Show simple item record

dc.contributor.authorVallejo, William
dc.contributor.otherNavarro, Karen
dc.contributor.otherDíaz-Uribe, Carlos
dc.contributor.otherXimena Zarate, Eduardo Schott,
dc.contributor.otherRomero, Eduard
dc.date.accessioned2022-12-20T00:09:24Z
dc.date.available2022-12-20T00:09:24Z
dc.date.issued2021-05-20
dc.date.submitted2021-02-04
dc.identifier.citationVallejo, W., Navarro, K., Díaz-Uribe, C., Schott, E., Zarate, X., & Romero, E. (2021). Zn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Study. ACS Omega, 6(21), 13637–13646. https://doi.org/10.1021/acsomega.1c00658spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1157
dc.description.abstractIn this article, we studied the antimicrobial activity of TiO2 sensitized by the Zn(II)-tetracarboxy-phthalocyanine (TcPcZn) complex using TiO2-Degussa P25 as a semiconductor source. The TiO2 thin films were deposited by the doctor blade method and were sensitized by the chemisorption process. The obtained compounds were characterized using Fourier transform infrared spectroscopy, UV−vis spectrophotometry, Raman spectroscopy, diffuse reflectance spectroscopy, and scanning electron microscopy. Furthermore, we studied the stability of the adsorbed sensitizer on the semiconductor surface by using the density functional theory (DFT). Additionally, we determined the antimicrobial activity of TcPcZn−TiO2 against methicillin-resistant Staphylococcus aureus (MRSA). The Raman and optical results confirmed the sensitizing process. The TcPcZn−TiO2 thin films showed radiation absorption in the visible range of the electromagnetic spectrum (600−750 nm), and the dye anchored on the TiO2 surface had a band gap of 1.58 eV. The DFT study showed that TcPcZn supported on any phase of Degussa P25 is stable, making them suitable to act as catalysts in the proposed reactions. Finally, the TcPcZn−TiO2 thin films reached 76.5% of inhibition activity against MRSA.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceACS Omegaspa
dc.titleZn(II)-tetracarboxy-phthalocyanine-Sensitized TiO2 Thin Films as Antimicrobial Agents under Visible Irradiation: a Combined DFT and Experimental Studyspa
dcterms.bibliographicCitation(1) Dordel, J.; Kim, C.; Chung, M.; Pardos de la Gándara, M.; Holden, M. T. J.; Parkhill, J.; de Lencastre, H.; Bentley, S. D.; Tomasz, A. Novel Determinants of Antibiotic Resistance: Identification of Mutated Loci in Highly Methicillin-Resistant Subpopulations of Methicillin-Resistant Staphylococcus Aureus. MBio 2014, 5, No. e01000.spa
dcterms.bibliographicCitation(2) de Oliveira, S. C. P. S.; Monteiro, J. S. C.; Pires-Santos, G. M.; Sampaio, F. J. P.; Soares, A. P.; Soares, L. G. P.; Pinheiro, A. L. B. LED Antimicrobial Photodynamic Therapy with Phenothiazinium Dye against Staphylococcus Aureus : An in Vitro Study. J. Photochem. Photobiol., B 2017, 175, 46−50.spa
dcterms.bibliographicCitationKuehnert, M. J.; Hill, H. A.; Kupronis, B. A.; Tokars, J. I.; Solomon, S. L.; Jernigan, D. B. Methicillin-resistant-Staphylococcus aureusHospitalizations, United States. Emerging Infect. Dis. 2005, 11, 868−872.spa
dcterms.bibliographicCitationKlein, E.; Smith, D. L.; Laxminarayan, R. Hospitalizations and Deaths Caused by Methicillin-ResistantStaphylococcus aureus, United States, 1999-2005. Emerging Infect. Dis. 2007, 13, 1840−1846.spa
dcterms.bibliographicCitationKi, V.; Rotstein, C. Bacterial Skin and Soft Tissue Infections in Adults: A Review of Their Epidemiology, Pathogenesis, Diagnosis, Treatment and Site of Care. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 173.spa
dcterms.bibliographicCitationChambers, H. F.; DeLeo, F. R. Waves of Resistance: Staphylococcus Aureus in the Antibiotic Era. Nat. Rev. Microbiol. 2009, 7, 629−641.spa
dcterms.bibliographicCitationRayner, C.; Munckhof, W. J. Antibiotics Currently Used in the Treatment of Infections Caused by Staphylococcus Aureus. Intern. Med. J. 2005, 35, S3−S16.spa
dcterms.bibliographicCitationKaur, D.; Chate, S. Study of Antibiotic Resistance Pattern in Methicillin Resistant Staphylococcus Aureus with Special Reference to Newer Antibiotic. J. Global Infect. Dis. 2015, 7, 78−84.spa
dcterms.bibliographicCitationWong, K. K. Y.; Liu, X. Silver Nanoparticles - The Real “Silver Bullet” in Clinical Medicine? Medchemcomm 2010, 1, 125−131.spa
dcterms.bibliographicCitationDíez-Pascual, A. M. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and Its Derivatives: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 3563.spa
dcterms.bibliographicCitationDizaj, S. M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M. H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng., C 2014, 44, 278−284.spa
dcterms.bibliographicCitationFakhri, A.; Behrouz, S.; Pourmand, M. Synthesis, Photocatalytic and Antimicrobial Properties of SnO2, SnS2 and SnO2/SnS2 Nanostructure. J. Photochem. Photobiol., B 2015, 149, 45−50spa
dcterms.bibliographicCitationEl-Nahhal, I. M.; Salem, J.; Anbar, R.; Kodeh, F. S.; Elmanama, A. Preparation and Antimicrobial Activity of ZnO-NPs Coated Cotton/Starch and Their Functionalized ZnO-Ag/Cotton and Zn(II) Curcumin/Cotton Materials. Sci. Rep. 2020, 10, 5410.spa
dcterms.bibliographicCitationJoost, U.; Juganson, K.; Visnapuu, M.; Mortimer, M.; Kahru, A.; Nõmmiste, E.; Joost, U.; Kisand, V.; Ivask, A. Photocatalytic Antibacterial Activity of Nano-TiO2 (Anatase)-Based Thin Films: Effects on Escherichia Coli Cells and Fatty Acids. J. Photochem. Photobiol., B 2015, 142, 178−185.spa
dcterms.bibliographicCitationAzizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial Activity of Titanium Dioxide and Zinc Oxide Nanoparticles Supported in 4A Zeolite and Evaluation the Morphological Characteristic. Sci. Rep. 2019, 9, 17439.spa
dcterms.bibliographicCitationYang, Z.; Hao, X.; Chen, S.; Ma, Z.; Wang, W.; Wang, C.; Yue, L.; Sun, H.; Shao, Q.; Murugadoss, V.; Guo, Z. Long-Term Antibacterial Stable Reduced Graphene Oxide Nanocomposites Loaded with Cuprous Oxide Nanoparticles. J. Colloid Interface Sci. 2019, 533, 13−23.spa
dcterms.bibliographicCitationSenarathna, U. L. N. H.; Fernando, S. S. N.; Gunasekara, T. D. C. P.; Weerasekera, M. M.; Hewageegana, H. G. S. P.; Arachchi, N. D. H.; Siriwardena, H. D.; Jayaweera, P. M. Enhanced Antibacterial Activity of TiO2 Nanoparticle Surface Modified with Garcinia Zeylanica Extract. Chem. Cent. J. 2017, 11, 7.spa
dcterms.bibliographicCitationSułek, A.; Pucelik, B.; Kuncewicz, J.; Dubin, G.; Dąbrowski, J. M. Sensitization of TiO2 by Halogenated Porphyrin Derivatives for Visible Light Biomedical and Environmental Photocatalysis. Catal. Today 2019, 335, 538−549.spa
dcterms.bibliographicCitationKrishna, V.; Bai, W.; Han, Z.; Yano, A.; Thakur, A.; Georgieva, A.; Tolley, K.; Navarro, J.; Koopman, B.; Moudgil, B. Contaminant- Activated Visible Light Photocatalysis. Sci. Rep. 2018, 8, 1894.spa
dcterms.bibliographicCitationYemmireddy, V. K.; Hung, Y.-C. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety- Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 617−631.spa
dcterms.bibliographicCitationPham, T.-D.; Lee, B.-K. Disinfection of Staphylococcus Aureus in Indoor Aerosols Using Cu-TiO2 Deposited on Glass Fiber under Visible Light Irradiation. J. Photochem. Photobiol., A 2015, 307−308, 16−22.spa
dcterms.bibliographicCitationMeng, D.; Liu, X.; Xie, Y.; Du, Y.; Yang, Y.; Xiao, C. Antibacterial Activity of Visible Light-Activated TiO2 Thin Films with Low Level of Fe Doping. Adv. Mater. Sci. Eng. 2019, 2019, 5819805. (23) Matsunaga, T. Sterilization with Particule Photosemiconductor. J. Antibact. Antifungal Agents 1985, 13, 211−220.spa
dcterms.bibliographicCitationRipolles-Avila, C.; Martinez-Garcia, M.; Hascoët, A.-S.; Rodríguez-Jerez, J. J. Bactericidal Efficacy of UV Activated TiO2 Nanoparticles against Gram-Positive and Gram-Negative Bacteria on Suspension. CyTA–J. Food 2019, 17, 408−418.spa
dcterms.bibliographicCitationKubacka, A.; Diez, M. S.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J. P.; Barbas, C.; Martins Dos Santos, V. A. P.; Fernández-García, M.; Ferrer, M. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci. Rep. 2014, 4, 4134.spa
dcterms.bibliographicCitationColmenares, J. C. Selective Redox Photocatalysis: Is There Any Chance for Solar Bio-Refineries? Curr. Opin. Green Sustain. Chem. 2019, 15, 38−46.spa
dcterms.bibliographicCitationRasoulnezhad, H.; Hosseinzadeh, G.; Yekrang, J. Preparation and Characterization of Nanostructured S and Fe Co-Doped TiO 2 Thin Film by Ultrasonic-Assisted Spray Pyrolysis Method. J. Nanostruct. 2018, 8, 251−258spa
dcterms.bibliographicCitationDiaz-Uribe, C.; Vallejo, W.; Ramos, W. Methylene Blue Photocatalytic Mineralization under Visible Irradiation on TiO2 Thin Films Doped with Chromium. Appl. Surf. Sci. 2014, 319, 121−127.spa
dcterms.bibliographicCitationCravanzola, S.; Cesano, F.; Gaziano, F.; Scarano, D.; Cravanzola, S.; Cesano, F.; Gaziano, F.; Scarano, D. Sulfur-Doped TiO2: Structure and Surface Properties. Catalysts 2017, 7, 214.spa
dcterms.bibliographicCitationKuriakose, S.; Satpati, B.; Mohapatra, S. Enhanced Photocatalytic Activity of Co Doped ZnO Nanodisks and Nanorods Prepared by a Facile Wet Chemical Method. Phys. Chem. Chem. Phys. 2014, 16, 12741.spa
dcterms.bibliographicCitationVallejo, W.; Díaz-Uribe, C.; Rios, K. Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition. Adv. Phys. Chem. 2017, 2017, 1−5.spa
dcterms.bibliographicCitationLoh, K.; Gaylarde, C. C.; Shirakawa, M. A. Photocatalytic Activity of ZnO and TiO2 “Nanoparticles” for Use in Cement Mixes. Constr. Build. Mater. 2018, 167, 853−859.spa
dcterms.bibliographicCitationRawal, S. B.; Bera, S.; Lee, D.; Jang, D.-J.; Lee, W. I. Design of Visible-Light Photocatalysts by Coupling of Narrow Bandgap Semiconductors and TiO2: Effect of Their Relative Energy Band Positions on the Photocatalytic Efficiency. Catal. Sci. Technol. 2013, 3, 1822.spa
dcterms.bibliographicCitationDíaz-Uribe, C.; Viloria, J.; Cervantes, L.; Vallejo, W.; Navarro, K.; Romero, E.; Quiñones, C. Photocatalytic Activity of Ag-TiO2 Composites Deposited by Photoreduction under UV Irradiation. Int. J. Photoenergy 2018, 2018, 1−8.spa
dcterms.bibliographicCitationTürkyılmaz, Ş. Ş.; Güy, N.; Özacar, M. Photocatalytic Efficiencies of Ni, Mn, Fe and Ag Doped ZnO Nanostructures Synthesized by Hydrothermal Method: The Synergistic/Antagonistic Effect between ZnO and Metals. J. Photochem. Photobiol., A 2017, 341, 39−50.spa
dcterms.bibliographicCitationAyati, A.; Ahmadpour, A.; Bamoharram, F. F.; Tanhaei, B.; Mänttäri, M.; Sillanpää, M. A Review on Catalytic Applications of Au/ TiO2 Nanoparticles in the Removal of Water Pollutant. Chemosphere 2014, 107, 163−174.spa
dcterms.bibliographicCitationGhazal, B.; Azizi, K.; Ewies, E. F.; Youssef, A. S. A.; Mwalukuku, V. M.; Demadrille, R.; Torres, T.; Makhseed, S. Push-Pull Zinc Phthalocyanine Bearing Hexa-Tertiary Substituted Carbazolyl Donor Groups for Dye-Sensitized Solar Cells. Molecules 2020, 25, 1692.spa
dcterms.bibliographicCitationPirbazari, A. E. Sensitization of Tio2 Nanoparticles With Cobalt Phthalocyanine: An Active Photocatalyst for Degradation of 4- Chlorophenol under Visible Light. Procedia Mater. Sci. 2015, 11, 622−627.spa
dcterms.bibliographicCitationDíaz-Uribe, C.; Vallejo, W.; Campos, K.; Solano, W.; Andrade, J.; Muñoz-Acevedo, A.; Schott, E.; Zarate, X. Improvement of the photocatalytic activity of TiO 2 using Colombian Caribbean species ( Syzygium cumini ) as natural sensitizers: Experimental and theoretical studies. Dyes Pigm. 2018, 150, 370−376.spa
dcterms.bibliographicCitationLitter, M. I.; San Román, E.; Grela, t. l. M. A.; Meichtry, J. M.; Rodríguez, H. B. Sensitization of TiO2 by Dyes: A Way to Extend the Range of Photocatalytic Activity of TiO2 to the Visible Region. Visible Light-Active Photocatalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp 253−282. (41) Vallejo, W.; Rueda, A.; Díaz-Uribe, C.; Grande, C.; Quintana, P. Photocatalytic activity of graphene oxide-TiO 2 thin films sensitized by natural dyes extracted from Bactris guineensis. R. Soc. Open Sci. 2019, 6, 181824.spa
dcterms.bibliographicCitationDiaz-Uribe, C.; Vallejo, W.; Camargo, G.; Muñoz-Acevedo, A.; Quiñones, C.; Schott, E.; Zarate, X. Potential use of an anthocyaninrich extract from berries of Vaccinium meridionale Swartz as sensitizer for TiO2 thin films - An experimental and theoretical study. J. Photochem. Photobiol., A 2019, 384. DOI: 10.1016/j.jphotochem. 2019.112050.spa
dcterms.bibliographicCitationRichhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural Dyes for Dye Sensitized Solar Cell: A Review. Renew. Sustain. Energy Rev. 2017, 69, 705−718.spa
dcterms.bibliographicCitationPelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O’Shea, K.; Entezari, M. H.; Dionysiou, D. D. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal., B 2012, 125, 331−349.spa
dcterms.bibliographicCitationHuang, Z.; Zheng, B.; Zhu, S.; Yao, Y.; Ye, Y.; Lu, W.; Chen, W. Photocatalytic activity of phthalocyanine-sensitized TiO2-SiO2 microparticles irradiated by visible light. Mater. Sci. Semicond. Process. 2014, 25, 148−152.spa
dcterms.bibliographicCitationLuna-Flores, A.; Valenzuela, M. A.; Luna-López, J. A.; Hernández de la Luz, A. D.; Muñoz-Arenas, L. C.; Méndez- Hernández, M.; Sosa-Sánchez, J. L. Synergetic Enhancement of the Photocatalytic Activity of TiO2 with Visible Light by Sensitization Using a Novel Push-Pull Zinc Phthalocyanine. Int. J. Photoenergy 2017, 2017, 1604753.spa
dcterms.bibliographicCitationChen, Z.; Zhou, S.; Chen, J.; Li, L.; Hu, P.; Chen, S.; Huang, M. An Effective Zinc Phthalocyanine Derivative for Photodynamic Antimicrobial Chemotherapy. J. Lumin. 2014, 152, 103−107.spa
dcterms.bibliographicCitationDenes, G. Phthalocyanines: Properties and Applications, Volume 4 Edited by C. C. Leznoff and A. B. P. Lever (York University, Canada). VCH: New York, 1996. vi + 524 pp. $150.00. ISBN 1-56081-916-2. J. Am. Chem. Soc. 1998, 120, 241−242.spa
dcterms.bibliographicCitationLiu, Q.; Pang, M.; Tan, S.; Wang, J.; Chen, Q.; Wang, K.; Wu, W.; Hong, Z. Potent Peptide-Conjugated Silicon Phthalocyanines for Tumor Photodynamic Therapy. J. Canc. 2018, 9, 310−320.spa
dcterms.bibliographicCitationLi, X.; Lee, S.; Yoon, J. Supramolecular Photosensitizers Rejuvenate Photodynamic Therapy. Chem. Soc. Rev. 2018, 47, 1174− 1188.spa
dcterms.bibliographicCitationVallejo, W.; Cantillo, A.; Díaz-Uribe, C. Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. Int. J. Photoenergy 2020, 2020, 1627498.spa
dcterms.bibliographicCitationVallejo, W.; Diaz-Uribe, C.; Cantillo, Á. Methylene Blue Photocatalytic Degradation under Visible Irradiation on TiO2 Thin Films Sensitized with Cu and Zn Tetracarboxy-Phthalocyanines. J. Photochem. Photobiol., A 2015, 299, 80−86.spa
dcterms.bibliographicCitationAltın, İ.; Sökmen, M.; Bıyıklıoğlu, Z. Quaternized Zinc(II) Phthalocyanine-Sensitized TiO2: Surfactant-Modified Sol−Gel Synthesis, Characterization and Photocatalytic Applications. Desalin. Water Treat. 2016, 57, 16196−16207.spa
dcterms.bibliographicCitationDindaş, G. B.; Şahin, Z.; Cengiz Yatmaz, H.; Işci, Ü. Cobalt Phthalocyanine-TiO 2 Nanocomposites for Photocatalytic Remediation of Textile Dyes under Visible Light Irradiation. J. Porphyr. Phthalocyanines 2019, 23, 561−568.spa
dcterms.bibliographicCitationLi, W.; Ni, C.; Lin, H.; Huang, C. P.; Shah, S. I. Size dependence of thermal stability of TiO2 nanoparticles. J. Appl. Phys. 2004, 96, 6663−6668.spa
dcterms.bibliographicCitationZhang, J.; Sun, P.; Jiang, P.; Guo, Z.; Liu, W.; Lu, Q.; Cao, W. The formation mechanism of TiO2 polymorphs under hydrothermal conditions based on the structural evolution of [Ti(OH)h(H2O)6− h]4−h monomers. J. Mater. Chem. C 2019, 7, 5764−5771.spa
dcterms.bibliographicCitationTetteh, E. K.; Rathilal, S.; Naidoo, D. B. Photocatalytic Degradation of Oily Waste and Phenol from a Local South Africa Oil Refinery Wastewater Using Response Methodology. Sci. Rep. 2020, 10, 8850.spa
dcterms.bibliographicCitationLi, S.; Zhao, Z.; Huang, Y.; Di, J.; Jia, Y.; Zheng, H. Hierarchically Structured WO3-CNT@TiO2NS Composites with Enhanced Photocatalytic Activity. J. Mater. Chem. A 2015, 3, 5467− 5473.spa
dcterms.bibliographicCitationFujishima, A.; Zhang, X.; Tryk, D. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515−582.spa
dcterms.bibliographicCitationMali, S. S.; Shinde, P. S.; Betty, C. A.; Bhosale, P. N.; Lee, W. J.; Patil, P. S. Nanocoral Architecture of TiO2 by Hydrothermal Process: Synthesis and Characterization. Appl. Surf. Sci. 2011, 257, 9737− 9746.spa
dcterms.bibliographicCitationAzizah, N.; Hashim, U.; Arshad, M. K. M.; Gopinath, S. C. B.; Nadzirah, S.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M. Surface Morphology of Titanium Dioxide (TiO2) Nanoparticles on Aluminum Interdigitated Device Electrodes (IDEs). AIP Conf. Proc. 2016, 1733, 020079.spa
dcterms.bibliographicCitationHe, J.; Hagfeldt, A.; Lindquist, S.-E.; Grennberg, H.; Korodi, F.; Sun, L.; Åkermark, B. Phthalocyanine-Sensitized Nanostructured TiO2Electrodes Prepared by a Novel Anchoring Method. Langmuir 2001, 17, 2743−2747.spa
dcterms.bibliographicCitationAshokkumar, R.; Kathiravan, A.; Ramamurthy, P. Zn- Phthalocyanine-Functionalized Nanometal and Nanometal-TiO2 Hybrids: Aggregation Behavior and Excited-State Dynamics. Phys. Chem. Chem. Phys. 2014, 16, 14139−14149.spa
dcterms.bibliographicCitationMangialardo, S.; Larciprete, M. C.; Belardini, A.; Sibilia, C.; Bertolotti, M. Determination of the Aggregation Degree of Zinc- Phthalocyanines Derivatives into Polymeric Films via the Characterization of the Linear-Optical Absorption. Laser Phys. 2008, 18, 1371− 1377.spa
dcterms.bibliographicCitationLikodimos, V.; Stergiopoulos, T.; Falaras, P.; Harikisun, R.; Desilvestro, J.; Tulloch, G. Prolonged Light and Thermal Stress Effects on Industrial Dye-Sensitized Solar Cells: A Micro-Raman Investigation on the Long-Term Stability of Aged Cells. J. Phys. Chem. C 2009, 113, 9412−9422.spa
dcterms.bibliographicCitationNazeeruddin, M. K.; Müller, E.; Humphry-Baker, R.; Vlachopoulos, N.; Grätzel, M. Redox Regulation in Ruthenium(II) Polypyridyl Complexes and Their Application in Solar Energy Conversion. J. Chem. Soc., Dalton Trans. 1997, 4571−4578.spa
dcterms.bibliographicCitationFalaras, P.; Gratzel, M.; Goff, A. H. L.; Nazeeruddin, M.; Vrachnou, E. Dye Sensitization of TiO2 Surfaces Studied by Raman Spectroscopy. J. Electrochem. Soc. 1993, 140, L92.spa
dcterms.bibliographicCitationNagai, S.; Hirano, G.; Bessho, T.; Satori, K. Raman Spectroscopic Study of Dye Adsorption on TiO2 Electrodes of Dye-Sensitized Solar Cells. Vib. Spectrosc. 2014, 72, 66−71.spa
dcterms.bibliographicCitationJusth, N.; Bakos, L. P.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M. Photocatalytic Hollow TiO2 and ZnO Nanospheres Prepared by Atomic Layer Deposition. Sci. Rep. 2017, 7, 4337.spa
dcterms.bibliographicCitationYang, L.; Gong, M.; Jiang, X.; Yin, D.; Qin, X.; Zhao, B.; Ruan, W. Investigation on SERS of different phase structure TiO2 nanoparticles. J. Raman Spectrosc. 2015, 46, 287−292.spa
dcterms.bibliographicCitationNaldoni, A.; Riboni, F.; Guler, U.; Boltasseva, A.; Shalaev, V. M.; Kildishev, A. V. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. Nanophotonics 2016, 5, 112.spa
dcterms.bibliographicCitationMachado, A. E. H.; França, M. D.; Velani, V.; Magnino, G. A.; Velani, H. M. M.; Freitas, F. S.; Müller, P. S., Jr; Sattler, C.; Schmücker, M. Characterization and Evaluation of the Efficiency of TiO2/Zinc Phthalocyanine Nanocomposites as Photocatalysts for Wastewater Treatment Using Solar Irradiation. Int. J. Photoenergy 2008, 2008, 482373.spa
dcterms.bibliographicCitationSimmons, E. L. Relation of the Diffuse Reflectance Remission Function to the Fundamental Optical Parameters. Opt. Acta Int. J. Opt. 1972, 19, 845−851.spa
dcterms.bibliographicCitationViezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie, D. P. Evaluation of the Tauc Method for Optical Absorption Edge Determination: ZnO Thin Films as a Model System. Phys. Status Solidi 2015, 252, 1700−1710.spa
dcterms.bibliographicCitationPal, M.; Pal, U.; Jiménez, J. M. G. Y.; Pérez-Rodríguez, F. Effects of Crystallization and Dopant Concentration on the Emission Behavior of TiO2:Eu Nanophosphors. Nanoscale Res. Lett. 2012, 7, 1.spa
dcterms.bibliographicCitationGuayaquil-Sosa, J. F.; Serrano-Rosales, B.; Valadés-Pelayo, P. J.; de Lasa, H. Photocatalytic Hydrogen Production Using Mesoporous TiO2 Doped with Pt. Appl. Catal., B 2017, 211, 337−348.spa
dcterms.bibliographicCitationBatista, P. S.; De Souza, D. R.; Maximiano, R. V.; Barbosa Neto, N. M.; Machado, A. E. H. Quantum Efficiency of Hydroxyl Radical Formation in a Composite Containing Nanocrystalline TiO2 e Zinc Phthalocyanine, and the Nature of the Incident Radiation. J. Mater. Sci. Res. 2013, 2, p82.spa
dcterms.bibliographicCitationSchneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919−9986.spa
dcterms.bibliographicCitationDuncan, W. R.; Stier, W. M.; Prezhdo, O. V. AbInitioNonadiabatic Molecular Dynamics of the Ultrafast Electron Injection across the Alizarin−TiO2Interface. J. Am. Chem. Soc. 2005, 127, 7941−7951.spa
dcterms.bibliographicCitationHerrmann, J.-M. Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912-2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Top. Catal. 2005, 34, 49−65.spa
dcterms.bibliographicCitationMafukidze, D. M.; Mashazi, P.; Nyokong, T. Synthesis and Singlet Oxygen Production by a Phthalocyanine When Embedded in Asymmetric Polymer Membranes. Polymer 2016, 105, 203−213.spa
dcterms.bibliographicCitationNwahara, N.; Britton, J.; Nyokong, T. Improving Singlet Oxygen Generating Abilities of Phthalocyanines: Aluminum Tetrasulfonated Phthalocyanine in the Presence of Graphene Quantum Dots and Folic Acid. J. Coord. Chem. 2017, 70, 1601−1616.spa
dcterms.bibliographicCitationGranados-Oliveros, G.; Páez-Mozo, E. A.; Martínez Ortega, F.; Piccinato, M.; Silva, F. N.; Guedes, C. L. B.; Di Mauro, E.; Costa, M. F. d.; Ota, A. T. Visible light production of superoxide anion with MCarboxyphenylporphyrins (M=H, Fe, Co, Ni, Cu, and Zn) free and anchored on TiO2: EPR characterization. J. Mol. Catal. A Chem. 2011, 339, 79−85.spa
dcterms.bibliographicCitationZarate, X.; Schott-Verdugo, S.; Rodriguez-Serrano, A.; Schott, E. The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs. J. Phys. Chem. A 2016, 120, 1613−1624.spa
dcterms.bibliographicCitationSchweitzer, C.; Mehrdad, Z.; Noll, A.; Grabner, E.-W.; Schmidt, R. Mechanism of Photosensitized Generation of Singlet Oxygen during Oxygen Quenching of Triplet States and the General Dependence of the Rate Constants and Efficiencies of O2(1Σg+), O2(1Δg), and O2(3Σg-) Formation on Sensitizer Triplet State Energy and Oxidation Potential. J. Phys. Chem. A 2003, 107, 2192− 2198.spa
dcterms.bibliographicCitationQuiñones, C.; Ayala, J.; Vallejo, W. Methylene Blue Photoelectrodegradation under UV Irradiation on Au/Pd-Modified TiO2 Films. Appl. Surf. Sci. 2010, 257, 367−371.spa
dcterms.bibliographicCitationPatiño-Camelo, K.; Diaz-Uribe, C.; Gallego-Cartagena, E.; Vallejo, W.; Martinez, V.; Quiñones, C.; Hurtado, M.; Schott, E. Cyanobacterial Biomass Pigments as Natural Sensitizer for TiO2 Thin Films. Int. J. Photoenergy 2019, 2019, 1−9.spa
dcterms.bibliographicCitationAchar, B. N.; Fohlent, G. M.; Parker, J. A.; Keshavayya, J. Preparation and Structural Investigations of Copper(II), Cobalt(II), Nickel(II) and Zinc(II) Derivatives of 2,9,16,23-Phthalocyanine Tetracarboxylic Acid. Indian J. Chem. 1988, 27, 411−416.spa
dcterms.bibliographicCitationVallejo, W.; Cantillo, A.; Salazar, B.; Diaz-Uribe, C.; Ramos, W.; Romero, E.; Hurtado, M. Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation. Catalysts 2020, 10, 528.spa
dcterms.bibliographicCitationShrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D.; Shrivastava, S. Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles. Nanotechnol 2007, 18, 225103.spa
dcterms.bibliographicCitationVallejo, W.; Díaz-Uribe, C.; Navarro, K.; Valle, R.; Arboleda, J. W.; Romero, E. Estudio de la actividad antimicrobiana de pelić ulas delgadas de dióxido de titanio modificado con plata. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2016, 40, 69.spa
dcterms.bibliographicCitationHorn, H.; Schwerdtfeger, C. F.; Meagher, E. P. Refinement of the Structure of Anatase at Several Temperatures *. Z. Kristallogr. 1972, 136, 273−281.spa
dcterms.bibliographicCitationMeagher, E. P.; Lager, G. A. Polyhedral Thermal Expansion in the TiO 2 Polymorphs; Refinement of the Crystal Structures of Rutile and Brookite at High Temperature. Can. Mineral. 1979, 17, 77−85.spa
dcterms.bibliographicCitationGarrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for High-Throughput DFT Calculations. Comput. Mater. Sci. 2014, 81, 446−452.spa
dcterms.bibliographicCitationGiannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin- Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502.spa
dcterms.bibliographicCitationHumphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33−38.spa
dcterms.bibliographicCitationFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford CT, 2009..spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1021/acsomega.1c00658
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por