Mostrar el registro sencillo del ítem

dc.contributor.authorMonsalve-Escudero, Laura Milena
dc.contributor.otherLoaiza-Cano, Vanessa
dc.contributor.otherZapata-Cardona, Maria Isabel
dc.contributor.otherQuintero-Gil, Diana Carolina
dc.contributor.otherHernández-Mira, Estiven
dc.contributor.otherPájaro-González, Yina
dc.contributor.otherOliveros-Díaz, Andrés Felipe
dc.contributor.otherDiaz-Castillo, Fredyc
dc.contributor.otherQuiñones, Wistón
dc.contributor.otherRobledo, Sara
dc.contributor.otherMartinez-Gutierrez, Marlen
dc.date.accessioned2022-12-20T19:22:44Z
dc.date.available2022-12-20T19:22:44Z
dc.date.issued2021-06-23
dc.date.submitted2021-05-15
dc.identifier.citationMonsalve-Escudero, L.M.; Loaiza-Cano, V.; Zapata-Cardona, M.I.; Quintero-Gil, D.C.; Hernández-Mira, E.; Pájaro-González, Y.; Oliveros-Díaz, A.F.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.; et al. The Antiviral and Virucidal Activities of Voacangine and Structural Analogs Extracted from Tabernaemontana cymosa Depend on the Dengue Virus Strain. Plants 2021, 10, 1280. https://doi.org/10.3390/ plants10071280spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1160
dc.description.abstractCurrently, no specific licensed antiviral exists for treating the illness caused by dengue virus (DENV). Therefore, the search for compounds of natural origin with antiviral activity is an important area of research. In the present study, three compounds were isolated and identified from seeds of Tabernaemontana cymosa plants. The in vitro antiviral effect of those compounds and voacangine against different DENV strains was assessed using different experimental approaches: compounds added before the infection (Pre), at the same time with the virus (Trans), after the infection (Post) or compounds present in all moments of the experiment (Pre-Trans-Post, Combined treatment). In silico studies (docking and molecular dynamics) were also performed to explain the possible antiviral mechanisms. The identified compounds were three structural analogs of voacangine (voacangine-7-hydroxyindolenine, rupicoline and 3-oxo-voacangine). In the Pre-treatment, only voacangine-7-hydroxyindolenine and rupicoline inhibited the infection caused by the DENV-2/NG strain (16.4% and 29.6% infection, respectively). In the Trans-treatment approach, voacangine, voacangine-7-hydroxyindolenine and rupicoline inhibited the infection in both DENV-2/NG (11.2%, 80.4% and 75.7% infection, respectively) and DENV-2/16681 infection models (73.7%, 74.0% and 75.3% infection, respectively). The latter strain was also inhibited by 3-oxo-voacangine (82.8% infection). Moreover, voacangine (most effective virucidal agent) was also effective against one strain of DENV-1 (DENV-1/WestPac/74) and against the third strain of DENV-2 (DENV-2/S16803) (48.5% and 32.4% infection, respectively). Conversely, no inhibition was observed in the post-treatment approach. The last approach (combined) showed that voacangine, voacangine-7-hydroxyindolenine and rupicoline inhibited over 90% of infections (3.5%, 6.9% and 3.5% infection, respectively) of both strains (DENV-2/NG and DENV-2/16681). The free energy of binding obtained with an in silico approach was favorable for the E protein and compounds, which ranged between −5.1 and −6.3 kcal/mol. Finally, the complex formed between DENV-2 E protein and the best virucidal compound was stable for 50 ns. Our results show that the antiviral effect of indole alkaloids derived from T. cymose depends on the serotype and the virus strain.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourcePlantsspa
dc.titleThe Antiviral and Virucidal Activities of Voacangine and Structural Analogs Extracted from Tabernaemontana cymosa Depend on the Dengue Virus Strainspa
dc.title.alternativeThe Antiviral and Virucidal Activities of Voacangine and Structural Analogs Extracted from Tabernaemontana cymosa Depend on the Dengue Virus Strainspa
dcterms.bibliographicCitationTapia-Conyer, R.; Betancourt-Cravioto, M.; Méndez-Galván, J. Dengue: An escalating public health problem in Latin America. Paediatr. Int. Child Health 2012, 32, 14–17. [CrossRef]spa
dcterms.bibliographicCitationGubler, D.J. Aedes aegypti and Aedes aegypti-Borne Disease Control in the 1990s: Top Down or Bottom Up. Am. J. Trop. Med. Hyg. 1989, 40, 571–578. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationIstúriz, R.E.; Gubler, D.J.; Del Castillo, J.B. Dengue and dengue hemorrhagic fever in Latin America and the Caribbean. Infect. Dis. Clin. 2000, 14, 121–140. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationApte-Sengupta, S.; Sirohi, D.; Kuhn, R.J. Coupling of replication and assembly in flaviviruses. Curr. Opin. Virol. 2014, 9, 134–142. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationChambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 1990, 44, 649–688. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationRico-Hesse, R.; Nisalak, A.; Harrison, L.M.; Vaughn, D.W.; Green, S.; Ennis, F.A.; Kalayanarooj, S.; Rothman, A.L. Molecular evolution of dengue type 2 virus in Thailand. Am. J. Trop. Med. Hyg. 1998, 58, 96–101. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLeitmeyer, K.C.; Vaughn, D.W.; Watts, D.M.; Salas, R.; Villalobos, I.; Chacon, D.; Ramos, C.; Rico-Hesse, R. Dengue Virus Structural Differences That Correlate with Pathogenesis. J. Virol. 1999, 73, 4738–4747. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationMartínez-Betancur, V.; Marín-Villa, M.; Martínez-Gutierrez, M. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains. J. Med. Virol. 2014, 86, 1448–1458. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMartínez-Betancur, V.; Martinez-Gutierrez, M. Proteomic profile of human monocytic cells infected with dengue virus. Asian Pac. J. Trop. Biomed. 2016, 6, 914–923. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationCruz-Oliveira, C.; Freire, J.M.; Conceição, T.M.; Higa, L.M.; Castanho, M.A.; Da Poian, A.T. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev. 2015, 39, 155–170. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationMosso, C.; Galván-Mendoza, I.J.; Ludert, J.E.; del Angel, R.M. Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 2008, 378, 193–199. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationElshuber, S.; Allison, S.L.; Heinz, F.X.; Mandl, C.W. Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virusFN1. J. Gen. Virol. 2003, 84, 183–191. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMagden, J.; Kääriäinen, L.; Ahola, T. Inhibitors of virus replication: Recent developments and prospects. Appl. Microbiol. Biotechnol. 2005, 66, 612–621. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDenaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother. Res. 2020, 34, 742–768. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCortez-Gallardo, V.; Macedo-Ceja, J.P.; Hernández-Arroyo, M.; Arteaga-Aureoles, G.; Espinosa-Galván, D.; Rodríguez-Landa, J.F. Farmacognosia: Breve historia de sus orígenes y su relación con las ciencias médicas. Rev. Bioméd. 2004, 15, 123–136. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationHernández-Castro, C.; Diaz-Castillo, F.; Martinez-Gutierrez, M. Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. Asian Pac. J. Trop. Dis. 2015, 5, 98–106. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGómez-Calderón, C.; Mesa-Castro, C.; Robledo, S.; Gómez, S.; Bolivar-Avila, S.; Diaz-Castillo, F.; Martínez-Gutierrez, M. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Complement. Altern. Med. 2017, 17, 1–12. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationTrujillo-Correa, A.I.; Quintero-Gil, D.C.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez-Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement. Altern. Med. 2019, 19, 1–16. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationEndress, M.E.; Liede-Schumann, S.; Meve, U. An updated classification for Apocynaceae. Phytotaxa 2014, 159, 175–194. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationDey, A.; Mukherjee, A.; Chaudhury, M. Alkaloids from apocynaceae: Origin, pharmacotherapeutic properties, and structure-activity studies. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 52, pp. 373–488. [Google Scholar]spa
dcterms.bibliographicCitationAnbukkarasi, M.; Thomas, P.A.; Sheu, J.-R.; Geraldine, P. In vitro antioxidant and anticataractogenic potential of silver nanoparticles biosynthesized using an ethanolic extract of Tabernaemontana divaricata leaves. Biomed. Pharmacother. 2017, 91, 467–475. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationThambi, P.T.; Kuzhivelil, B.; Sabu, M.; Jolly, C. Antioxidant and antiinflammatory activities of the flowers of Tabernaemontana coronaria (L) R.BR. Indian J. Pharm. Sci. 2006, 68, 352–355. [Google Scholar]spa
dcterms.bibliographicCitationDe Almeida, L.; Cintra, A.C.; Veronese, E.L.; Nomizo, A.; Franco, J.J.; Arantes, E.C.; Giglio, J.R.; Sampaio, S.V. Anticrotalic and antitumoral activities of gel filtration fractions of aqueous extract from Tabernaemontana catharinensis (Apocynaceae). Comp. Biochem. Physiol. Part C Toxicol. Pharm. 2004, 137, 19–27. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationVan Beek, T.; Kuijlaars, F.; Thomassen, P.; Verpoorte, R.; Svendsen, A.B. Antimicrobially active alkaloids from Tabernaemontana pachysiphon. Phytochemistry 1984, 23, 1771–1778. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationDíaz Castillo, F.; Morelos Cardona, S.M.; Carrascal Medina, M.; Pájaro González, Y.; Gómez Estrada, H. Actividad larvicida de extractos etanólicos de Tabernaemontana cymosa y Trichilia hirta sobre larvas de estadio III y IV de Aedes aegypti (Diptera: Culicidae). Rev. Cuba. Plantas Med. 2012, 17, 256–267. [Google Scholar]spa
dcterms.bibliographicCitationPereira, P.S.; França, S.D.C.; De Oliveira, P.V.A.; Breves, C.M.D.S.; Pereira, S.I.V.; Sampaio, S.V.; Nomizo, A.; Dias, D.A. Chemical constituents from Tabernaemontana catharinensis root bark: A brief NMR review of indole alkaloids and in vitro cytotoxicity. Quím. Nova 2008, 31, 20–24. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationSharma, P.; Cordell, G.A. Heyneanine Hydroxyindolenine, A New Indole Alkaloid from Ervatamia coronaria var. plena. J. Nat. Prod. 1988, 51, 528–531. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHusain, K.; Said, I.M.; Din, L.B.; Takayama, H.; Kitajima, M.; Aimi, N. Alkaloids from The Roots of Tabernaemontana Macrocarpa Jack. Nat. Prod. Sci. 1997, 3, 42–48. [Google Scholar]spa
dcterms.bibliographicCitationAchenbach, H.; Benirschke, M.; Torrenegra, R. Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochemistry 1997, 45, 325–335. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationFarrow, S.C.; Kamileen, M.O.; Meades, J.; Ameyaw, B.; Xiao, Y.; O’Connor, S.E. Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. J. Biol. Chem. 2018, 293, 13821–13833. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationKrengel, F.; Herrera Santoyo, J.; Olivera Flores, T.D.J.; Chávez Ávila, V.M.; Pérez Flores, F.J.; Reyes Chilpa, R. Quantification of anti-addictive alkaloids ibogaine and voacangine in in vivo-and in vitro-grown plants of two Mexican Tabernaemontana species. Chem. Biodivers. 2016, 13, 1730–1737. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBardiot, D.; Koukni, M.; Smets, W.; Carlens, G.; McNaughton, M.; Kaptein, S.; Dallmeier, K.; Chaltin, P.; Neyts, J.; Marchand, A. Discovery of Indole Derivatives as Novel and Potent Dengue Virus Inhibitors. J. Med. Chem. 2018, 61, 8390–8401. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLaura, G.F.M.; Njoya, E.M.; Jouda, J.-B.; Kweka, B.N.W.; Mbazoa, C.D.; Wang, F.; Seguin, E.; Wandji, J. A new cytotoxic indole alkaloid from Tabernaemontana inconspicua stapf. Nat. Prod. Res. 2021, 35, 1590–1595. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSundar, L.; Chang, F.N. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus. Microbiology 1993, 139, 3139–3148. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationO’Brien, S.; Schiller, G.; Lister, J.; Damon, L.; Goldberg, S.; Aulitzky, W.; Ben-Yehuda, D.; Stock, W.; Coutre, S.; Douer, D.; et al. High-Dose Vincristine Sulfate Liposome Injection for Advanced, Relapsed, and Refractory Adult Philadelphia Chromosome–Negative Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2013, 31, 676–683. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationDiwaker, D.; Mishra, K.P.; Ganju, L.; Singh, S.B. Protein Disulfide Isomerase Mediates Dengue Virus Entry in Association with Lipid Rafts. Viral Immunol. 2015, 28, 153–160. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLimjindaporn, T.; Wongwiwat, W.; Noisakran, S.; Srisawat, C.; Netsawang, J.; Puttikhunt, C.; Kasinrerk, W.; Avirutnan, P.; Thiemmeca, S.; Sriburi, R.; et al. Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochem. Biophys. Res. Commun. 2009, 379, 196–200. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationChoy, M.M.; Zhang, S.L.; Costa, V.V.; Tan, H.C.; Horrevorts, S.; Ooi, E.E. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection. PLoS Negl. Trop. Dis. 2015, 9, e0004058. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationTeissier, E.; Zandomeneghi, G.; Loquet, A.; Lavillette, D.; Lavergne, J.-P.; Montserret, R.; Cosset, F.-L.; Böckmann, A.; Meier, B.H.; Penin, F.; et al. Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol. PLoS ONE 2011, 6, e15874. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationGermi, R.; Crance, J.-M.; Garin, D.; Guimet, J.; Lortat-Jacob, H.; Ruigrok, R.W.; Zarski, J.-P.; Drouet, E. Heparan Sulfate-Mediated Binding of Infectious Dengue Virus Type 2 and Yellow Fever Virus. Virology 2002, 292, 162–168. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationNelson, J.; McFerran, N.V.; Pivato, G.; Chambers, E.; Doherty, C.; Steele, D.; Timson, D.J. The 67 kDa laminin receptor: Structure, function and role in disease. Biosci. Rep. 2008, 28, 33–48. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationTassaneetrithep, B.; Burgess, T.H.; Granelli-Piperno, A.; Trumpfheller, C.; Finke, J.; Sun, W.; Eller, M.A.; Pattanapanyasat, K.; Sarasombath, S.; Birx, D.L.; et al. DC-SIGN (CD209) Mediates Dengue Virus Infection of Human Dendritic Cells. J. Exp. Med. 2003, 197, 823–829. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationTalarico, L.B.; Pujol, C.A.; Zibetti, R.G.M.; Faría, P.C.S.; Noseda, M.D.; Duarte, M.E.R.; Damonte, E.B. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antivir. Res. 2005, 66, 103–110. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGoo, L.; VanBlargan, L.A.; Dowd, K.A.; Diamond, M.S.; Pierson, T.C. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog. 2017, 13, e1006178. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationHishiki, T.; Kato, F.; Tajima, S.; Toume, K.; Umezaki, M.; Takasaki, T.; Miura, T. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle. Front. Microbiol. 2017, 8, 1674. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHitakarun, A.; Khongwichit, S.; Wikan, N.; Roytrakul, S.; Yoksan, S.; Rajakam, S.; Davidson, A.D.; Smith, D.R. Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Sci. Rep. 2020, 10, 1499. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationLoaiza-Cano, V.; Monsalve-Escudero, L.M.; Quintero-Gil, C.; Pastrana, M.; Andres, P.M.S.; Galeano, E.; Wildeman, Z.; Martinez-Gutierrez, M. In Vitro and In Silico Anti-Arboviral Activities of Dihalogenated Phenolic Derivates of L-Tyrosine. Molecules 2021, 26, 3430. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationTerstappen, G.C.; Reggiani, A. In silico research in drug discovery. Trends Pharm. Sci. 2001, 22, 23–26. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationVelásquez, M.; Drosos, J.; Gueto, C.; Márquez, J.; Vivas-Reyes, R. Autodock-PM6 method to choose the better pose in molecular docking studies. Rev. Colomb. Quím. 2013, 42, 101–124. [Google Scholar]spa
dcterms.bibliographicCitationMurgueitio, M.S.; Bermudez, M.; Mortier, J.; Wolber, G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today Technol. 2012, 9, e219–e225. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationEkins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharm. 2007, 152, 21–37. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationScheiner, S.; Kar, T.; Pattanayak, J. Comparison of Various Types of Hydrogen Bonds Involving Aromatic Amino Acids. J. Am. Chem. Soc. 2002, 124, 13257–13264. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationQuintero-Gil, C.; Parra-Suescún, J.; Lopez-Herrera, A.; Orduz, S. In-silico design and molecular docking evaluation of peptides derivatives from bacteriocins and porcine beta defensin-2 as inhibitors of Hepatitis E virus capsid protein. Virusdisease 2017, 28, 281–288. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDomingo, C.; Niedrig, M.; Teichmann, A.; Kaiser, M.; Rumer, L.; Jarman, R.G.; Donoso-Mantke, O. 2nd International External Quality Control Assessment for the Molecular Diagnosis of Dengue Infections. PLoS Negl. Trop. Dis. 2010, 4, e833. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationCockburn, J.; Sanchez, M.E.N.; Fretes, N.; Urvoas, A.; Staropoli, I.; Kikuti, C.M.; Coffey, L.L.; Seisdedos, F.A.; Bedouelle, H.; Rey, F.A. Mechanism of Dengue Virus Broad Cross-Neutralization by a Monoclonal Antibody. Structure 2012, 20, 303–314. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationTrott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationLavi, A.; Ngan, C.H.; Movshovitz-Attias, D.; Bohnuud, T.; Yueh, C.; Beglov, D.; Schueler-Furman, O.; Kozakov, D. Detection of peptide-binding sites on protein surfaces: The first step toward the modeling and targeting of peptide-mediated interactions. Proteins Struct. Funct. Bioinform. 2013, 81, 2096–2105. [Google Scholar] [CrossRef] [PubMed][Green Version]spa
dcterms.bibliographicCitationBerendsen, H.; Van Der Spoel, D.; Van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationLemkul, J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living J. Comput. Mol. Sci. 2019, 1, 5068. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMacKerell, A.D., Jr.; Brooks, B.; Brooks, C.L., III; Nilsson, L.; Roux, B.; Won, Y.; Karplus, M. CHARMM: The energy function and its parameterization. Encycl. Comput. Chem. 2002, 1, 271. [Google Scholar]spa
dcterms.bibliographicCitationVanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2009, 31, 671–690. [Google Scholar] [CrossRef][Green Version]spa
dcterms.bibliographicCitationSelvaraj, C.; Dinesh, D.C.; Panwar, U.; Abhirami, R.; Boura, E.; Singh, S.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J. Biomol. Struct. Dyn. 2020, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSinha, S.; Wang, S.M. Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Comput. Struct. Biotechnol. J. 2020, 18, 723–736. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKaushik, A.C.; Sahi, S. Molecular modeling and molecular dynamics simulation-based structural analysis of GPR3. Netw. Model. Anal. Health Inform. Bioinform. 2017, 6, 9. [Google Scholar] [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/ plants10071280
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsdengue virus; Tabernaemontana cymosa; indole alkaloids; molecular docking; antiviralsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineMaestría en Gestión Farmacéuticaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por