Mostrar el registro sencillo del ítem

dc.contributor.authorGuillin-Estrada, Wilson
dc.contributor.otherMaestre-Cambronel, Daniel
dc.contributor.otherBula-Silvera, Antonio
dc.contributor.otherGonzalez-Quiroga, Arturo
dc.contributor.otherDuarte-Forero, Jorge
dc.date.accessioned2022-12-19T22:23:08Z
dc.date.available2022-12-19T22:23:08Z
dc.date.issued2021-06-07
dc.date.submitted2021-03-31
dc.identifier.citationGuillin-Estrada, W., Maestre-Cambronel, D., Bula-Silvera, A., Gonzalez-Quiroga, A., & Duarte-Forero, J. (2021). Combustion and Performance Evaluation of a Spark Ignition Engine Operating with Acetone–Butanol–Ethanol and Hydroxy. Applied Sciences, 11(11), 5282. https://doi.org/10.3390/app11115282spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1153
dc.description.abstractAlternative fuels for internal combustion engines (ICE) emerge as a promising solution for a more sustainable operation. This work assesses combustion and performance of the dual-fuel operation in the spark ignition (SI) engine that simultaneously integrates acetone–butanol–ethanol (ABE) and hydroxy (HHO) doping. The study evaluates four fuel blends that combine ABE 5, ABE 10, and an HHO volumetric flow rate of 0.4 LPM. The standalone gasoline operation served as the baseline for comparison. We constructed an experimental test bench to assess operation conditions, fuel mode, and emissions characteristics of a 3.5 kW-YAMAHA engine coupled to an alkaline electrolyzer. The study proposes thermodynamic and combustion models to evaluate the performance of the dual-fuel operation based on in-cylinder pressure, heat release rate, combustion temperature, fuel properties, energy distribution, and emissions levels. Results indicate that ABE in the fuel blends reduces in-cylinder pressure by 10–15% compared to the baseline fuel. In contrast, HHO boosted in-cylinder pressure up to 20%. The heat release rate and combustion temperature follow the same trend, corroborating that oxygen enrichment enhances gasoline combustion. The standalone ABE operation raises fuel consumption by around 10–25 g • kWh−1 compared to gasoline depending on the load, whereas HHO decreases fuel consumption by around 25%. The dual-fuel operation shows potential for mitigating CO, HC, and smoke emissions, although NOx emissions increased. The implementation of dual-fuel operation in SI engines represents a valuable tool for controlling emissions and reducing fuel consumption while maintaining combustion performance and thermal efficiencyspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceapplied sciencesspa
dc.titleCombustion and Performance Evaluation of a Spark Ignition Engine Operating with Acetone–Butanol–Ethanol and Hydroxyspa
dc.title.alternativeCombustion and Performance Evaluation of a Spark Ignition Engine Operating with Acetone–Butanol–Ethanol and Hydroxyspa
dcterms.bibliographicCitationMatrisciano, A.; Franken, T.; Mestre, L.C.G.; Borg, A.; Mauss, F. Development of a Computationally Efficient Tabulated Chemistry Solver for Internal Combustion Engine Optimization Using Stochastic Reactor Models. Appl. Sci. 2020, 10, 8979. [CrossRef]spa
dcterms.bibliographicCitationOchoa, G.V.; Rojas, J.P.; Forero, J.D. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267. [CrossRef]spa
dcterms.bibliographicCitationOchoa, G.V.; Gutierrez, J.C.; Forero, J.D. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2. [CrossRef]spa
dcterms.bibliographicCitationForero, J.D.; Taborda, L.L.; Silvera, A.B. Characterization of the performance of centrifugal pumps powered by a diesel engine in dredging applications. Int. Rev. Mech. Eng. (IREME) 2019, 13, 11–20. [CrossRef]spa
dcterms.bibliographicCitationValencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. [CrossRef]spa
dcterms.bibliographicCitationDiaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.J.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903. [CrossRef]spa
dcterms.bibliographicCitationOchoa, G.V.; Isaza-Roldan, C.; Forero, J.D. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. [CrossRef]spa
dcterms.bibliographicCitationOrozco, W.; Acuña, N.; Duarte, J. Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System. Int. Rev. Mech. Eng. (IREME) 2019, 13, 420–426. [CrossRef]spa
dcterms.bibliographicCitationTamilselvan, P.; Nallusamy, N.; Rajkumar, S. A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines. Renew. Sustain. Energy Rev. 2017, 79, 1134–1159. [CrossRef]spa
dcterms.bibliographicCitationMasum, B.M.; Kalam, M.A.; Masjuki, H.H.; Palash, S.M.; Fattah, I.M.R. Performance and emission analysis of a multi cylinder gasoline engine operating at different alcohol–gasoline blends. RSC Adv. 2014, 4, 27898–27904. [CrossRef]spa
dcterms.bibliographicCitationYacoub, Y.M.; Bata, R.M.; Gautam, M. The performance and emission characteristics of C1-C5 alcohol-gasoline blends with matched oxygen content in a single-cylinder spark ignition engine. Proc. Inst. Mech. Eng. Part A J. Power Energy 1998, 212, 363–379. [CrossRef]spa
dcterms.bibliographicCitationNithyanandan, K.; Zhang, J.; Li, Y.; Wu, H.; Lee, T.H.; Lin, Y.; Lee, C.-F.F. Improved SI engine efficiency using Acetone–Butanol– Ethanol (ABE). Fuel 2016, 174, 333–343. [CrossRef]spa
dcterms.bibliographicCitationDi Blasio, G.; Viscardi, M.; Alfè, M.; Gargiulo, V.; Ciajolo, A.; Beatrice, C. Analysis of the Impact of the Dual-Fuel Ethanol-Diesel System on the Size, Morphology, and Chemical Characteristics of the Soot Particles Emitted from a LD Diesel Engine. SAE Tech. Pap. Ser. 2014. [CrossRef]spa
dcterms.bibliographicCitationGargiulo, V.; Alfe, M.; Di Blasio, G.; Beatrice, C. Chemico-physical features of soot emitted from a dual-fuel ethanol–diesel system. Fuel 2015, 150, 154–161. [CrossRef]spa
dcterms.bibliographicCitationBeatrice, C.; Denbratt, I.; Di Blasio, G.; Di Luca, G.; Ianniello, R.; Saccullo, M. Experimental Assessment on Exploiting Low Carbon Ethanol Fuel in a Light-Duty Dual-Fuel Compression Ignition Engine. Appl. Sci. 2020, 10, 7182. [CrossRef]spa
dcterms.bibliographicCitationVassallo, A.; Beatrice, C.; Di Blasio, G.; Belgiorno, G.; Avolio, G.; Pesce, F.C. The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine. SAE Tech. Pap. Ser. 2018. [CrossRef]spa
dcterms.bibliographicCitationBelgiorno, G.; Dimitrakopoulos, N.; Di Blasio, G.; Beatrice, C.; Tunestål, P.; Tunér, M. Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine. Appl. Energy 2018, 228, 2221–2234. [CrossRef]spa
dcterms.bibliographicCitationMilani, D.; Kiani, A.; McNaughton, R. Renewable-powered hydrogen economy from Australia’s perspective. Int. J. Hydrogen Energy 2020, 45, 24125–24145. [CrossRef]spa
dcterms.bibliographicCitationEscobar-Yonoff, R.; Maestre-Cambronel, D.; Charry, S.; Rincón-Montenegro, A.; Portnoy, I. Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation. Heliyon 2021, 7, e06506. [CrossRef]spa
dcterms.bibliographicCitationAlshehri, F.; Suárez, V.G.; Torres, J.L.R.; Perilla, A.; van der Meijden, M. Modelling and evaluation of PEM hydrogen technologies for frequency ancillary services in future multi-energy sustainable power systems. Heliyon 2019, 5, e01396. [CrossRef]spa
dcterms.bibliographicCitationShivaprasad, K.; Raviteja, S.; Chitragar, P.; Kumar, G. Experimental Investigation of the Effect of Hydrogen Addition on Combustion Performance and Emissions Characteristics of a Spark Ignition High Speed Gasoline Engine. Procedia Technol. 2014, 14, 141–148. [CrossRef]spa
dcterms.bibliographicCitationIsmail, T.M.; Ramzy, K.; Elnaghi, B.E.; Mansour, T.; Abelwhab, M.; El-Salam, M.A.; Ismail, M. Modelling and simulation of electrochemical analysis of hybrid spark-ignition engine using hydroxy (HHO) dry cell. Energy Convers. Manag. 2019, 181, 1–14. [CrossRef]spa
dcterms.bibliographicCitationYilmaz, A.C.; Uludamar, E.; Aydin, K. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines. Int. J. Hydrogen Energy 2010, 35, 11366–11372. [CrossRef]spa
dcterms.bibliographicCitationCarl, J.; Fedor, D. Tracking global carbon revenues: A survey of carbon taxes versus cap-and-trade in the real world. Energy Policy 2016, 96, 50–77. [CrossRef]spa
dcterms.bibliographicCitationMendoza-Casseres, D.; Valencia-Ochoa, G.; Duarte-Forero, J. Experimental assessment of combustion performance in lowdisplacement stationary engines operating with biodiesel blends and hydroxy. Therm. Sci. Eng. Prog. 2021, 23, 100883. [CrossRef]spa
dcterms.bibliographicCitationDhinesh, B.; Raj, Y.M.A.; Kalaiselvan, C.; KrishnaMoorthy, R. A numerical and experimental assessment of a coated diesel engine powered by high-performance nano biofuel. Energy Convers. Manag. 2018, 171, 815–824. [CrossRef]spa
dcterms.bibliographicCitationvan Wyk, S.; van der Ham, A.; Kersten, S. Pervaporative separation and intensification of downstream recovery of acetonebutanol-ethanol (ABE). Chem. Eng. Process. Process. Intensif. 2018, 130, 148–159. [CrossRef]spa
dcterms.bibliographicCitationAnderhofstadt, B.; Spinler, S. Preferences for autonomous and alternative fuel-powered heavy-duty trucks in Germany. Transp. Res. Part D Transp. Environ. 2020, 79, 102232. [CrossRef]spa
dcterms.bibliographicCitationIsmail, T.M.; Ramzy, K.; Abelwhab, M.; Elnaghi, B.E.; El-Salam, M.A.; Ismail, M. Performance of hybrid compression ignition engine using hydroxy (HHO) from dry cell. Energy Convers. Manag. 2018, 155, 287–300. [CrossRef]spa
dcterms.bibliographicCitationFerguson, C.R.; Kirkpatrick, A.T. Internal Combustion Engines—Applied Thermosciences; John Wiley & Sons: Hoboken, NJ, USA, 2001.spa
dcterms.bibliographicCitationWilliams, F.A. Combustion Theory Benjamin/Cummings; Westview Press: Menlo Park, CA, USA, 1985spa
dcterms.bibliographicCitationOchoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. [CrossRef]spa
dcterms.bibliographicCitationPain, J. Gas Dynamics. Nat. Cell Biol. 1967, 213, 1182. [CrossRef]spa
dcterms.bibliographicCitationHernández-Comas, B.; Maestre-Cambronel, D.; Pardo-García, C.; Fonseca-Vigoya, M.; Pabón-León, J. Influence of Compression Rings on the Dynamic Characteristics and Sealing Capacity of the Combustion Chamber in Diesel Engines. Lubricants 2021, 9, 25. [CrossRef]spa
dcterms.bibliographicCitationIrimescu, A.; Di Iorio, S.; Merola, S.S.; Sementa, P.; Vaglieco, B.M. Evaluation of compression ratio and blow-by rates for spark ignition engines based on in-cylinder pressure trace analysis. Energy Convers. Manag. 2018, 162, 98–108. [CrossRef]spa
dcterms.bibliographicCitationWoschni, G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Tech. Pap. Ser. 1967. [CrossRef]spa
dcterms.bibliographicCitationConsuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Forero, J.D. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437. [CrossRef]spa
dcterms.bibliographicCitationA ˘gbulut, Ü.; Sarıdemir, S.; Albayrak, S. Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 389. [CrossRef]spa
dcterms.bibliographicCitationHeseding, M.; Daskalopoulos, P. Exhaust Emission Legislation-Diesel-and Gas Engines; VDMA: Frankfurt Am Main, Germany, 2006.spa
dcterms.bibliographicCitationMusthafa, M.M.; Kumar, T.A.; Mohanraj, T.; Chandramouli, R. A comparative study on performance, combustion and emission characteristics of diesel engine fuelled by biodiesel blends with and without an additive. Fuel 2018, 225, 343–348. [CrossRef]spa
dcterms.bibliographicCitationMa, F.; Wang, M.; Jiang, L.; Deng, J.; Chen, R.; Naeve, N.; Zhao, S. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions. Int. J. Hydrogen Energy 2010, 35, 12502–12509. [CrossRef]spa
dcterms.bibliographicCitationSenthilkumar, S.; Sivakumar, G.; Manoharan, S. Investigation of palm methyl-ester bio-diesel with additive on performance and emission characteristics of a diesel engine under 8-mode testing cycle. Alex. Eng. J. 2015, 54, 423–428. [CrossRef]spa
dcterms.bibliographicCitationZhang, J.; Nithyanandan, K.; Li, Y.; Lee, C.-F.; Huang, Z. Comparative Study of High-Alcohol-Content Gasoline Blends in an SI Engine. SAE Tech. Pap. Ser. 2015, 1. [CrossRef]spa
dcterms.bibliographicCitationDuarte, J.; Amador, G.; Garcia, J.; Fontalvo, A.; Padilla, R.V.; Sanjuan, M.; Quiroga, A.G. Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy 2014, 71, 137–147. [CrossRef]spa
dcterms.bibliographicCitationDuarte, J.; Garcia, J.; Jiménez, J.; Sanjuan, M.E.; Bula, A.; González, J. Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure. J. Energy Resour. Technol. 2017, 139, 022201. [CrossRef]spa
dcterms.bibliographicCitationLi, Y.; Nithyanandan, K.; Zhang, J.; Lee, C.-F.; Liao, S. Combustion and Emissions Performance of a Spark Ignition Engine Fueled with Water Containing Acetone-Butanol-Ethanol and Gasoline Blends. SAE Tech. Pap. Ser. 2015. [CrossRef]spa
dcterms.bibliographicCitationKul, B.S.; Kahraman, A. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol. Entropy 2016, 18, 387. [CrossRef]spa
dcterms.bibliographicCitationMonsalve-Serrano, J.; Belgiorno, G.; Di Blasio, G.; Guzmán-Mendoza, M. 1D Simulation and Experimental Analysis on the Effects of the Injection Parameters in Methane–Diesel Dual-Fuel Combustion. Energies 2020, 13, 3734. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/app11115282
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsacetone–butanol–ethanol; dual-fuel operation; electrolyzer; emissions levels; hydroxy gas; spark ignition enginespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineFísicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por