) 012001, arXiv:1211.0469 [hep-ex].spa
dcterms.bibliographicCitationT. Vladisavljevic, “Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data,” in Proceedings, Prospects in Neutrino Physics (NuPhys2017): London, UK, December 20-22, 2017, pp. 189–193. 2018. arXiv:1804.00272 [physics.ins-det].spa
dcterms.bibliographicCitationMIPP Collaboration, J. Paley et al., “Measurement of Charged Pion Production Yields off the NuMI Target,” Phys. Rev. D 90 no. 3, (2014) 032001, arXiv:1404.5882 [hep-ex].spa
dcterms.bibliographicCitationNOvA Collaboration, M. Acero et al., “First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA,” Phys. Rev. Lett. 123 no. 15, (2019) 151803, arXiv:1906.04907 [hep-ex].spa
dcterms.bibliographicCitationR. Belusevic and D. Rein, “Neutrino Reactions in the Low Y Region,” Phys. Rev. D38 (1988) 2753–2757.spa
dcterms.bibliographicCitationA. Bodek, U. Sarica, D. Naples, and L. Ren, “Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low Method,” Eur. Phys. J. C72 (2012) 1973, arXiv:1201.3025 [hep-ex].spa
dcterms.bibliographicCitationLAr1-ND, ICARUS-WA104, MicroBooNE Collaboration, M. Antonello et al., “A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam,” arXiv:1503.01520 [physics.ins-det].spa
dcterms.bibliographicCitationC. Anderson, M. Antonello, B. Baller, T. Bolton, C. Bromberg, et al., “The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab,” JINST 7 (2012) P10019, arXiv:1205.6747 [physics.ins-det].spa
dcterms.bibliographicCitationT. Cai et al., “Nuclear binding energy and transverse momentum imbalance in neutrino-nucleus reaction,” 2019.spa
dcterms.bibliographicCitationMINERvA Collaboration, B. Tice et al., “Measurement of Ratios of μ Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2-20 GeV,” Phys.Rev.Lett. 112 no. 23, (2014) 231801, arXiv:1403.2103 [hep-ex].spa
dcterms.bibliographicCitationMINERvA Collaboration, P. Stowell et al., “Tuning the GENIE Pion Production Model with MINER A Data,” Phys. Rev. D 100 no. 7, (2019) 072005, arXiv:1903.01558 [hep-ex].spa
dcterms.bibliographicCitationL. Fields, K. McFarland, and M. Betancourt, “Generator Tools Workshop,” 2020. https://indico.fnal.gov/event/22294/overview.spa
dcterms.bibliographicCitationC. Llewellyn Smith, “Neutrino reactions at accelerator energies,” Physics Reports 3 no. 5, (1972) 261 – 379, http://www.sciencedirect.com/science/article/pii/0370157372900105.spa
dcterms.bibliographicCitationR. Bradford, A. Bodek, H. S. Budd, and J. Arrington, “A New parameterization of the nucleon elastic form-factors,” Nucl. Phys. B Proc. Suppl. 159 (2006) 127–132, arXiv:hep-ex/0602017.spa
dcterms.bibliographicCitationA. S. Meyer, M. Betancourt, R. Gran, and R. J. Hill, “Deuterium target data for precision neutrino-nucleus cross sections,” Phys. Rev. D93 no. 11, (2016) 113015, arXiv:1603.03048 [hep-ph].spa
dcterms.bibliographicCitationD. Rein and L. M. Sehgal, “Neutrino Excitation of Baryon Resonances and Single Pion Production,” Annals Phys. 133 (1981) 79–153.spa
dcterms.bibliographicCitationMINERvA Collaboration, T. Le et al., “Measurement of ¯ μ Charged-Current Single − Production on Hydrocarbon in the Few-GeV Region using MINERvA,” Phys. Rev. D 100 no. 5, (2019) 052008, arXiv:1906.08300 [hep-ex].spa
dcterms.bibliographicCitationMINERvA Collaboration, B. Eberly et al., “Charged pion production in μ interactions on hydrocarbon at hE i= 4.0 GeV,” Phys. Rev. D92 no. 9, (2015) 092008, arXiv:1406.6415 [hep-ex].spa
dcterms.bibliographicCitationMiniBooNE Collaboration, A. Aguilar-Arevalo et al., “Measurement of Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at E 1 GeV,” Phys. Rev. D 83 (2011) 052007, arXiv:1011.3572 [hep-ex].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector,” Phys. Rev. D 95 no. 1, (2017) 012010, arXiv:1605.07964 [hep-ex].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “Measurement of the muon neutrino charged-current single + production on hydrocarbon using the T2K off-axis near detector ND280,” Phys. Rev. D 101 no. 1, (2020) 012007, arXiv:1909.03936 [hep-ex].spa
dcterms.bibliographicCitationS. A. Kulagin and R. Petti, “Global study of nuclear structure functions,” Nucl. Phys. A 765 (2006) 126–187, arXiv:hep-ph/0412425.spa
dcterms.bibliographicCitationA. Bodek and U. K. Yang, “Higher twist, xi(omega) scaling, and effective LO PDFs for lepton scattering in the few GeV region,” J. Phys. G29 (2003) 1899–1906, arXiv:hep-ex/0210024 [hep-ex].spa
dcterms.bibliographicCitationB. Andersson, “The Lund model,” Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997) 1–471.spa
dcterms.bibliographicCitationT. Yang, C. Andreopoulos, H. Gallagher, K. Hoffmann, and P. Kehayias, “A Hadronization Model for Few-GeV Neutrino Interactions,” Eur. Phys. J. C63 (2009) 1–10, arXiv:0904.4043 [hep-ph].spa
dcterms.bibliographicCitationDUNE Collaboration, “TDR Volume 2: The Physics Program for DUNE at LBNF,” tech. rep., 2018. http://docs.dunescience.org/cgi-bin/ShowDocument?docid=.spa
dcterms.bibliographicCitationC. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, and J. Yarba, “The GENIE Neutrino Monte Carlo Generator: Physics and User Manual,” arXiv:1510.05494 [hep-ph].spa
dcterms.bibliographicCitationK. S. Kuzmin and V. A. Naumov, “Mean charged multiplicities in charged-current neutrino scattering on hydrogen and deuterium,” Phys. Rev. C88 (2013) 065501, arXiv:1311.4047 [hep-ph].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “Observation of Electron Neutrino Appearance in a Muon Neutrino Beam,” Phys. Rev. Lett. 112 (2014) 061802, arXiv:1311.4750 [hep-ex].spa
dcterms.bibliographicCitationMINERvA Collaboration, J. Wolcott et al., “Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at hE i = 3.6 GeV,” Phys. Rev. Lett. 116 no. 8, (2016) 081802, arXiv:1509.05729 [hep-ex].spa
dcterms.bibliographicCitationD. Rein and L. M. Sehgal, “Coherent pizero production in neutrino reactions,” Nuclear Physics B 223 no. 1, (1983) 29 – 44. http://www.sciencedirect.com/science/article/pii/0550321383900901.spa
dcterms.bibliographicCitationE. Hernández, J. Nieves, and M. J. V. Vacas, “Neutrino induced coherent pion production off nuclei and the partial conservation of the axial current,” Phys. Rev. D 80 (Jul, 2009) 013003. https://link.aps.org/doi/10.1103/PhysRevD.80.013003.spa
dcterms.bibliographicCitationC. Berger and L. M. Sehgal, “Partially conserved axial vector current and coherent pion production by low energy neutrinos,” Phys. Rev. D 79 (Mar, 2009) 053003. https://link.aps.org/doi/10.1103/PhysRevD.79.053003.spa
dcterms.bibliographicCitationE. A. Paschos and D. Schalla, “Coherent pion production by neutrinos,” Phys. Rev. D 80 (Aug, 2009) 033005. https://link.aps.org/doi/10.1103/PhysRevD.80.033005.spa
dcterms.bibliographicCitationJ. E. Amaro, E. Hernández, J. Nieves, and M. Valverde, “Theoretical study of neutrino-induced coherent pion production off nuclei at t2k and miniboone energies,” Phys. Rev. D 79 (Jan, 2009) 013002. https://link.aps.org/doi/10.1103/PhysRevD.79.013002.spa
dcterms.bibliographicCitationX. Zhang and B. D. Serot, “Coherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei,” Phys. Rev. C 86 (Sep, 2012) 035504. https://link.aps.org/doi/10.1103/PhysRevC.86.035504.spa
dcterms.bibliographicCitationN. G. Kelkar, E. Oset, and P. Fernández de Córdoba, “Coherent pion production in neutrino nucleus collision in the 1 gev region,” Phys. Rev. C 55 (Apr, 1997) 1964–1971. https://link.aps.org/doi/10.1103/PhysRevC.55.1964.spa
dcterms.bibliographicCitationS. K. Singh, M. S. Athar, and S. Ahmad, “Nuclear effects in neutrino induced coherent pion production at k2k and miniboone,” Phys. Rev. Lett. 96 (Jun, 2006) 241801. https://link.aps.org/doi/10.1103/PhysRevLett.96.241801.spa
dcterms.bibliographicCitationL. Alvarez-Ruso, L. Geng, S. Hirenzaki, and M. Vicente Vacas, “Charged current neutrino induced coherent pion production,” Phys. Rev. C 75 (2007) 055501, arXiv:nucl-th/0701098. [Erratum: Phys.Rev.C 80, 019906 (2009)].spa
dcterms.bibliographicCitationL. Alvarez-Ruso, L. Geng, and M. Vicente Vacas, “Neutral current coherent pion production,” Phys. Rev. C 76 (2007) 068501, arXiv:0707.2172 [nucl-th]. [Erratum: Phys.Rev.C 80, 029904 (2009)].spa
dcterms.bibliographicCitationT. Leitner, U. Mosel, and S. Winkelmann, “Neutrino-induced coherent pion production off nuclei reexamined,” Phys. Rev. C 79 (May, 2009) 057601. https://link.aps.org/doi/10.1103/PhysRevC.79.057601.spa
dcterms.bibliographicCitationS. X. Nakamura, T. Sato, T.-S. H. Lee, B. Szczerbinska, and K. Kubodera, “Dynamical model of coherent pion production in neutrino-nucleus scattering,” Phys. Rev. C 81 (Mar, 2010) 035502. https://link.aps.org/doi/10.1103/PhysRevC.81.035502.spa
dcterms.bibliographicCitationE. Wang, L. Alvarez-Ruso, and J. Nieves, “Photon emission in neutral-current interactions at intermediate energies,” Phys. Rev. C 89 (Jan, 2014) 015503. https://link.aps.org/doi/10.1103/PhysRevC.89.015503.spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “Measurement of Coherent + Production in Low Energy Neutrino-Carbon Scattering,” Phys. Rev. Lett. 117 no. 19, (2016) 192501, arXiv:1604.04406 [hep-ex].spa
dcterms.bibliographicCitationC. Berger and L. M. Sehgal, “PCAC and coherent pion production by low energy neutrinos,” Phys. Rev. D79 (2009) 053003, arXiv:0812.2653 [hep-ph].spa
dcterms.bibliographicCitationMINERvA Collaboration, A. Mislivec et al., “Measurement of total and differential cross sections of neutrino and antineutrino coherent ± production on carbon,” Phys. Rev. D97 no. 3, (2018) 032014, arXiv:1711.01178 [hep-ex].spa
dcterms.bibliographicCitationO. Benhar, S. Fantoni, G. Lykasov, and N. Slavin, “Multiple hadron production in electron scattering off nuclear targets,” Phys. Rev. C 55 (1997) 244–252.spa
dcterms.bibliographicCitationO. Benhar, S. Fantoni, and G. Lykasov, “Backward hadron production in neutrino nucleus interactions,” Eur. Phys. J. A 7 (2000) 415–419, arXiv:nucl-th/9901053.spa
dcterms.bibliographicCitationA. M. Ankowski and J. T. Sobczyk, “Construction of spectral functions for medium-mass nuclei,” Phys. Rev. C 77 (Apr, 2008) 044311. https://link.aps.org/doi/10.1103/PhysRevC.77.044311.spa
dcterms.bibliographicCitationO. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, “Spectral function of finite nuclei and scattering of GeV electrons,” Nucl. Phys. A579 (1994) 493–517.spa
dcterms.bibliographicCitationJ. W. Negele, “Structure of Finite Nuclei in the Local-Density Approximation,” Phys. Rev. C1 (1970) 1260–1321.spa
dcterms.bibliographicCitationY. Hayato, “A neutrino interaction simulation program library NEUT,” Acta Phys. Polon. B 40 (2009) 2477–2489.spa
dcterms.bibliographicCitationS. Singh, “The Effect of final state interactions and deuteron binding in neutrino d –> Mup p,” Nucl. Phys. B 36 (1972) 419–435.spa
dcterms.bibliographicCitationT. Golan, J. T. Sobczyk, and J. Zmuda, “NuWro: the Wroclaw Monte Carlo Generator of Neutrino Interactions,” Nucl. Phys. Proc. Suppl. 229-232 (2012) 499.spa
dcterms.bibliographicCitationR. Subedi et al., “Probing Cold Dense Nuclear Matter,” Science 320 (2008) 1476–1478, arXiv:0908.1514 [nucl-ex].spa
dcterms.bibliographicCitationJ. G. Morfin, J. Nieves, and J. T. Sobczyk, “Recent Developments in Neutrino/Antineutrino - Nucleus Interactions,” Adv. High Energy Phys. 2012 (2012) 934597, arXiv:1209.6586 [hep-ex].spa
dcterms.bibliographicCitationS. Dolan, G. Megias, and S. Bolognesi, “Implementation of the susav2-mec 1p1h and 2p2h models in genie and analysis of nuclear effects in t2k measurements,” Phys.Rev. D101 (2020) 033003, arXiv:1905.08556 [hep-ex].spa
dcterms.bibliographicCitationM. F. Carneiro et al., “High-statistics measurement of neutrino quasielastic-like scattering at hE i= 6 GeV on a hydrocarbon target,” 2019.spa
dcterms.bibliographicCitationA. Nikolakopoulos, M. Martini, M. Ericson, N. Van Dessel, R. González-Jiménez, and N. Jachowicz, “Mean field approach to reconstructed neutrino energy distributions in accelerator-based experiments,” Phys. Rev. C 98 no. 5, (2018) 054603, arXiv:1808.07520 [nucl-th].spa
dcterms.bibliographicCitationA. M. Ankowski, “Effect of the charged-lepton’s mass on the quasielastic neutrino cross sections,” Phys. Rev. C 96 no. 3, (2017) 035501, arXiv:1707.01014 [nucl-th].spa
dcterms.bibliographicCitationJ. Weil and U. Mosel, “The GiBUU transport model,” EPJ Web Conf. 52 (2013) 06007.spa
dcterms.bibliographicCitationJ. Amaro, M. Barbaro, J. Caballero, T. Donnelly, and J. Udias, “Relativistic analyses of quasielastic neutrino cross sections at MiniBooNE kinematics,” Phys. Rev. D 84 (2011) 033004, arXiv:1104.5446 [nucl-th].spa
dcterms.bibliographicCitationG. D. Megias, M. V. Ivanov, R. González-Jiménez, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and J. M. Udías, “Nuclear effects in neutrino and antineutrino charged-current quasielastic scattering at MINER A kinematics,” Phys. Rev. D 89 no. 9, (2014) 093002, arXiv:1402.1611 [nucl-th]. [Erratum: Phys.Rev.D 91, 039903 (2015)].spa
dcterms.bibliographicCitationCLAS Collaboration, B. A. Mecking et al., “The CEBAF Large Acceptance Spectrometer (CLAS),” Nucl. Instrum. Meth. A503 (2003) 513–553.spa
dcterms.bibliographicCitationCLAS Collaboration, D. S. Carman, “Excited Nucleon Spectrum and Structure Studies with CLAS and CLAS12,” in 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2019) Pittsburgh, Pennsylvania, USA, June 2-7, 2019. 2019. arXiv:1907.02407 [nucl-ex]. https://misportal.jlab.org/ul/publications/view_pub.cfm?pub_id=16009.spa
dcterms.bibliographicCitationCLAS Collaboration, E. O. Cohen et al., “Center of Mass Motion of Short-Range Correlated Nucleon Pairs studied via the A(e, e0pp) Reaction,” Phys. Rev. Lett. 121 no. 9, (2018) 092501, arXiv:1805.01981 [nucl-ex].spa
dcterms.bibliographicCitationCLAS Collaboration, M. Duer et al., “Measurement of Nuclear Transparency Ratios for Protons and Neutrons,” Phys. Lett. B797 (2019) 134792, arXiv:1811.01823 [nucl-ex].spa
dcterms.bibliographicCitationCLAS Collaboration, V. I. Mokeev, “Nucleon Resonance Structure from Exclusive Meson Electroproduction with CLAS,” Few Body Syst. 59 no. 4, (2018) 46, arXiv:1801.09750 [nucl-ex].spa
dcterms.bibliographicCitationA. M. Ankowski, A. Friedland, S. W. Li, O. Moreno, P. Schuster, N. Toro, and N. Tran, “Lepton-nucleus cross section measurements for dune with the ldmx detector,” 2019.spa
dcterms.bibliographicCitationL. S. Kisslinger and D. Das, “A brief review of dark matter,” Int. J. Mod. Phys. A 34 no. 27, (2019) 1930013, arXiv:1908.00612 [physics.gen-ph].spa
dcterms.bibliographicCitationV. De Romeri, K. J. Kelly, and P. A. N. Machado, “Hunting On- and Off-Axis for Light Dark Matter with DUNE-PRISM,” arXiv:1903.10505 [hep-ph].spa
dcterms.bibliographicCitationLDMX Collaboration, T. Åkesson et al., “Light Dark Matter eXperiment (LDMX),” arXiv:1808.05219 [hep-ex].spa
dcterms.bibliographicCitationP. deNiverville and C. Frugiuele, “Hunting sub-GeV dark matter with the NO A near detector,” Phys. Rev. D99 no. 5, (2019) 051701, arXiv:1807.06501 [hep-ph].spa
dcterms.bibliographicCitationMiniBooNE DM Collaboration, A. A. Aguilar-Arevalo et al., “Dark Matter Search in Nucleon, Pion, and Electron Channels from a Proton Beam Dump with MiniBooNE,” Phys. Rev. D98 no. 11, (2018) 112004, arXiv:1807.06137 [hep-ex].spa
dcterms.bibliographicCitationBaBar Collaboration, J. P. Lees et al., “Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar,” Phys. Rev. Lett. 119 no. 13, (2017) 131804, arXiv:1702.03327 [hep-ex].spa
dcterms.bibliographicCitationM. Davier and H. Nguyen Ngoc, “An Unambiguous Search for a Light Higgs Boson,” Phys. Lett. B229 (1989) 150–155.spa
dcterms.bibliographicCitationNA48/2 Collaboration, J. R. Batley et al., “Search for the dark photon in 0 decays,” Phys. Lett. B746 (2015) 178–185, arXiv:1504.00607 [hep-ex].spa
dcterms.bibliographicCitationJ. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, “Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump,” Phys. Rev. D38 (1988) 3375.spa
dcterms.bibliographicCitationE. M. Riordan et al., “A Search for Short Lived Axions in an Electron Beam Dump Experiment,” Phys. Rev. Lett. 59 (1987) 755.spa
dcterms.bibliographicCitationJ. D. Bjorken, R. Essig, P. Schuster, and N. Toro, “New Fixed-Target Experiments to Search for Dark Gauge Forces,” Phys. Rev. D80 (2009) 075018, arXiv:0906.0580 [hep-ph].spa
dcterms.bibliographicCitationA. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbanek, “A Search for Shortlived Particles Produced in an Electron Beam Dump,” Phys. Rev. Lett. 67 (1991) 2942–2945.spa
dcterms.bibliographicCitationCHARM-II Collaboration, D. Geiregat et al., “First observation of neutrino trident production,” Phys. Lett. B245 (1990) 271–275.spa
dcterms.bibliographicCitationCCFR Collaboration, S. R. Mishra et al., “Neutrino tridents and W Z interference,” Phys. Rev. Lett. 66 (1991) 3117–3120.spa
dcterms.bibliographicCitationNuTeV Collaboration, T. Adams et al., “Evidence for diffractive charm production in muon-neutrino Fe and anti-muon-neutrino Fe scattering at the Tevatron,” Phys. Rev. D 61 (2000) 092001, arXiv:hep-ex/9909041 [hep-ex].spa
dcterms.bibliographicCitationCMS Collaboration, A. M. Sirunyan et al., “Search for an Lμ − L gauge boson using Z! 4μ events in proton-proton collisions at p s = 13 TeV,” Submitted to: Phys. Lett.spa
dcterms.bibliographicCitationCMS Collaboration, A. M. Sirunyan et al., “Search for an Lμ − L gauge boson using Z! 4μ events in proton-proton collisions at p s = 13 TeV,” Submitted to: Phys. Lett. (2018) , arXiv:1808.03684 [hep-ex].spa
dcterms.bibliographicCitationBaBar Collaboration, J. P. Lees et al., “Search for a muonic dark force at BABAR,” Phys. Rev. D 94 no. 1, (2016) 011102, arXiv:1606.03501 [hep-ex].spa
dcterms.bibliographicCitationW. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, “Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams,” Phys. Rev. Lett. 113 (2014) 091801, arXiv:1406.2332 [hep-ph].spa
dcterms.bibliographicCitationG. Bellini et al., “Precision measurement of the 7Be solar neutrino interaction rate in Borexino,” Phys. Rev. Lett. 107 (2011) 141302, arXiv:1104.1816 [hep-ex].spa
dcterms.bibliographicCitationR. Harnik, J. Kopp, and P. A. N. Machado, “Exploring nu Signals in Dark Matter Detectors,” JCAP 1207 (2012) 026, arXiv:1202.6073 [hep-ph].spa
dcterms.bibliographicCitationBorexino Collaboration, M. Agostini et al., “First Simultaneous Precision Spectroscopy of pp, 7Be, and pep Solar Neutrinos with Borexino Phase-II,” arXiv:1707.09279 [hep-ex].spa
dcterms.bibliographicCitationB. Ahlgren, T. Ohlsson, and S. Zhou, “Comment on ‘Is Dark Matter with Long-Range Interactions a Solution to All Small-Scale Problems of Cold Dark Matter Cosmology?’,” Phys. Rev. Lett. 111 no. 19, (2013) 199001, arXiv:1309.0991 [hep-ph].spa
dcterms.bibliographicCitationA. Kamada and H.-B. Yu, “Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube,” Phys. Rev. D 92 no. 11, (2015) 113004, arXiv:1504.00711 [hep-ph].spa
dcterms.bibliographicCitationSHiP Collaboration, C. Ahdida et al., “Sensitivity of the SHiP experiment to Heavy Neutral Leptons,” JHEP 04 (2019) 077, arXiv:1811.00930 [hep-ph].spa
dcterms.bibliographicCitationA. B. Balantekin, A. de Gouvêa, and B. Kayser, “Addressing the Majorana vs. Dirac Question with Neutrino Decays,” Phys. Lett. B789 (2019) 488–495, arXiv:1808.10518 [hep-ph].spa
dcterms.bibliographicCitationP. Ballett, T. Boschi, and S. Pascoli, “Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector,” arXiv:1905.00284 [hep-ph].spa
dcterms.bibliographicCitationW. Bonivento et al., “Proposal to Search for Heavy Neutral Leptons at the SPS,” arXiv:1310.1762 [hep-ex].spa
dcterms.bibliographicCitationMINOS+, Daya Bay Collaboration, P. Adamson et al., “Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments,” Phys. Rev. Lett. 125 no. 7, (2020) 071801, arXiv:2002.00301 [hep-ex].spa
dcterms.bibliographicCitationIceCube Collaboration, M. G. Aartsen et al., “Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope,” Phys. Rev. D 102 no. 5, (2020) 052009, arXiv:2005.12943 [hep-ex].spa
dcterms.bibliographicCitationW. Altmannshofer, M. Tammaro, and J. Zupan, “Non-standard neutrino interactions and low energy experiments,” JHEP 09 (2019) 083, arXiv:1812.02778 [hep-ph].spa
dcterms.bibliographicCitationV. A. Kostelecký and S. Samuel, “Spontaneous Breaking of Lorentz Symmetry in String Theory,” Phys. Rev. D39 (1989) 683.spa
dcterms.bibliographicCitationV. A. Kostelecký and R. Potting, “CPT and strings,” Nucl. Phys. B359 (1991) 545–570.spa
dcterms.bibliographicCitationV. A. Kostelecký and N. Russell, “Data Tables for Lorentz and CPT Violation,” Rev. Mod. Phys. 83 (2011) 11–31, arXiv:0801.0287 [hep-ph].spa
dcterms.bibliographicCitationA. Kostelecký and M. Mewes, “Neutrinos with Lorentz-violating operators of arbitrary dimension,” Phys.Rev. D85 (2012) 096005, arXiv:1112.6395 [hep-ph].spa
dcterms.bibliographicCitationV. A. Kostelecký and M. Mewes, “Lorentz violation and short-baseline neutrino experiments,” Phys. Rev. D70 (2004) 076002, arXiv:hep-ph/0406255 [hep-ph].spa
dcterms.bibliographicCitationJ. S. Diaz, V. A. Kostelecký, and M. Mewes, “Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations,” Phys.Rev. D80 (2009) 076007, arXiv:0908.1401 [hep-ph].spa
dcterms.bibliographicCitationMINOS Collaboration, P. Adamson et al., “Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector,” Phys. Rev. Lett. 101 (2008) 151601, arXiv:0806.4945 [hep-ex].spa
dcterms.bibliographicCitationMINOS Collaboration, P. Adamson et al., “Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector,” Phys. Rev. D 85 (2012) 031101, arXiv:1201.2631 [hep-ex].spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., “Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline,” Phys. Rev. D 95 no. 11, (2017) 111101, arXiv:1703.01361 [hep-ex].spa
dcterms.bibliographicCitationCHARM Collaboration, J. Allaby et al., “A Precise Determination of the Electroweak Mixing Angle from Semileptonic Neutrino Scattering,” Z. Phys. C 36 (1987) 611.spa
dcterms.bibliographicCitationCCFR, E744, E770 Collaboration, K. S. McFarland et al., “A Precision measurement of electroweak parameters in neutrino - nucleon scattering,” Eur. Phys. J. C 1 (1998) 509–513, arXiv:hep-ex/9701010.spa
dcterms.bibliographicCitationNuTeV Collaboration, G. Zeller et al., “A Precise Determination of Electroweak Parameters in Neutrino Nucleon Scattering,” Phys. Rev. Lett. 88 (2002) 091802, arXiv:hep-ex/0110059. [Erratum: Phys.Rev.Lett. 90, 239902 (2003)].spa
dcterms.bibliographicCitationParticle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.spa
dcterms.bibliographicCitationCHARM Collaboration, J. Dorenbosch et al., “EXPERIMENTAL RESULTS ON NEUTRINO - ELECTRON SCATTERING,” Z. Phys. C 41 (1989) 567. [Erratum: Z.Phys.C 51, 142 (1991)].spa
dcterms.bibliographicCitationL. Ahrens et al., “Determination of electroweak parameters from the elastic scattering of muon-neutrinos and anti-neutrinos on electrons,” Phys. Rev. D 41 (1990) 3297–3316.spa
dcterms.bibliographicCitationCHARM-II Collaboration, P. Vilain et al., “Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons,” Phys. Lett. B 335 (1994) 246–252.spa
dcterms.bibliographicCitationNOMAD Collaboration, P. Astier et al., “A Study of strange particle production in muon-neutrino charged current interactions in the NOMAD experiment,” Nucl. Phys. B 621 (2002) 3–34, arXiv:hep-ex/0111057.spa
dcterms.bibliographicCitationMINERvA Collaboration, C. Marshall et al., “Measurement of neutral-current K+ production by neutrinos using MINERvA,” Phys. Rev. Lett. 119 no. 1, (2017) 011802, arXiv:1611.02224 [hep-ex].spa
dcterms.bibliographicCitationF. Akbar, M. Rafi Alam, M. Sajjad Athar, and S. Singh, “Quasielastic production of polarized hyperons in antineutrino–nucleon reactions,” Phys. Rev. D 94 no. 11, (2016) 114031, arXiv:1608.02103 [hep-ph].spa
dcterms.bibliographicCitationO. Erriquez et al., “Production of Strange Particles in anti-neutrino Interactions at the CERN PS,” Nucl. Phys. B 140 (1978) 123–140.spa
dcterms.bibliographicCitationM. Sajjad Athar and J. G. Morfin, “Neutrino(Antineutrino)-Nucleus Interactions in the Shallow- and Deep-Inelastic Scattering Regions,” arXiv:2006.08603 [hep-ph].spa
dcterms.bibliographicCitationNuSTEC Collaboration, C. Andreopoulos et al., “Summary of the NuSTEC Workshop on Shallow- and Deep-Inelastic Scattering,” in NuSTEC Workshop on Shallow- and Deep-Inelastic Scattering. 7, 2019. arXiv:1907.13252 [hep-ph].spa
dcterms.bibliographicCitationB. Kopeliovich, J. Morfin, and I. Schmidt, “Nuclear Shadowing in Electro-Weak Interactions,” Prog. Part. Nucl. Phys. 68 (2013) 314–372, arXiv:1208.6541 [hep-ph].spa
dcterms.bibliographicCitationS. Alekhin, J. Blümlein, S. Kulagin, S.-O. Moch, and R. Petti, “Strange and non-strange distributions from the collider data,” PoS DIS2018 (2018) 008, arXiv:1808.06871 [hep-ph].spa
dcterms.bibliographicCitationNOMAD Collaboration, O. Samoylov et al., “A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment,” Nucl. Phys. B 876 (2013) 339–375, arXiv:1308.4750 [hep-ex].spa
dcterms.bibliographicCitationS. Alekhin, S. Kulagin, and R. Petti, “Nuclear Effects in the Deuteron and Constraints on the d/u Ratio,” Phys. Rev. D 96 no. 5, (2017) 054005, arXiv:1704.00204 [nucl-th].spa
dcterms.bibliographicCitationA. Accardi, L. Brady, W. Melnitchouk, J. Owens, and N. Sato, “Constraints on large-x parton distributions from new weak boson production and deep-inelastic scattering data,” Phys. Rev. D 93 no. 11, (2016) 114017, arXiv:1602.03154 [hep-ph].spa
dcterms.bibliographicCitationS. L. Adler, “Tests of the Conserved Vector Current and Partially Conserved Axial-Vector Current Hypotheses in High-Energy Neutrino Reactions,” Phys. Rev. 135 (1964) B963–B966.spa
dcterms.bibliographicCitationD. Allasia et al., “Q**2 Dependence of the Proton and Neutron Structure Functions from Neutrino and anti-neutrinos Scattering in Deuterium,” Z. Phys. C28 (1985) 321.spa
dcterms.bibliographicCitationS. A. Kulagin and R. Petti, “Neutrino inelastic scattering off nuclei,” Phys. Rev. D 76 (2007) 094023, arXiv:hep-ph/0703033.spa
dcterms.bibliographicCitationD. J. Gross and C. H. Llewellyn Smith, “High-energy neutrino - nucleon scattering, current algebra and partons,” Nucl. Phys. B14 (1969) 337–347.spa
dcterms.bibliographicCitationJ. Kim et al., “A Measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule,” Phys. Rev. Lett. 81 (1998) 3595–3598, arXiv:hep-ex/9808015.spa
dcterms.bibliographicCitationS. Larin and J. Vermaseren, “The alpha-s**3 corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule,” Phys. Lett. B 259 (1991) 345–352spa
dcterms.bibliographicCitationA. L. Kataev and A. V. Sidorov, “The Jacobi polynomials QCD analysis of the CCFR data for xF3 and the Q**2 dependence of the Gross-Llewellyn-Smith sum rule,” Phys. Lett. B 331 (1994) 179–186, arXiv:hep-ph/9402342.spa
dcterms.bibliographicCitationDUNE Collaboration, “TDR Volume 1: The LBNF and DUNE Projects,” tech. rep., 2019. http://docs.dunescience.org/cgi-bin/ShowDocument?docid=nnnn.spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., “The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module,” arXiv:1807.10340 [physics.ins-det].spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.48550/arXiv.2103.13910
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsDeep Underground Neutrino Experiment, DUNEN, ear detector, Neutrino, Neutrino oscillationsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por