Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz Rojas, Lina Marcela
dc.contributor.otherValencia Zapata, Mayra Eliana
dc.contributor.otherGordillo Suarez, Marisol
dc.contributor.otherAdvincula, Rigoberto
dc.contributor.otherGrande-Tovar, Carlos David
dc.contributor.otherMina Hernández, José Herminsul
dc.date.accessioned2022-12-19T21:07:39Z
dc.date.available2022-12-19T21:07:39Z
dc.date.issued2021-06-03
dc.date.submitted2021-04-28
dc.identifier.citationRuiz Rojas, L. M., Valencia Zapata, M. E., Gordillo Suarez, M., Advincula, R., Grande-Tovar, C. D., & Mina Hernández, J. H. (2021). Optimization of Mechanical and Setting Properties in Acrylic Bone Cements Added with Graphene Oxide. Applied Sciences, 11(11), 5185. https://doi.org/10.3390/app11115185spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1150
dc.description.abstractThe extended use of acrylic bone cements (ABC) in orthopedics presents some disadvantages related to the generation of high temperatures during methyl methacrylate polymerization, thermal tissue necrosis, and low mechanical properties. Both weaknesses cause an increase in costs for the health system and a decrease in the patient’s quality of life due to the prosthesis’s loosening. Materials such as graphene oxide (GO) have a reinforcing effect on ABC’s mechanical and setting properties. This article shows for the first time the interactions present between the factors sonication time and GO percentage in the liquid phase, together with the percentage of benzoyl peroxide (BPO) in the solid phase, on the mechanical and setting properties established for cements in the ISO 5833-02 standard. Optimization of the factors using a completely randomized experimental design with a factorial structure resulted in selecting nine combinations that presented an increase in compression, flexion, and the setting time and decreased the maximum temperature reached during the polymerization. All of these characteristics are desirable for improving the clinical performance of cement. Those containing 0.3 wt.% of GO were highlighted from the selected formulations because all the possible combinations of the studied factors generate desirable properties for the ABC.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceapplied sciencesspa
dc.titleOptimization of mechanical and setting properties in acrylic bone cements added with graphene oxidespa
dc.title.alternativeOptimization of mechanical and setting properties in acrylic bone cements added with graphene oxidespa
dcterms.bibliographicCitationHasenwinkel, J.M.; Lautenschlager, E.P.; Wixson, R.L.; Gilbert, J.L. A novel high-viscosity, two-solution acrylic bone cement: Effect of chemical composition on properties. J. Biomed. Mater. Res. 1999, 47, 36–45. [CrossRef]spa
dcterms.bibliographicCitationBrauer, G.M.; Steinberger, D.R.; Stansbury, J.W. Dependence of curing time, peak temperature, and mechanical properties on the composition of bone cement. J. Biomed. Mater. Res. 1986, 20, 839–852. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPaz, E.; Forriol, F.; del Real, J.C.; Dunne, N. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Mater. Sci. Eng. C 2017, 77, 1003–1011. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationRusu, M.C.; Ichim, I.C.; Popa, M.; Rusu, M. New radiopaque acrylic bone cement. II. Acrylic bone cement with bromine-containing monomer. J. Mater. Sci. Mater. Med. 2008, 19, 2609–2617. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationNussbaum, D.A.; Gailloud, P.; Murphy, K. The Chemistry of Acrylic Bone Cements and Implications for Clinical Use in Image-guided Therapy. J. Vasc. Interv. Radiol. 2004, 15, 121–126. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMadigan, S.; Towler, M.R.; Lewis, G. Influence of two changes in the composition of an acrylic bone cement on some of its properties: The case of Surgical Simplex® P. J. Mater. Sci. 2006, 41, 5758–5759. [CrossRef]spa
dcterms.bibliographicCitationMadigan, S.; Towler, M.R.; Lewis, G. Optimisation of the composition of an acrylic bone cement: Application to relative amounts of the initiator and the activator/co-initiator in Surgical Simplex® P. J. Mater. Sci. Mater. Med. 2006, 17, 307–311. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSharma, R.; Kapusetti, G.; Bhong, S.Y.; Roy, P.; Singh, S.K.; Singh, S.; Balavigneswaran, C.K.; Mahato, K.K.; Ray, B.; Maiti, P.; et al. Osteoconductive Amine-Functionalized Graphene-Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization. Bioconjug. Chem. 2017, 28, 2254–2265. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKuehn, K.-D.; Ege, W.; Gopp, U. Acrylic bone cements: Composition and properties. Orthop. Clin. N. Am. 2005, 36, 17–28. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationIMAI, Y.; OHYAMA, A. Characterization of Powder Components of Commercial Bone Cements. Dent. Mater. J. 2001, 20, 345–352. [CrossRef]spa
dcterms.bibliographicCitationKühn, K.-D. Bone Cements; Springer: Berlin, Germany, 2000; ISBN 9783642641152.spa
dcterms.bibliographicCitationYang, D.H.; Yoon, G.H.; Kim, S.H.; Rhee, J.M.; Kim, Y.S.; Khang, G. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: Effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder. J. Biomater. Sci. Polym. Ed. 2005, 16, 1121–1138. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDunne, N.; Ormsby, R.; Mitchell, C. Carbon Nanotubes in Acrylic Bone Cement; Springer Series in Biomaterials Science and Engineering; Antoniac, I., Wang, M., Eds.; Springer: New York, NY, USA, 2013; pp. 173–200. ISBN 9781461443278.spa
dcterms.bibliographicCitationDalby, M.J.; Di Silvio, L.; Harper, E.J.; Bonfield, W. In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J. Mater. Sci. Mater. Med. 1999, 10, 793–796. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationEspigares, I.; Elvira, C.; Mano, J.F.; Vázquez, B.; San Román, J.; Reis, R.L. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 2002, 23, 1883–1895. [CrossRef]spa
dcterms.bibliographicCitationLozano, K.; Mina, J.; Zuluaga, F.; Valencia, C.; Valencia, M. Influencia de la incorporación de un co-monómero alcalino e hidroxiapatita en las propiedades de cementos óseos acrílicos. DYNA 2013, 80, 153–162.spa
dcterms.bibliographicCitationHeikkilä, J.T.; Aho, A.J.; Kangasniemi, I.; Yli-Urpo, A. Polymethylmethacrylate composites: Disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Biomaterials 1996, 17, 1755–1760. [CrossRef]spa
dcterms.bibliographicCitationFernández, M.; Méndez, J.A.; Vázquez, B.; San Román, J.; Ginebra, M.P.; Gil, F.J.; Manero, J.M.; Planell, J.A. Acrylic-phosphate glasses composites as self-curing controlled delivery systems of antibiotics. J. Mater. Sci. Mater. Med. 2002, 13, 1251–1257. [CrossRef]spa
dcterms.bibliographicCitationLopes, P.P.; Leite Ferreira, B.J.M.; Almeida, N.A.F.; Fredel, M.C.; Fernandes, M.H.V.; Correia, R.N. Preparation and study of in vitro bioactivity of PMMA-co-EHA composites filled with a Ca3 (PO4 )2 -SiO2 -MgO glass. Mater. Sci. Eng. C 2008, 28, 572–577. [CrossRef]spa
dcterms.bibliographicCitationLopes, P.P.; Leite Ferreira, B.J.M.; Gomes, P.S.; Correia, R.N.; Fernandes, M.H.; Fernandes, M.H.V. Silicate and borate glasses as composite fillers: A bioactivity and biocompatibility study. J. Mater. Sci. Mater. Med. 2011, 22, 1501–1510. [CrossRef]spa
dcterms.bibliographicCitationLopes, P.P.; Garcia, M.P.; Fernandes, M.H.; Fernandes, M.H.V. Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: Properties and biocompatibility assessment. Mater. Sci. Eng. C 2013, 33, 1289–1299. [CrossRef]spa
dcterms.bibliographicCitationFini, M.; Giavaresi, G.; Nicoli Aldini, N.; Torricelli, P.; Botter, R.; Beruto, D.; Giardino, R. A bone substitute composed of polymethylmethacrylate and tricalcium phosphate: Results in terms of osteoblast function and bone tissue formation. Biomaterials 2002, 23, 4523–4531. [CrossRef]spa
dcterms.bibliographicCitationShinzato, S.; Nakamura, T.; Kokubo, T.; Kitamura, Y. A new bioactive bone cement: Effect of glass bead filler content on mechanical and biological properties. J. Biomed. Mater. Res. 2001, 54, 491–500. [CrossRef]spa
dcterms.bibliographicCitation. García-Enriquez, S.; Guadarrama, H.E.R.; Reyes-González, I.; Mendizábal, E.; Jasso-Gastinel, C.F.; García-Enriquez, B.; RembaoBojórquez, D.; Pane-Pianese, C. Mechanical performance and in vivo tests of an acrylic bone cement filled with bioactive sepia officinalis cuttlebone. J. Biomater. Sci. Polym. Ed. 2010, 21, 113–125. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationWekwejt, M.; Michalska-Sionkowska, M.; Bartma ´nski, M.; Nadolska, M.; Łukowicz, K.; Pałubicka, A.; Osyczka, A.M.; Zieli ´nski, A. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Mater. Sci. Eng. C 2020, 117, 111286. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZapata, M.E.V.; Tovar, C.D.G.; Hernandez, J.H.M. The role of chitosan and graphene oxide in bioactive and antibacterial properties of acrylic bone cements. Biomolecules 2020, 10, 1616. [CrossRef]spa
dcterms.bibliographicCitationSoleymani Eil Bakhtiari, S.; Bakhsheshi-Rad, H.R.; Karbasi, S.; Tavakoli, M.; Razzaghi, M.; Ismail, A.F.; RamaKrishna, S.; Berto, F. Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers 2020, 12, 1469. [CrossRef]spa
dcterms.bibliographicCitationMukherjee, S.P.; Gliga, A.R.; Lazzaretto, B.; Brandner, B.; Fielden, M.; Vogt, C.; Newman, L.; Rodrigues, A.F.; Shao, W.; Fournier, P.M.; et al. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale 2018, 10, 1180–1188. [CrossRef]spa
dcterms.bibliographicCitationGirish, C.M.; Sasidharan, A.; Gowd, G.S.; Nair, S.; Koyakutty, M. Confocal raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv. Healthc. Mater. 2013, 2, 1489–1500. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKotchey, G.P.; Allen, B.L.; Vedala, H.; Yanamala, N.; Kapralov, A.A.; Tyurina, Y.Y.; Klein-Seetharaman, J.; Kagan, V.E.; Star, A. The enzymatic oxidation of graphene oxide. ACS Nano 2011, 5, 2098–2108. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationKurapati, R.; Bonachera, F.; Russier, J.; Sureshbabu, A.R.; Ménard-Moyon, C.; Kostarelos, K.; Bianco, A. Covalent chemical functionalization enhances the biodegradation of graphene oxide. 2D Mater. 2018, 5, 015020. [CrossRef]spa
dcterms.bibliographicCitationCacaci, M.; Martini, C.; Guarino, C.; Torelli, R.; Bugli, F.; Sanguinetti, M. Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device. In Advances in Microbiology, Infectious Diseases and Public Health; Donelli, G., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 14, pp. 21–35. ISBN 978-3-030-53647-3.spa
dcterms.bibliographicCitationBarui, A.K.; Roy, A.; Das, S.; Bhamidipati, K.; Patra, C.R. Therapeutic Applications of Graphene Oxides in Angiogenesis and Cancers. In Nanoparticles and Their Biomedical Applications; Shukla, A.K., Ed.; Springer: Singapore, 2020; pp. 147–189. ISBN 978-981-15-0391-7.spa
dcterms.bibliographicCitationGonçalves, G.; Cruz, S.M.A.; Ramalho, A.; Grácio, J.; Marques, P.A.A.P. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale 2012, 4, 2937–2945. [CrossRef]spa
dcterms.bibliographicCitationKhan, A.A.; Mirza, E.H.; Mohamed, B.A.; Alharthi, N.H.; Abdo, H.S.; Javed, R.; Alhur, R.S.; Vallittu, P.K. Physical, mechanical, chemical and thermal properties of nanoscale graphene oxide-poly methylmethacrylate composites. J. Compos. Mater. 2018, 52, 2803–2813. [CrossRef]spa
dcterms.bibliographicCitationTavakoli, M.; Bakhtiari, S.S.E.; Karbasi, S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. Int. J. Biol. Macromol. 2020, 149, 783–793. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationValencia Zapata, M.E.; Ruiz Rojas, L.M.; Mina Hernandez, J.H.; Delgado-Ospina, J.; Grande Tovar, C.D. Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties. Polymers 2020, 12, 1773. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationValencia Zapata, M.E.; Mina Hernandez, J.H.; Grande Tovar, C.D.; Valencia Llano, C.H.; Diaz Escobar, J.A.; Vázquez-Lasa, B.; San Román, J.; Rojo, L. Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. Int. J. Mol. Sci. 2019, 20, 2938. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGonçalves, G.; Portolés, M.-T.; Ramírez-Santillán, C.; Vallet-Regí, M.; Serro, A.P.; Grácio, J.; Marques, P.A.A.P. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations. J. Mater. Sci. Mater. Med. 2013, 24, 2787–2796. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMirza, E.H.; Khan, A.A.; Al-Khureif, A.A.; Saadaldin, S.A.; Mohamed, B.A.; Fareedi, F.; Khan, M.M.; Alfayez, M.; Al-Fotawi, R.; Vallittu, P.K.; et al. Characterization of osteogenic cells grown over modified graphene-oxide-biostable polymers. Biomed. Mater. 2019, 14, 65004. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLee, J.; Jo, J.; Kim, D.; Dev, K.; Kim, H.; Lee, H. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent. Mater. 2018, 34, e63–e72. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationYe, S.; Feng, J. The effect of sonication treatment of graphene oxide on the mechanical properties of the assembled films. RSC Adv. 2016, 6, 39681–39687. [CrossRef]spa
dcterms.bibliographicCitationNawaz, K.; Ayub, M.; Ul-Haq, N.; Khan, M.B.; Niazi, M.B.K.; Hussain, A. Effects of selected size of graphene nanosheets on the mechanical properties of polyacrylonitrile polymer. Fibers Polym. 2014, 15, 2040–2044. [CrossRef]spa
dcterms.bibliographicCitationVallurupalli, K.; Meng, W.; Liu, J.; Khayat, K.H. Effect of graphene oxide on rheology, hydration and strength development of cement paste. Constr. Build. Mater. 2020, 265, 120311. [CrossRef]spa
dcterms.bibliographicCitationValizadeh, M.; Gholampour, A.; Tran, D.N.H.; Ozbakkaloglu, T.; Losic, D. Physiochemical and mechanical properties of reduced graphene oxide—Cement mortar composites: Effect of reduced graphene oxide particle size. Constr. Build. Mater. 2020, 250, 118832. [CrossRef]spa
dcterms.bibliographicCitationValizadeh, M.; Gholampour, A.; Tran, D.N.H.; Ozbakkaloglu, T.; Losic, D. Physiochemical and mechanical properties of reduced graphene oxide—Cement mortar composites: Effect of reduced graphene oxide particle size. Constr. Build. Mater. 2020, 250, 118832. [CrossRef]spa
dcterms.bibliographicCitationLarraza, I.; Ugarte, L.; Fayanas, A.; Gabilondo, N.; Arbelaiz, A.; Corcuera, M.A.; Eceiza, A. Influence of process parameters in graphene oxide obtention on the properties of mechanically strong alginate nanocomposites. Materials 2020, 13, 1081. [CrossRef]spa
dcterms.bibliographicCitationKim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186. [CrossRef]spa
dcterms.bibliographicCitationBotas, C.; Pérez-Mas, A.M.; Álvarez, P.; Santamaría, R.; Granda, M.; Blanco, C.; Menéndez, R. Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon N. Y. 2013, 63, 576–578. [CrossRef]spa
dcterms.bibliographicCitationSkaltsas, T.; Ke, X.; Bittencourt, C.; Tagmatarchis, N. Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J. Phys. Chem. C 2013, 117, 23272–23278. [CrossRef]spa
dcterms.bibliographicCitationInternational Standard ISO 5833: Implants for Surgery. In Acrylic Resin Cements; International Standard: Geneva, Switzerland, 2002; pp. 1–22.spa
dcterms.bibliographicCitationMontgomery, D.C. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons: New York, NY, USA, 2019.spa
dcterms.bibliographicCitationCochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1992.spa
dcterms.bibliographicCitationVazquez, B.; Elvira, C.; Levenfeld, B.; Pascual, B.; Goñi, I.; Gurruchaga, M.; Ginebra, M.P.; Gil, F.X.; Planell, J.A.; Liso, P.A.; et al. Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements. J. Biomed. Mater. Res. 1997, 34, 129–136. [CrossRef]spa
dcterms.bibliographicCitationVazquez, B.; Deb, S.; Bonfield, W. Optimization of benzoyl peroxide concentration in an experimental bone cement based on poly (methyl methacrylate). J. Mater. Sci. Mater. Med. 1997, 8, 455–460. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationVazquez, B.; Deb, S.; Bonfield, W. Optimization of benzoyl peroxide concentration in an experimental bone cement based on poly (methyl methacrylate). J. Mater. Sci. Mater. Med. 1997, 8, 455–460. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGinebra, M.B.; Gil, F.X.; Planell, J.A.; Pascual, B.; Goni, I.; Gurruchaga, M.; Levenfeld, B.; Vázouez, B.; Roman, J.S. Relationship between the morphology of PMMA particles and properties of acrylic bone cements. J. Mater. Sci. Mater. Med. 1996, 7, 375–379. [CrossRef]spa
dcterms.bibliographicCitationBalandin, A. Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569–581. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationOrmsby, R.W.; Modreanu, M.; Mitchell, C.A.; Dunne, N.J. Carboxyl functionalised MWCNT/polymethyl methacrylate bone cement for orthopaedic applications. J. Biomater. Appl. 2014, 29, 209–221. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPaz, E.; Ballesteros, Y.; Abenojar, J.; del Real, J.C.; Dunne, N.J. Graphene oxide and graphene reinforced PMMA bone cements: Evaluation of thermal properties and biocompatibility. Materials 2019, 12, 3146. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCai, Y.; Fadil, Y.; Jasinski, F.; Thickett, S.C.; Agarwal, V.; Zetterlund, P.B. Miniemulsion polymerization using graphene oxide as surfactant: In situ grafting of polymers. Carbon N. Y. 2019, 149, 445–451. [CrossRef]spa
dcterms.bibliographicCitationBurresi, E.; Taurisano, N.; Protopapa, M.L.; Latterini, L.; Palmisano, M.; Mirenghi, L.; Schioppa, M.; Morandi, V.; Mazzaro, R.; Penza, M. Influence of the synthesis conditions on the microstructural, compositional and morphological properties of graphene oxide sheets. Ceram. Int. 2020, 46, 22067–22078. [CrossRef]spa
dcterms.bibliographicCitationPahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Kharaziha, M.; Kasiri-Asgarani, M.; Omidi, M.; Razzaghi, M.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. J. Mech. Behav. Biomed. Mater. 2021, 116, 104320. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationOrmsby, R.; McNally, T.; O’Hare, P.; Burke, G.; Mitchell, C.; Dunne, N. Fatigue and biocompatibility properties of a poly (methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater. 2012, 8, 1201–1212. [CrossRef]spa
dcterms.bibliographicCitationPahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Hamzah, E. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMAPCL polymer containing fluorapatite and graphene oxide bone cements. J. Mech. Behav. Biomed. Mater. 2018, 82, 257–267. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationWright, Z.M.; Pandit, A.M.; Karpinsky, M.M.; Holt, B.D.; Zovinka, E.P.; Sydlik, S.A. Bioactive, Ion-Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Adv. Healthc. Mater. 2021, 10, 2001189. [CrossRef]spa
dcterms.bibliographicCitationKhan, A.A.; Mirza, E.H.; Mohamed, B.A.; El-Sharawy, M.A.; Hasil Al-Asmari, M.; Abdullah Al-Khureif, A.; Ahmad Dar, M.; Vallittu, P.K. Static and dynamic mechanical properties of graphene oxide-based bone cementing agents. J. Compos. Mater. 2019, 53, 2297–2304. [CrossRef]spa
dcterms.bibliographicCitationRuiz, S.; Tamayo, J.A.; Ospina, J.D.; Navia Porras, D.P.; Valencia Zapata, M.E.; Mina Hernandez, J.H.; Valencia, C.H.; Zuluaga, F.; Grande Tovar, C.D. Antimicrobial Films Based on Nanocomposites of Chitosan/Poly (vinyl alcohol)/Graphene Oxide for Biomedical Applications. Biomolecules 2019, 9, 109. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationUnal, S.; Arslan, S.; Gokce, T.; Melek, B.; Karademir, B. Design and characterization of polycaprolactone-gelatin-graphene oxide scaffolds for drug influence on glioblastoma cells. Eur. Polym. J. 2019, 115, 157–165. [CrossRef]spa
dcterms.bibliographicCitationOrmsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: Effects on mechanical and thermal properties. J. Mech. Behav. Biomed. Mater. 2010, 3, 136–145. [CrossRef] [PubMed]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/app11115185
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsacrylic bone cement; benzoyl peroxide; completely randomized factorial design; graphene oxide; mechanical properties; PMMA; setting properties; sonicationspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Químicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por