dc.contributor.author | Ruiz Rojas, Lina Marcela | |
dc.contributor.other | Valencia Zapata, Mayra Eliana | |
dc.contributor.other | Gordillo Suarez, Marisol | |
dc.contributor.other | Advincula, Rigoberto | |
dc.contributor.other | Grande-Tovar, Carlos David | |
dc.contributor.other | Mina Hernández, José Herminsul | |
dc.date.accessioned | 2022-12-19T21:07:39Z | |
dc.date.available | 2022-12-19T21:07:39Z | |
dc.date.issued | 2021-06-03 | |
dc.date.submitted | 2021-04-28 | |
dc.identifier.citation | Ruiz Rojas, L. M., Valencia Zapata, M. E., Gordillo Suarez, M., Advincula, R., Grande-Tovar, C. D., & Mina Hernández, J. H. (2021). Optimization of Mechanical and Setting Properties in Acrylic Bone Cements Added with Graphene Oxide. Applied Sciences, 11(11), 5185. https://doi.org/10.3390/app11115185 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1150 | |
dc.description.abstract | The extended use of acrylic bone cements (ABC) in orthopedics presents some disadvantages related to the generation of high temperatures during methyl methacrylate polymerization, thermal tissue necrosis, and low mechanical properties. Both weaknesses cause an increase in costs for the health system and a decrease in the patient’s quality of life due to the prosthesis’s loosening. Materials such as graphene oxide (GO) have a reinforcing effect on ABC’s mechanical and setting properties. This article shows for the first time the interactions present between the factors sonication time and GO percentage in the liquid phase, together with the percentage of benzoyl peroxide (BPO) in the solid phase, on the mechanical and setting properties established for cements in the ISO 5833-02 standard. Optimization of the factors using a completely randomized experimental design with a factorial structure resulted in selecting nine combinations that presented an increase in compression, flexion, and the setting time and decreased the maximum temperature reached during the polymerization. All of these characteristics are desirable for improving the clinical performance of cement. Those containing 0.3 wt.% of GO were highlighted from the selected formulations because all the possible combinations of the studied factors generate desirable properties for the ABC. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | applied sciences | spa |
dc.title | Optimization of mechanical and setting properties in acrylic bone cements added with graphene oxide | spa |
dc.title.alternative | Optimization of mechanical and setting properties in acrylic bone cements added with graphene oxide | spa |
dcterms.bibliographicCitation | Hasenwinkel, J.M.; Lautenschlager, E.P.; Wixson, R.L.; Gilbert, J.L. A novel high-viscosity, two-solution acrylic bone cement: Effect of chemical composition on properties. J. Biomed. Mater. Res. 1999, 47, 36–45. [CrossRef] | spa |
dcterms.bibliographicCitation | Brauer, G.M.; Steinberger, D.R.; Stansbury, J.W. Dependence of curing time, peak temperature, and mechanical properties on the composition of bone cement. J. Biomed. Mater. Res. 1986, 20, 839–852. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Paz, E.; Forriol, F.; del Real, J.C.; Dunne, N. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Mater. Sci. Eng. C 2017, 77, 1003–1011. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Rusu, M.C.; Ichim, I.C.; Popa, M.; Rusu, M. New radiopaque acrylic bone cement. II. Acrylic bone cement with bromine-containing monomer. J. Mater. Sci. Mater. Med. 2008, 19, 2609–2617. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Nussbaum, D.A.; Gailloud, P.; Murphy, K. The Chemistry of Acrylic Bone Cements and Implications for Clinical Use in Image-guided Therapy. J. Vasc. Interv. Radiol. 2004, 15, 121–126. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Madigan, S.; Towler, M.R.; Lewis, G. Influence of two changes in the composition of an acrylic bone cement on some of its properties: The case of Surgical Simplex® P. J. Mater. Sci. 2006, 41, 5758–5759. [CrossRef] | spa |
dcterms.bibliographicCitation | Madigan, S.; Towler, M.R.; Lewis, G. Optimisation of the composition of an acrylic bone cement: Application to relative amounts of the initiator and the activator/co-initiator in Surgical Simplex® P. J. Mater. Sci. Mater. Med. 2006, 17, 307–311. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Sharma, R.; Kapusetti, G.; Bhong, S.Y.; Roy, P.; Singh, S.K.; Singh, S.; Balavigneswaran, C.K.; Mahato, K.K.; Ray, B.; Maiti, P.; et al. Osteoconductive Amine-Functionalized Graphene-Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization. Bioconjug. Chem. 2017, 28, 2254–2265. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Kuehn, K.-D.; Ege, W.; Gopp, U. Acrylic bone cements: Composition and properties. Orthop. Clin. N. Am. 2005, 36, 17–28. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | IMAI, Y.; OHYAMA, A. Characterization of Powder Components of Commercial Bone Cements. Dent. Mater. J. 2001, 20, 345–352. [CrossRef] | spa |
dcterms.bibliographicCitation | Kühn, K.-D. Bone Cements; Springer: Berlin, Germany, 2000; ISBN 9783642641152. | spa |
dcterms.bibliographicCitation | Yang, D.H.; Yoon, G.H.; Kim, S.H.; Rhee, J.M.; Kim, Y.S.; Khang, G. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: Effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder. J. Biomater. Sci. Polym. Ed. 2005, 16, 1121–1138. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Dunne, N.; Ormsby, R.; Mitchell, C. Carbon Nanotubes in Acrylic Bone Cement; Springer Series in Biomaterials Science and Engineering; Antoniac, I., Wang, M., Eds.; Springer: New York, NY, USA, 2013; pp. 173–200. ISBN 9781461443278. | spa |
dcterms.bibliographicCitation | Dalby, M.J.; Di Silvio, L.; Harper, E.J.; Bonfield, W. In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J. Mater. Sci. Mater. Med. 1999, 10, 793–796. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Espigares, I.; Elvira, C.; Mano, J.F.; Vázquez, B.; San Román, J.; Reis, R.L. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 2002, 23, 1883–1895. [CrossRef] | spa |
dcterms.bibliographicCitation | Lozano, K.; Mina, J.; Zuluaga, F.; Valencia, C.; Valencia, M. Influencia de la incorporación de un co-monómero alcalino e hidroxiapatita en las propiedades de cementos óseos acrílicos. DYNA 2013, 80, 153–162. | spa |
dcterms.bibliographicCitation | Heikkilä, J.T.; Aho, A.J.; Kangasniemi, I.; Yli-Urpo, A. Polymethylmethacrylate composites: Disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Biomaterials 1996, 17, 1755–1760. [CrossRef] | spa |
dcterms.bibliographicCitation | Fernández, M.; Méndez, J.A.; Vázquez, B.; San Román, J.; Ginebra, M.P.; Gil, F.J.; Manero, J.M.; Planell, J.A. Acrylic-phosphate glasses composites as self-curing controlled delivery systems of antibiotics. J. Mater. Sci. Mater. Med. 2002, 13, 1251–1257. [CrossRef] | spa |
dcterms.bibliographicCitation | Lopes, P.P.; Leite Ferreira, B.J.M.; Almeida, N.A.F.; Fredel, M.C.; Fernandes, M.H.V.; Correia, R.N. Preparation and study of in vitro bioactivity of PMMA-co-EHA composites filled with a Ca3 (PO4 )2 -SiO2 -MgO glass. Mater. Sci. Eng. C 2008, 28, 572–577. [CrossRef] | spa |
dcterms.bibliographicCitation | Lopes, P.P.; Leite Ferreira, B.J.M.; Gomes, P.S.; Correia, R.N.; Fernandes, M.H.; Fernandes, M.H.V. Silicate and borate glasses as composite fillers: A bioactivity and biocompatibility study. J. Mater. Sci. Mater. Med. 2011, 22, 1501–1510. [CrossRef] | spa |
dcterms.bibliographicCitation | Lopes, P.P.; Garcia, M.P.; Fernandes, M.H.; Fernandes, M.H.V. Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: Properties and biocompatibility assessment. Mater. Sci. Eng. C 2013, 33, 1289–1299. [CrossRef] | spa |
dcterms.bibliographicCitation | Fini, M.; Giavaresi, G.; Nicoli Aldini, N.; Torricelli, P.; Botter, R.; Beruto, D.; Giardino, R. A bone substitute composed of polymethylmethacrylate and tricalcium phosphate: Results in terms of osteoblast function and bone tissue formation. Biomaterials 2002, 23, 4523–4531. [CrossRef] | spa |
dcterms.bibliographicCitation | Shinzato, S.; Nakamura, T.; Kokubo, T.; Kitamura, Y. A new bioactive bone cement: Effect of glass bead filler content on mechanical and biological properties. J. Biomed. Mater. Res. 2001, 54, 491–500. [CrossRef] | spa |
dcterms.bibliographicCitation | . García-Enriquez, S.; Guadarrama, H.E.R.; Reyes-González, I.; Mendizábal, E.; Jasso-Gastinel, C.F.; García-Enriquez, B.; RembaoBojórquez, D.; Pane-Pianese, C. Mechanical performance and in vivo tests of an acrylic bone cement filled with bioactive sepia officinalis cuttlebone. J. Biomater. Sci. Polym. Ed. 2010, 21, 113–125. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Wekwejt, M.; Michalska-Sionkowska, M.; Bartma ´nski, M.; Nadolska, M.; Łukowicz, K.; Pałubicka, A.; Osyczka, A.M.; Zieli ´nski, A. Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Mater. Sci. Eng. C 2020, 117, 111286. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Zapata, M.E.V.; Tovar, C.D.G.; Hernandez, J.H.M. The role of chitosan and graphene oxide in bioactive and antibacterial properties of acrylic bone cements. Biomolecules 2020, 10, 1616. [CrossRef] | spa |
dcterms.bibliographicCitation | Soleymani Eil Bakhtiari, S.; Bakhsheshi-Rad, H.R.; Karbasi, S.; Tavakoli, M.; Razzaghi, M.; Ismail, A.F.; RamaKrishna, S.; Berto, F. Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers 2020, 12, 1469. [CrossRef] | spa |
dcterms.bibliographicCitation | Mukherjee, S.P.; Gliga, A.R.; Lazzaretto, B.; Brandner, B.; Fielden, M.; Vogt, C.; Newman, L.; Rodrigues, A.F.; Shao, W.; Fournier, P.M.; et al. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale 2018, 10, 1180–1188. [CrossRef] | spa |
dcterms.bibliographicCitation | Girish, C.M.; Sasidharan, A.; Gowd, G.S.; Nair, S.; Koyakutty, M. Confocal raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv. Healthc. Mater. 2013, 2, 1489–1500. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Kotchey, G.P.; Allen, B.L.; Vedala, H.; Yanamala, N.; Kapralov, A.A.; Tyurina, Y.Y.; Klein-Seetharaman, J.; Kagan, V.E.; Star, A. The enzymatic oxidation of graphene oxide. ACS Nano 2011, 5, 2098–2108. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Kurapati, R.; Bonachera, F.; Russier, J.; Sureshbabu, A.R.; Ménard-Moyon, C.; Kostarelos, K.; Bianco, A. Covalent chemical functionalization enhances the biodegradation of graphene oxide. 2D Mater. 2018, 5, 015020. [CrossRef] | spa |
dcterms.bibliographicCitation | Cacaci, M.; Martini, C.; Guarino, C.; Torelli, R.; Bugli, F.; Sanguinetti, M. Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device. In Advances in Microbiology, Infectious Diseases and Public Health; Donelli, G., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 14, pp. 21–35. ISBN 978-3-030-53647-3. | spa |
dcterms.bibliographicCitation | Barui, A.K.; Roy, A.; Das, S.; Bhamidipati, K.; Patra, C.R. Therapeutic Applications of Graphene Oxides in Angiogenesis and Cancers. In Nanoparticles and Their Biomedical Applications; Shukla, A.K., Ed.; Springer: Singapore, 2020; pp. 147–189. ISBN 978-981-15-0391-7. | spa |
dcterms.bibliographicCitation | Gonçalves, G.; Cruz, S.M.A.; Ramalho, A.; Grácio, J.; Marques, P.A.A.P. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale 2012, 4, 2937–2945. [CrossRef] | spa |
dcterms.bibliographicCitation | Khan, A.A.; Mirza, E.H.; Mohamed, B.A.; Alharthi, N.H.; Abdo, H.S.; Javed, R.; Alhur, R.S.; Vallittu, P.K. Physical, mechanical, chemical and thermal properties of nanoscale graphene oxide-poly methylmethacrylate composites. J. Compos. Mater. 2018, 52, 2803–2813. [CrossRef] | spa |
dcterms.bibliographicCitation | Tavakoli, M.; Bakhtiari, S.S.E.; Karbasi, S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. Int. J. Biol. Macromol. 2020, 149, 783–793. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Valencia Zapata, M.E.; Ruiz Rojas, L.M.; Mina Hernandez, J.H.; Delgado-Ospina, J.; Grande Tovar, C.D. Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties. Polymers 2020, 12, 1773. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Valencia Zapata, M.E.; Mina Hernandez, J.H.; Grande Tovar, C.D.; Valencia Llano, C.H.; Diaz Escobar, J.A.; Vázquez-Lasa, B.; San Román, J.; Rojo, L. Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. Int. J. Mol. Sci. 2019, 20, 2938. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Gonçalves, G.; Portolés, M.-T.; Ramírez-Santillán, C.; Vallet-Regí, M.; Serro, A.P.; Grácio, J.; Marques, P.A.A.P. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations. J. Mater. Sci. Mater. Med. 2013, 24, 2787–2796. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Mirza, E.H.; Khan, A.A.; Al-Khureif, A.A.; Saadaldin, S.A.; Mohamed, B.A.; Fareedi, F.; Khan, M.M.; Alfayez, M.; Al-Fotawi, R.; Vallittu, P.K.; et al. Characterization of osteogenic cells grown over modified graphene-oxide-biostable polymers. Biomed. Mater. 2019, 14, 65004. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Lee, J.; Jo, J.; Kim, D.; Dev, K.; Kim, H.; Lee, H. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent. Mater. 2018, 34, e63–e72. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ye, S.; Feng, J. The effect of sonication treatment of graphene oxide on the mechanical properties of the assembled films. RSC Adv. 2016, 6, 39681–39687. [CrossRef] | spa |
dcterms.bibliographicCitation | Nawaz, K.; Ayub, M.; Ul-Haq, N.; Khan, M.B.; Niazi, M.B.K.; Hussain, A. Effects of selected size of graphene nanosheets on the mechanical properties of polyacrylonitrile polymer. Fibers Polym. 2014, 15, 2040–2044. [CrossRef] | spa |
dcterms.bibliographicCitation | Vallurupalli, K.; Meng, W.; Liu, J.; Khayat, K.H. Effect of graphene oxide on rheology, hydration and strength development of cement paste. Constr. Build. Mater. 2020, 265, 120311. [CrossRef] | spa |
dcterms.bibliographicCitation | Valizadeh, M.; Gholampour, A.; Tran, D.N.H.; Ozbakkaloglu, T.; Losic, D. Physiochemical and mechanical properties of reduced graphene oxide—Cement mortar composites: Effect of reduced graphene oxide particle size. Constr. Build. Mater. 2020, 250, 118832. [CrossRef] | spa |
dcterms.bibliographicCitation | Valizadeh, M.; Gholampour, A.; Tran, D.N.H.; Ozbakkaloglu, T.; Losic, D. Physiochemical and mechanical properties of reduced graphene oxide—Cement mortar composites: Effect of reduced graphene oxide particle size. Constr. Build. Mater. 2020, 250, 118832. [CrossRef] | spa |
dcterms.bibliographicCitation | Larraza, I.; Ugarte, L.; Fayanas, A.; Gabilondo, N.; Arbelaiz, A.; Corcuera, M.A.; Eceiza, A. Influence of process parameters in graphene oxide obtention on the properties of mechanically strong alginate nanocomposites. Materials 2020, 13, 1081. [CrossRef] | spa |
dcterms.bibliographicCitation | Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186. [CrossRef] | spa |
dcterms.bibliographicCitation | Botas, C.; Pérez-Mas, A.M.; Álvarez, P.; Santamaría, R.; Granda, M.; Blanco, C.; Menéndez, R. Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon N. Y. 2013, 63, 576–578. [CrossRef] | spa |
dcterms.bibliographicCitation | Skaltsas, T.; Ke, X.; Bittencourt, C.; Tagmatarchis, N. Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J. Phys. Chem. C 2013, 117, 23272–23278. [CrossRef] | spa |
dcterms.bibliographicCitation | International Standard ISO 5833: Implants for Surgery. In Acrylic Resin Cements; International Standard: Geneva, Switzerland, 2002; pp. 1–22. | spa |
dcterms.bibliographicCitation | Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons: New York, NY, USA, 2019. | spa |
dcterms.bibliographicCitation | Cochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1992. | spa |
dcterms.bibliographicCitation | Vazquez, B.; Elvira, C.; Levenfeld, B.; Pascual, B.; Goñi, I.; Gurruchaga, M.; Ginebra, M.P.; Gil, F.X.; Planell, J.A.; Liso, P.A.; et al. Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements. J. Biomed. Mater. Res. 1997, 34, 129–136. [CrossRef] | spa |
dcterms.bibliographicCitation | Vazquez, B.; Deb, S.; Bonfield, W. Optimization of benzoyl peroxide concentration in an experimental bone cement based on poly (methyl methacrylate). J. Mater. Sci. Mater. Med. 1997, 8, 455–460. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Vazquez, B.; Deb, S.; Bonfield, W. Optimization of benzoyl peroxide concentration in an experimental bone cement based on poly (methyl methacrylate). J. Mater. Sci. Mater. Med. 1997, 8, 455–460. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ginebra, M.B.; Gil, F.X.; Planell, J.A.; Pascual, B.; Goni, I.; Gurruchaga, M.; Levenfeld, B.; Vázouez, B.; Roman, J.S. Relationship between the morphology of PMMA particles and properties of acrylic bone cements. J. Mater. Sci. Mater. Med. 1996, 7, 375–379. [CrossRef] | spa |
dcterms.bibliographicCitation | Balandin, A. Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569–581. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ormsby, R.W.; Modreanu, M.; Mitchell, C.A.; Dunne, N.J. Carboxyl functionalised MWCNT/polymethyl methacrylate bone cement for orthopaedic applications. J. Biomater. Appl. 2014, 29, 209–221. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Paz, E.; Ballesteros, Y.; Abenojar, J.; del Real, J.C.; Dunne, N.J. Graphene oxide and graphene reinforced PMMA bone cements: Evaluation of thermal properties and biocompatibility. Materials 2019, 12, 3146. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Cai, Y.; Fadil, Y.; Jasinski, F.; Thickett, S.C.; Agarwal, V.; Zetterlund, P.B. Miniemulsion polymerization using graphene oxide as surfactant: In situ grafting of polymers. Carbon N. Y. 2019, 149, 445–451. [CrossRef] | spa |
dcterms.bibliographicCitation | Burresi, E.; Taurisano, N.; Protopapa, M.L.; Latterini, L.; Palmisano, M.; Mirenghi, L.; Schioppa, M.; Morandi, V.; Mazzaro, R.; Penza, M. Influence of the synthesis conditions on the microstructural, compositional and morphological properties of graphene oxide sheets. Ceram. Int. 2020, 46, 22067–22078. [CrossRef] | spa |
dcterms.bibliographicCitation | Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Kharaziha, M.; Kasiri-Asgarani, M.; Omidi, M.; Razzaghi, M.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. J. Mech. Behav. Biomed. Mater. 2021, 116, 104320. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Ormsby, R.; McNally, T.; O’Hare, P.; Burke, G.; Mitchell, C.; Dunne, N. Fatigue and biocompatibility properties of a poly (methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater. 2012, 8, 1201–1212. [CrossRef] | spa |
dcterms.bibliographicCitation | Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Hamzah, E. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMAPCL polymer containing fluorapatite and graphene oxide bone cements. J. Mech. Behav. Biomed. Mater. 2018, 82, 257–267. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Wright, Z.M.; Pandit, A.M.; Karpinsky, M.M.; Holt, B.D.; Zovinka, E.P.; Sydlik, S.A. Bioactive, Ion-Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Adv. Healthc. Mater. 2021, 10, 2001189. [CrossRef] | spa |
dcterms.bibliographicCitation | Khan, A.A.; Mirza, E.H.; Mohamed, B.A.; El-Sharawy, M.A.; Hasil Al-Asmari, M.; Abdullah Al-Khureif, A.; Ahmad Dar, M.; Vallittu, P.K. Static and dynamic mechanical properties of graphene oxide-based bone cementing agents. J. Compos. Mater. 2019, 53, 2297–2304. [CrossRef] | spa |
dcterms.bibliographicCitation | Ruiz, S.; Tamayo, J.A.; Ospina, J.D.; Navia Porras, D.P.; Valencia Zapata, M.E.; Mina Hernandez, J.H.; Valencia, C.H.; Zuluaga, F.; Grande Tovar, C.D. Antimicrobial Films Based on Nanocomposites of Chitosan/Poly (vinyl alcohol)/Graphene Oxide for Biomedical Applications. Biomolecules 2019, 9, 109. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Unal, S.; Arslan, S.; Gokce, T.; Melek, B.; Karademir, B. Design and characterization of polycaprolactone-gelatin-graphene oxide scaffolds for drug influence on glioblastoma cells. Eur. Polym. J. 2019, 115, 157–165. [CrossRef] | spa |
dcterms.bibliographicCitation | Ormsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: Effects on mechanical and thermal properties. J. Mech. Behav. Biomed. Mater. 2010, 3, 136–145. [CrossRef] [PubMed] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/app11115185 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | acrylic bone cement; benzoyl peroxide; completely randomized factorial design; graphene oxide; mechanical properties; PMMA; setting properties; sonication | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Química | spa |
dc.publisher.sede | Sede Norte | spa |