dc.contributor.author | L. Bennett, Kelly | |
dc.contributor.other | McMillan, W. Owen | |
dc.contributor.other | Enríquez, Vanessa | |
dc.contributor.other | Barraza, Elia | |
dc.contributor.other | Díaz, Marcela | |
dc.contributor.other | Baca, Brenda | |
dc.contributor.other | Whiteman, Ari | |
dc.contributor.other | Cerro Medina, Jaime | |
dc.contributor.other | Ducasa, Madeleine | |
dc.contributor.other | Gómez Martínez, Carmelo | |
dc.contributor.other | Almanza, Alejandro | |
dc.contributor.other | R. Rovira, Jose | |
dc.contributor.other | R. Loaiza, Jose | |
dc.date.accessioned | 2022-12-19T21:07:27Z | |
dc.date.available | 2022-12-19T21:07:27Z | |
dc.date.issued | 2021-03-01 | |
dc.date.submitted | 2020-07-06 | |
dc.identifier.citation | Bennett, K.L., McMillan, W.O., Enríquez, V. et al. The role of heterogenous environmental conditions in shaping the spatiotemporal distribution of competing Aedes mosquitoes in Panama: implications for the landscape of arboviral disease transmission. Biol Invasions 23, 1933–1948 (2021). https://doi.org/10.1007/s10530-021-02482-y | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1149 | |
dc.description.abstract | Monitoring the invasion process of the Asian tiger mosquito Aedes albopictus and its interaction with the contender Aedes aegypti, is critical to prevent and control the arthropod-borne viruses (i.e., Arboviruses) they transmit to humans. Generally, the superior ecological competitor Ae. albopictus displaces Ae. aegypti from most geographic areas, with the combining factors of biology and environment influencing the competitive outcome. Nonetheless, detailed studies asserting displacement come largely from sub-tropical areas, with relatively less effort being made in tropical environments, including no comprehensive research about Aedes biological interactions in Mesoamerica. Here, we examine contemporary and historical mosquito surveillance data to assess the role of shifting abiotic conditions in shaping the spatiotemporal distribution of competing Aedes species in the Republic of Panama. In accordance with prior studies, we show that Ae. albopictus has displaced Ae. aegypti under suboptimal wet tropical climate conditions and more vegetated environments within the southwestern Azuero Peninsula. Conversely, in the eastern Azuero Peninsula, Ae. aegypti persists with Ae. albopictus under optimal niche conditions in a dry and more seasonal tropical climate. While species displacement was stable over the course of two years, the presence of both species generally appears to fluctuate in tandem in areas of coexistence. Aedes albopictus was always more frequently found and abundant regardless of location and climatic season. The heterogenous environmental conditions of Panama shape the competitive outcome and microgeographic distribution of Aedes mosquitoes, with potential consequences for the transmission dynamics of urban and sylvatic zoonotic diseases. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | ORIGINAL PAPER | spa |
dc.title | The role of heterogenous environmental conditions in shaping the spatiotemporal distribution of competing Aedes mosquitoes in Panama: implications for the landscape of arboviral disease transmission | spa |
dc.title.alternative | The role of heterogenous environmental conditions in shaping the spatiotemporal distribution of competing Aedes mosquitoes in Panama: implications for the landscape of arboviral disease transmission | spa |
dcterms.bibliographicCitation | Alarcón ÉP, Segura ÁM, Rúa-Uribe G, Parra-Henao G (2014) Evaluación de ovitrampas para vigilancia y control de Aedes aegypti en dos centros urbanos del Urabá antioqueño. Biomédica | spa |
dcterms.bibliographicCitation | Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232 | spa |
dcterms.bibliographicCitation | Bagny Beilhe L, Arnoux S, Delatte H, Lajoie G, Fontenille D (2012) Spread of invasive Aedes albopictus and decline of resident Aedes aegypti in urban areas of Mayotte 2007–2010. Biol. Invasions. p 14 | spa |
dcterms.bibliographicCitation | Bargielowski I, Carrasquilla MC, Nishimura N, Lounibos LP (2016) Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in peninsular Florida two decades after competitive displacements. J Med Entomol 53:1385–1390 | spa |
dcterms.bibliographicCitation | Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-borne zoonotic Dis 7:76–85 | spa |
dcterms.bibliographicCitation | Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, Loaiza JR (2019b) Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep 9:12160 | spa |
dcterms.bibliographicCitation | Bennett KL, Almanza CGMA, Rovira JR, McMillan WO, Enriquez V, Barraza E, Diaz M, Galan JS, Whiteman A, Gittens RA, Loaiza JR (2019a) High infestation of invasive Aedes mosquitoes along the highways of Panama: Impact on vector ecology and disease control. Parasit Vectors 12:264 | spa |
dcterms.bibliographicCitation | Bennett KL, McMillan WO, Loaiza JR (2020) The genomic signal of local adaptation in Aedes aegypti mosquitoes. Evol Appl, In Press | spa |
dcterms.bibliographicCitation | Bevins SN (2008) Invasive mosquitoes, larval competition, and indirect effects on the vector competence of native mosquito species (Diptera: Culicidae). Biol Invasions 10:1109–1117 | spa |
dcterms.bibliographicCitation | Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468 | spa |
dcterms.bibliographicCitation | Braks MAH, Honório NA, Lourenço-De-Oliveira R, Juliano SA, Lounibos LP (2003) Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Southeastern Brazil and Florida. J Med Entomol 40:785–794 | spa |
dcterms.bibliographicCitation | Braks MAH, Honório NA, Lounibos LP, Lourenço-de-Oliveira R, Juliano SA (2004) Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am 97:130–139 | spa |
dcterms.bibliographicCitation | Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR (2014) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68:514–525 | spa |
dcterms.bibliographicCitation | Carbajo AE, Curto SI, Schweigmann N (2006) Spatial distribution pattern of oviposition in the mosquito Aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector. Med Vet Entomol 20(2):209–218 | spa |
dcterms.bibliographicCitation | Chansang C, Kittayapong P (2007) Application of mosquito sampling count and geospatial methods to improve dengue vector surveillance. Am J Trop Med Hyg 77:897–902 | spa |
dcterms.bibliographicCitation | Christofferson RC (2015) A reevaluation of the role of Aedes albopictus in dengue transmission. J Infect Dis 212:1177–1179 | spa |
dcterms.bibliographicCitation | Costanzo KS, Kesavaraju B, Juliano SA (2005) Condition-specific competition in container mosquitoes: the role of noncompeting life-history stages. Ecology 86:3289–3295 | spa |
dcterms.bibliographicCitation | Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40:774–787 | spa |
dcterms.bibliographicCitation | Díaz-Nieto LM, Maciá A, Perotti MA, Berón CM (2013) Geographical limits of the southeastern distribution of Aedes aegypti (Diptera, Culicidae) in Argentina. PLoS Negl Trop Dis 7:e1963 | spa |
dcterms.bibliographicCitation | Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, Elm J, Tom T, Reiter P, Rigau-Perez JG, Hayes JM, Mills K, Napier M, Clark GG, Gubler DJ, H. D. O. I. Team (2005) Dengue fever, Hawaii, 2001-2002. Emerg. Infect. Dis. 11: 742–749 | spa |
dcterms.bibliographicCitation | Eskildsen GA, Rovira JR, Dutari LC, Smith O, Miller MJ, Bennett KL, McMillan WO, Loaiza JR (2018) Maternal invasion history of Aedes aegypti and Aedes albopictus into the Isthmus of Panama: Implications for the control of emergent viral disease agents. PLoS ONE 13:e0194874 | spa |
dcterms.bibliographicCitation | Farjana T, Tuno N (2013) Multiple Blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 50:838–846 | spa |
dcterms.bibliographicCitation | Farjana T, Tuno N, Higa Y (2012) Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med Vet Entomol 26:210–217 | spa |
dcterms.bibliographicCitation | Gonçalves CM, Melo FF, Bezerra JMT, Chaves BA, Silva BM, Silva LD, Pessanha JEM, Arias JR, Secundino NFC, Norris DE, Pimenta PFP (2014) Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasit Vectors 7:320 | spa |
dcterms.bibliographicCitation | Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227 | spa |
dcterms.bibliographicCitation | Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ (2019) A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25:839–852 | spa |
dcterms.bibliographicCitation | Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica | spa |
dcterms.bibliographicCitation | Hopperstad KA, Reiskind MH (2016) Recent changes in the local distribution of Aedes aegypti (Diptera: Culicidae) in South Florida. USA J Med Entomol 53:836–842 | spa |
dcterms.bibliographicCitation | Hopperstad KA, Sallam MF, Reiskind MH (2020) Estimations of fine-scale species distributions of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Eastern Florida. J Med Entomol. tjaa216 | spa |
dcterms.bibliographicCitation | Juliano SA (1998) Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79:255–268 | spa |
dcterms.bibliographicCitation | Juliano SA (2010) Coexistence, exclusion, or neutrality? a meta-analysis of competition between Aedes albopictus and resident mosquitoes. Isr J Ecol Evol 56:325–351 | spa |
dcterms.bibliographicCitation | Juliano SA, O’Meara GF, Morrill JR, Cutwa MM (2002) Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130:458–469 | spa |
dcterms.bibliographicCitation | Kaplan L, Kendell D, Robertson D, Livdahl T, Khatchikian C (2010) Aedes aegypti and Aedes albopictus in Bermuda: extinction, invasion, invasion and extinction. Biol Invasions 12:3277–3288 | spa |
dcterms.bibliographicCitation | Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380:1946–1955 | spa |
dcterms.bibliographicCitation | Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, van Bortel W, Hendrickx G, Schaffner F, Elyazar IRF, Teng H-J, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GRW, Golding N, Hay SI (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 4:08347 | spa |
dcterms.bibliographicCitation | LaDeau SL, Leisnham PT, Biehler D, Bodner D (2013) Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int J Environ Res Public Health 10:1505–1526 | spa |
dcterms.bibliographicCitation | Leisnham P, Juliano S (2010) Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion by a superior competitor, Oecologia | spa |
dcterms.bibliographicCitation | Leisnham PT, LaDeau SL, Juliano SA (2014) Spatial and temporal habitat segregation of mosquitoes in urban Florida. PLoS ONE 9:e91655 | spa |
dcterms.bibliographicCitation | Liu Z, Zhou T, Lai Z, Zhang Z, Jia Z, Zhou G, Williams T, Xu J, Gu J, Zhou X (2017) Competence of Aedes aegypti, Ae albopictus, and Culex quinquefasciatus mosquitoes as Zika virus vectors, China. Emerg Infect Dis 23:1085 | spa |
dcterms.bibliographicCitation | Lounibos LP, Juliano SA (2018) Where vectors collide: the importance of mechanisms shaping the realized niche for modeling ranges of invasive Aedes mosquitoes. Biol Invasions 20:1913–1929 | spa |
dcterms.bibliographicCitation | Lounibos LP, Kramer LD (2016) Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J Infect Dis 214:S453–S458 | spa |
dcterms.bibliographicCitation | Lounibos LP, Suárez S, Menéndez Z, Nishimura N, Escher RL, Connell SMO, Rey JR (2002) Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus? J Vector Ecol 27:86–95 | spa |
dcterms.bibliographicCitation | Lounibos LP, O’Meara GF, Juliano SA, Nishimura N, Escher RL, Reiskind MH, Cutwa M, Greene K (2010) Differential survivorship of invasive mosquito species in South Florida cemeteries: do site-specific microclimates explain patterns of coexistence and exclusion? Ann Entomol Soc Am 103:757–770 | spa |
dcterms.bibliographicCitation | Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69 | spa |
dcterms.bibliographicCitation | McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, Ignell R, Vosshall LB (2014) Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515:222 | spa |
dcterms.bibliographicCitation | McCullagh P, Nelder J (1972) Generalized linear models. Chapman and Hall, New York | spa |
dcterms.bibliographicCitation | Miller MJ, Loaiza JR (2015) Geographic expansion of the invasive mosquito Aedes albopictus across Panama—implications for control of dengue and chikungunya viruses. PLoS Negl Trop Dis 9:e0003383 | spa |
dcterms.bibliographicCitation | Minard G, Mavingui P, Moro CV (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors 6:146 | spa |
dcterms.bibliographicCitation | Murrell EG, Juliano SA (2014) Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 45:375–383 | spa |
dcterms.bibliographicCitation | Muzari M, Davis J, Bellwood R, Crunkhorn B, Gunn E, Sabatino U, Gair R (2019) Dominance of the tiger: The displacement of Aedes aegypti by Aedes albopictus in parts of the Torres Strait, Australia. Commun Dis Intell p 43 | spa |
dcterms.bibliographicCitation | O’meara GF, Evans Leonard JF, Gettman AD, Cuda JP (1995). Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J Med Entomol 32: 554–562 | spa |
dcterms.bibliographicCitation | Paupy C, Kassa Kassa F, Caron M, Nkoghé D, Leroy EM (2011) A chikungunya outbreak associated with the vector Aedes albopictus in remote villages of Gabon. Vector-Borne Zoonotic Dis 12:167–169 | spa |
dcterms.bibliographicCitation | Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711 | spa |
dcterms.bibliographicCitation | Pereira Dos Santos T, Roiz D, Santos de Abreu FV, Luz SLB, Santalucia M, Jiolle D, Santos Neves MSA, Simard F, Lourenço-de-Oliveira R, Paupy C (2018) Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerg Microbes Infect 7:191 | spa |
dcterms.bibliographicCitation | Ponlawat A, Harrington LC (2005) Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 42:844–849 | spa |
dcterms.bibliographicCitation | Powell JR, Tabachnick WJ (2013) History of domestication and spread of Aedes aegypti - A Review. Mem Inst Oswaldo Cruz 108:11–17 | spa |
dcterms.bibliographicCitation | QGIS Development Team (2019) QGIS geographic information system. open source geospatial foundation project. http://qgis.osgeo.org | spa |
dcterms.bibliographicCitation | R Core Team (2018) A language and environment for statistical computing. R Found. Stat. Comput, Vienna, Austria | spa |
dcterms.bibliographicCitation | Raharimalala FN, Ravaomanarivo LH, Ravelonandro P et al (2012) Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar. Parasit Vectors 5:56 | spa |
dcterms.bibliographicCitation | Reiskind MH, Lounibos LP (2009) Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol 23:62–68 | spa |
dcterms.bibliographicCitation | Reiskind MH, Lounibos LP (2013) Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27:421–429 | spa |
dcterms.bibliographicCitation | Reiskind MH, Zarrabi AA, Lounibos LP (2010) Invasive leaf resources alleviate density dependence in the invasive mosquito, Aedes albopictus. Biol Invasions 12:2319–2328 | spa |
dcterms.bibliographicCitation | Reiskind MH, Zarrabi AA, Lounibos LP (2012) Effects of combination of leaf resources on competition in container mosquito larvae. Bull Entomol Res 102:424–434 | spa |
dcterms.bibliographicCitation | Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D, Aribodor OB, Ibe N, Akorli J, Otoo S, Mutebi J-P, Kriete AL, Ewing EG, Sang R, Gloria-Soria A, Powell JR, Baker RE, White BJ, Crawford JE, McBride CS (2020) Climate and urbanization drive mosquito preference for humans. Curr Biol 30(18):3570–3579.e6 | spa |
dcterms.bibliographicCitation | Rueda LM (2004) Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa 589:1–60 | spa |
dcterms.bibliographicCitation | Schoener TW (1968) The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49:704–726 | spa |
dcterms.bibliographicCitation | Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography (Cop) 32:369–373 | spa |
dcterms.bibliographicCitation | Trpis M, Hausermann W (1978) Genetics of house-entering behaviour in East African populations of Aedes aegypti (L.) (Diptera: Culicidae) and its relevance to speciation. Bull Entomol Res 68:521–532 | spa |
dcterms.bibliographicCitation | Vega-Rúa A, Zouache K, Girod R, Failloux A-B, Lourenço-de-Oliveira R (2014) High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol 88:6294–6306 | spa |
dcterms.bibliographicCitation | Wang J, Ogden NH, Zhu H (2011) The impact of weather conditions on Culex pipiens and Culex restuans (Diptera: Culicidae) abundance: A case study in Peel region. J Med Entomol 48:468–475 | spa |
dcterms.bibliographicCitation | Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883 | spa |
dcterms.bibliographicCitation | Whiteman A, Gomez C, Rovira J, Chen G, McMillan WO, Loaiza J (2019b) Aedes mosquito infestation in socioeconomically contrasting neighborhoods of Panama City. EcoHealth 16:210–221 | spa |
dcterms.bibliographicCitation | Whiteman A, Desjardins MR, Eskildsen GA, Loaiza JR (2019a) Detecting space-time clusters of dengue fever in Panama after adjusting for vector surveillance data. PLoS Negl Trop Dis 13:e0007266 | spa |
dcterms.bibliographicCitation | World Health Organization. Vector surveillance and control (1997) Available at https://www.who.int/csr/resources/publications/dengue/048-59.pdf?ua=1 | spa |
dcterms.bibliographicCitation | Yee DA, Kesavaraju B, Juliano SA (2004) Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Ann Entomol Soc Am 97:720–728 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1007/s10530-021-02482-y | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Aedes mosquitoes Arbovirus transmission Interspecific competition Ecological niche Environmental gradient Geographic species displacement Panama | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Biología | spa |
dc.publisher.sede | Sede Norte | spa |