Mostrar el registro sencillo del ítem

dc.contributor.authorAcero, M. A.
dc.contributor.otherAndringa, S
dc.contributor.otherAntonova, M
dc.contributor.otherBiagi, S
dc.contributor.otherBonesini, M
dc.contributor.otherCalvez, S
dc.contributor.otherChen, M
dc.date.accessioned2022-12-19T21:06:55Z
dc.date.available2022-12-19T21:06:55Z
dc.date.issued2021-05-15
dc.date.submitted2020-08-15
dc.identifier.citationAbi, B., Acciarri, R., Acero, M.A. et al. Supernova neutrino burst detection with the Deep Underground Neutrino Experiment. Eur. Phys. J. C 81, 423 (2021). https://doi.org/10.1140/epjc/s10052-021-09166-wspa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1147
dc.description.abstractThe Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electronneutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the νe spectral parameters of the neutrino burst will be considered.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceThe European Phisical Journal Cspa
dc.titleSupernova neutrino burst detection with the Deep Underground Neutrino Experimentspa
dc.title.alternativeSupernova neutrino burst detection with the Deep Underground Neutrino Experimentspa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, volume I Introduction to DUNE (2020). arXiv:2002.02967 [physics.insdet]spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, volume II DUNE physics (2020). arXiv:2002.03005 [hep-ex]spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, volume IV far detector single-phase technology (2020). arXiv:2002.03010 [physics.ins-det]spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., The DUNE far detector interim design report volume 1: physics, technology and strategies (2018). arXiv:1807.10334 [physics.ins-det]spa
dcterms.bibliographicCitationS. Gardiner, B. Svoboda, C. Grant, E. Pantic, MARLEY (Model of Argon Reaction Low Energy Yields) (2020). http://www. marleygen.org/spa
dcterms.bibliographicCitationSNOwGLoBES. http://www.phy.duke.edu/~schol/snowglobesspa
dcterms.bibliographicCitationE. Braaten, D. Segel, Neutrino energy loss from the plasma process at all temperatures and densities. Phys. Rev. D 48, 1478–1491 (1993). https://doi.org/10.1103/PhysRevD.48.1478. arXiv:hep-ph/9302213spa
dcterms.bibliographicCitationL. Hudepohl, B. Muller, H.-T. Janka, A. Marek, G. Raffelt, Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104, 251101 (2010). https://doi. org/10.1103/PhysRevLett.104.251101, https://doi.org/10.1103/ PhysRevLett.105.249901. arXiv:0912.0260 [astro-ph.SR]spa
dcterms.bibliographicCitationK. Scholberg, Neutrinos from supernovae and other astrophysical sources. In The State of the Art of Neutrino Physics: A Tutorial for Graduate Students and Young Researches, ed. by A. Ereditato, ch. 8 (World Scientific, Singapore, 2018), pp. 299–324spa
dcterms.bibliographicCitationH. Minakata, H. Nunokawa, R. Tomas, J.W. Valle, Parameter degeneracy in flavor-dependent reconstruction of supernova neutrino fluxes. JCAP 0812, 006 (2008). https://doi.org/10.1088/ 1475-7516/2008/12/006. arXiv:0802.1489 [hep-ph]spa
dcterms.bibliographicCitationI. Tamborra, B. Muller, L. Hudepohl, H.-T. Janka, G. Raffelt, High-resolution supernova neutrino spectra represented by a simple fit. Phys. Rev. D 86, 125031 (2012). https://doi.org/10.1103/ PhysRevD.86.125031. arXiv:1211.3920 [astro-ph.SR]spa
dcterms.bibliographicCitationJ.F. Cherry, J. Carlson, A. Friedland, G.M. Fuller, A. Vlasenko, Halo modification of a supernova neutronization neutrino burst. Phys. Rev. D 87, 085037 (2013). https://doi.org/10.1103/ PhysRevD.87.085037. arXiv:1302.1159 [astro-ph.HE]spa
dcterms.bibliographicCitationJ.F. Beacom, R. Boyd, A. Mezzacappa, Black hole formation in core collapse supernovae and time-of-flight measurements of the neutrino masses. Phys. Rev. D 63, 073011 (2001). https://doi.org/ 10.1103/PhysRevD.63.073011. arXiv:astro-ph/0010398spa
dcterms.bibliographicCitationT. Fischer, S.C. Whitehouse, A. Mezzacappa, F.K. Thielemann, M. Liebendorfer, The neutrino signal from protoneutron star accretion and black hole formation. Astron. Astrophys. 499, 1 (2009). https://doi.org/10.1051/0004-6361/200811055. arXiv:0809.5129 [astro-ph]spa
dcterms.bibliographicCitationS.W. Li, L.F. Roberts, J.F. Beacom, Exciting prospects for detecting late-time neutrinos from core-collapse supernovae. Phys. Rev. D 103(2), 023016 (2021). https://doi.org/10.1103/PhysRevD. 103.023016. arXiv:2008.04340 [astro-ph.HE]spa
dcterms.bibliographicCitationR.C. Schirato, G.M. Fuller, Connection between supernova shocks, flavor transformation, and the neutrino signal (2002). arXiv:astro-ph/0205390spa
dcterms.bibliographicCitationF. Hanke, A. Marek, B. Muller, H.-T. Janka, Is strong SASI activity the key to successful neutrino-driven supernova explosions? Astrophys. J. 755, 138 (2012). https://doi.org/10.1088/ 0004-637X/755/2/138. arXiv:1108.4355 [astro-ph.SR]spa
dcterms.bibliographicCitationF. Hanke, B. Mueller, A. Wongwathanarat, A. Marek, H.-T. Janka, SASI activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores. Astrophys. J. 770, 66 (2013). https:// doi.org/10.1088/0004-637X/770/1/66. arXiv:1303.6269 [astroph.SR]spa
dcterms.bibliographicCitationA. Friedland, A. Gruzinov, Neutrino signatures of supernova turbulence (2006). arXiv:astro-ph/0607244spa
dcterms.bibliographicCitationT. Lund, J.P. Kneller, Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution. Phys. Rev. D 88(2), 023008 (2013). https://doi.org/10.1103/PhysRevD.88. 023008. arXiv:1304.6372 [astro-ph.HE]spa
dcterms.bibliographicCitationP. Antonioli et al., SNEWS: The SuperNova early warning system. New J. Phys. 6, 114 (2004). arXiv:astro-ph/0406214spa
dcterms.bibliographicCitationK. Scholberg, The SuperNova early warning system. Astron. Nachr. 329, 337–339 (2008). arXiv:0803.0531 [astro-ph]spa
dcterms.bibliographicCitationN. Arnaud, M. Barsuglia, M.-A. Bizouard, V. Brisson, F. Cavalier et al., Detection of a close supernova gravitational wave burst in a network of interferometers, neutrino and optical detectors. Astropart. Phys. 21, 201–221 (2004). https://doi.org/10.1016/j. astropartphys.2003.12.005. arXiv:gr-qc/0307101spa
dcterms.bibliographicCitationC. Ott, E. O’Connor, S. Gossan, E. Abdikamalov, U. Gamma et al., Core-collapse supernovae, neutrinos, and gravitational waves. Nucl. Phys. Proc. Suppl. 235–236, 381– 387 (2013). https://doi.org/10.1016/j.nuclphysbps.2013.04.036. arXiv:1212.4250 [astro-ph.HE]spa
dcterms.bibliographicCitationB. Mueller, H.-T. Janka, A. Marek, A new multi-dimensional general relativistic neutrino hydrodynamics code of core-collapse Supernovae III. Gravitational wave signals from supernova explosion models. Astrophys. J. 766, 43 (2013). https://doi.org/10. 1088/0004-637X/766/1/43. arXiv:1210.6984 [astro-ph.SR]spa
dcterms.bibliographicCitationA. Nishizawa, T. Nakamura, Measuring speed of gravitational waves by observations of photons and neutrinos from compact binary mergers and Supernovae. Phys. Rev. D 90(4), 044048 (2014). https://doi.org/10.1103/PhysRevD.90.044048. arXiv:1406.5544 [gr-qc]spa
dcterms.bibliographicCitationD.N. Schramm, J.W. Truran, New physics from Supernova SN1987A. Phys. Rept. 189, 89–126 (1990). https://doi.org/10. 1016/0370-1573(90)90020-3spa
dcterms.bibliographicCitationG.G. Raffelt, Particle physics from stars. Ann. Rev. Nucl. Part. Sci. 49, 163–216 (1999). https://doi.org/10.1146/annurev.nucl. 49.1.163. arXiv:hep-ph/9903472spa
dcterms.bibliographicCitationV.A. Kostelecký, M. Mewes, Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85, 096005 (2012). https://doi.org/10.1103/PhysRevD.85.096005. arXiv:1112.6395 [hep-ph]spa
dcterms.bibliographicCitationA. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, S. Chakraborty, Supernova neutrinos: production. Oscillations and detection. Riv. Nuovo Cim. 39(1– 2), 1–112 (2016). https://doi.org/10.1393/ncr/i2016-10120-8. arXiv:1508.00785 [astro-ph.HE]spa
dcterms.bibliographicCitationH. Duan, G.M. Fuller, Y.-Z. Qian, Collective neutrino flavor transformation in supernovae. Phys. Rev. D 74, 123004 (2006). https:// doi.org/10.1103/PhysRevD.74.123004. arXiv:astro-ph/0511275 [astro-ph]spa
dcterms.bibliographicCitationG.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, Collective neutrino flavor transitions in supernovae and the role of trajectory averaging. JCAP 0712, 010 (2007). https://doi.org/10.1088/1475-7516/ 2007/12/010. arXiv:0707.1998 [hep-ph]spa
dcterms.bibliographicCitationG.G. Raffelt, A.Y. Smirnov, Self-induced spectral splits in supernova neutrino fluxes. Phys. Rev. D 76, 125008 (2007). https:// doi.org/10.1103/PhysRevD.76.081301, https://doi.org/10.1103/ PhysRevD.77.029903. arXiv:0705.1830 [hep-ph]spa
dcterms.bibliographicCitationG.G. Raffelt, A.Y. Smirnov, Adiabaticity and spectral splits in collective neutrino transformations. Phys. Rev. D 76, 125008 (2007). https://doi.org/10.1103/PhysRevD.76.125008. arXiv:0709.4641 [hep-ph]spa
dcterms.bibliographicCitationA. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomas, G. Raffelt et al., Role of dense matter in collective supernova neutrino transformations. Phys. Rev. D 78, 085012 (2008). https://doi.org/10. 1103/PhysRevD.78.085012. arXiv:0807.0659 [astro-ph]spa
dcterms.bibliographicCitationH. Duan, J.P. Kneller, Neutrino flavour transformation in supernovae. J. Phys. G 36, 113201 (2009). https://doi.org/10.1088/ 0954-3899/36/11/113201. arXiv:0904.0974 [astro-ph.HE]spa
dcterms.bibliographicCitationB. Dasgupta, A. Dighe, G.G. Raffelt, A.Y. Smirnov, Multiple spectral splits of supernova neutrinos. Phys. Rev. Lett. 103, 051105 (2009). https://doi.org/10.1103/PhysRevLett.103. 051105. arXiv:0904.3542 [hep-ph]spa
dcterms.bibliographicCitationH. Duan, G.M. Fuller, Y.-Z. Qian, Collective neutrino oscillations. Ann. Rev. Nucl. Part. Sci. 60, 569–594 (2010). https://doi.org/10. 1146/annurev.nucl.012809.104524. arXiv:1001.2799 [hep-ph]spa
dcterms.bibliographicCitationH. Duan, A. Friedland, Self-induced suppression of collective neutrino oscillations in a supernova. Phys. Rev. Lett. 106, 091101 (2011). https://doi.org/10.1103/PhysRevLett.106. 091101. arXiv:1006.2359 [hep-ph]spa
dcterms.bibliographicCitationM.-R. Wu, Y.-Z. Qian, G. Martinez-Pinedo, T. Fischer, L. Huther, Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M supernova model. Phys. Rev. D 91(6), 065016 (2015). https://doi.org/10.1103/PhysRevD.91. 065016. arXiv:1412.8587 [astro-ph.HE]spa
dcterms.bibliographicCitationO.L.G. Peres, A. Smirnov, (3+1) spectrum of neutrino masses: A Chance for LSND? Nucl. Phys. B 599, 3 (2001). https://doi.org/ 10.1016/S0550-3213(01)00012-8. arXiv:hep-ph/0011054spa
dcterms.bibliographicCitationA. Esmaili, O.L.G. Peres, P.D. Serpico, Impact of sterile neutrinos on the early time flux from a galactic supernova. Phys. Rev. D 90(3), 033013 (2014). https://doi.org/10.1103/PhysRevD.90. 033013. arXiv:1402.1453 [hep-ph]spa
dcterms.bibliographicCitationJ. Tang, T. Wang, M.-R. Wu, Constraining sterile neutrinos by core-collapse supernovae with multiple detectors (2020). arXiv:2005.09168 [hep-ph]spa
dcterms.bibliographicCitationK. Scholberg, Supernova signatures of neutrino mass ordering. J. Phys. G 45(1), 014002 (2018). https://doi.org/10.1088/ 1361-6471/aa97be. arXiv:1707.06384 [hep-ex]spa
dcterms.bibliographicCitationR. Bionta, G. Blewitt, C. Bratton, D. Casper, A. Ciocio et al., Observation of a neutrino burst in coincidence with Supernova SN 1987a in the large magellanic cloud. Phys. Rev. Lett. 58, 1494 (1987). https://doi.org/10.1103/PhysRevLett.58.1494spa
dcterms.bibliographicCitationKAMIOKANDE-II Collaboration, K. Hirata et al., Observation of a neutrino burst from the Supernova SN, 1987a Phys. Rev. Lett. 58, 1490–1493 (1987). https://doi.org/10.1103/PhysRevLett.58. 1490spa
dcterms.bibliographicCitationE.N. Alekseev, L.N. Alekseeva, V.I. Volchenko, I.V. Krivosheina, Possible detection of a neutrino signal on 23 February 1987 at the Baksan underground scintillation telescope of the Institute of Nuclear Research. JETP Lett. 45, 589–592 (1987)spa
dcterms.bibliographicCitationF. Vissani, Comparative analysis of SN1987A antineutrino fluence. J. Phys. G 42, 013001 (2015). https://doi.org/10.1088/ 0954-3899/42/1/013001. arXiv:1409.4710 [astro-ph.HE]spa
dcterms.bibliographicCitationS. Horiuchi, J.P. Kneller, What can be learned from a future supernova neutrino detection? J. Phys. G45(4), 043002 (2018). https:// doi.org/10.1088/1361-6471/aaa90a. arXiv:1709.01515 [astroph.HE]spa
dcterms.bibliographicCitation. K. Scholberg, Supernova neutrino detection. Ann. Rev. Nucl. Part. Sci. 62, 81–103 (2012). arXiv:1205.6003 [astro-ph.IM]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, M. Ikeda et al., Search for Supernova neutrino bursts at Super-Kamiokande. Astrophys. J. 669, 519–524 (2007). https://doi.org/10.1086/521547. arXiv:0706.2283 [astro-ph]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Real-time supernova neutrino burst monitor at Super-Kamiokande. Astropart. Phys. 81, 39–48 (2016). https://doi.org/10.1016/j.astropartphys. 2016.04.003. arXiv:1601.04778 [astro-ph.HE]spa
dcterms.bibliographicCitationIceCube Collaboration, R. Abbasi et al., IceCube sensitivity for low-energy neutrinos from nearby Supernovae. Astron. Astrophys. 535, A109 (2011). https://doi.org/10.1051/0004-6361/ 201117810e, https://doi.org/10.1051/0004-6361/201117810. arXiv:1108.0171 [astro-ph.HE] [Erratum: Astron. Astrophys.563,C1(2014)]spa
dcterms.bibliographicCitationKamLAND Collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti- neutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003). https://doi.org/10.1103/ PhysRevLett.90.021802. arXiv:hep-ex/0212021spa
dcterms.bibliographicCitationL.V.D. Collaboration, N.Y. Agafonova et al., Implication for the core-collapse Supernova rate from 21 years of data of the large volume detector. Astrophys. J. 802(1), 47 (2015). https://doi.org/ 10.1088/0004-637X/802/1/47. arXiv:1411.1709 [astro-ph.HE]spa
dcterms.bibliographicCitationM.E. Monzani, Supernova neutrino detection in Borexino. Nuovo Cim. C 29, 269–280 (2006). https://doi.org/10.1393/ncc/ i2005-10230-2spa
dcterms.bibliographicCitationNOvA Collaboration, M.A. Acero et al., Supernova neutrino detection in NOvA. JCAP 10, 014 (2020). https://doi.org/10. 1088/1475-7516/2020/10/014. arXiv:2005.07155 [physics.insdet]spa
dcterms.bibliographicCitationH. Wei, L. Lebanowski, F. Li, Z. Wang, S. Chen, Design, characterization, and sensitivity of the supernova trigger system at Daya Bay. Astropart. Phys. 75, 38–43 (2016). https://doi.org/10.1016/ j.astropartphys.2015.10.011. arXiv:1505.02501 [astro-ph.IM]spa
dcterms.bibliographicCitationC.A. Duba et al., HALO: The helium and lead observatory for supernova neutrinos. J. Phys. Conf. Ser. 136, 042077 (2008). https://doi.org/10.1088/1742-6596/136/4/042077spa
dcterms.bibliographicCitationMicroBooNE Collaboration, P. Abratenko et al., The continuous readout stream of the MicroBooNE liquid argon time projection chamber for detection of Supernova Burst Neutrinos. JINST 16(02), P02008 (2021). https://doi.org/10.1088/1748-0221/16/ 02/P02008. arXiv:2008.13761 [physics.ins-det]spa
dcterms.bibliographicCitationHyper-Kamiokande Collaboration, K. Abe et al., HyperKamiokande design report (2018). arXiv:1805.04163 [physics.ins-det]spa
dcterms.bibliographicCitationJUNO Collaboration, F. An et al., Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016). https://doi.org/10.1088/ 0954-3899/43/3/030401. arXiv:1507.05613 [physics.ins-det]spa
dcterms.bibliographicCitationIceCube Collaboration, M.G. Aartsen et al., IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica (2014). arXiv:1412.5106 [astro-ph.HE]spa
dcterms.bibliographicCitationKM3Net Collaboration, S. Adrian-Martinez et al., Letter of intent for KM3NeT 2.0. J. Phys. G 43(8), 084001 (2016). https://doi. org/10.1088/0954-3899/43/8/084001. arXiv:1601.07459 [astroph.IM]spa
dcterms.bibliographicCitationDARWIN Collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector. JCAP 1611, 017 (2016). https://doi. org/10.1088/1475-7516/2016/11/017. arXiv:1606.07001 [astroph.IM]spa
dcterms.bibliographicCitationGROND, SALT Group, OzGrav, DFN, INTEGRAL, Virgo, Insight-Hxmt, MAXI Team, Fermi-LAT, J-GEM, RATIR, IceCube, CAASTRO, LWA, ePESSTO, GRAWITA, RIMAS, SKA South Africa/MeerKAT, H.E.S.S., 1M2H Team, IKI-GW Followup, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster Program), Dark Energy Survey, MASTER, AstroSat Cadmium Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE, JAGWAR, Chandra Team at McGill University, TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3, TOROS, PanSTARRS, NuSTAR, ATLAS Telescopes, BOOTES, CaltechNRAO, LIGO Scientific, High Time Resolution Universe Survey, Nordic Optical Telescope, Las Cumbres Observatory Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech University, HAWC, ANTARES, KU, Dark Energy Camera GW-EM, CALET, Euro VLBI Team, ALMA Collaboration, B.P. Abbott et al., Multimessenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/ aa91c9. arXiv:1710.05833 [astro-ph.HE]spa
dcterms.bibliographicCitationP. Antonioli et al., SNEWS: The SuperNova early warning system. New J. Phys. 6, 114 (2004). https://doi.org/10.1088/1367-2630/ 6/1/114. arXiv:astro-ph/0406214spa
dcterms.bibliographicCitationSNEWS Collaboration, S. Al Kharusi et al., SNEWS 2.0: A NextGeneration SuperNova early warning system for multi-messenger astronomy (2020). arXiv:2011.00035 [astro-ph.HE]spa
dcterms.bibliographicCitationA. Ankowski et al., Supernova Physics at DUNE. In Supernova Physics at DUNE Blacksburg, Virginia, USA, March 11-12, 2016 (2016). arXiv:1608.07853 [hep-ex]spa
dcterms.bibliographicCitationW.P. Wright, J.P. Kneller, S.T. Ohlmann, F.K. Roepke, K. Scholberg, I.R. Seitenzahl, Neutrinos from type Ia supernovae: The gravitationally confined detonation scenario. Phys. Rev. D 95(4), 043006 (2017). https://doi.org/10.1103/PhysRevD.95. 043006. arXiv:1609.07403 [astro-ph.HE]spa
dcterms.bibliographicCitationW.P. Wright, G. Nagaraj, J.P. Kneller, K. Scholberg, I.R. Seitenzahl, Neutrinos from type Ia supernovae: The deflagrationto-detonation transition scenario. Phys. Rev. D 94(2), 025026 (2016). https://doi.org/10.1103/PhysRevD.94.025026. arXiv:1605.01408 [astro-ph.HE]spa
dcterms.bibliographicCitationW.P. Wright, M.S. Gilmer, C. Fröhlich, J.P. Kneller, Neutrino signal from pair-instability supernovae. Phys. Rev. D 96(10), 103008 (2017). https://doi.org/10.1103/PhysRevD.96. 103008. arXiv:1706.08410 [astro-ph.HE]spa
dcterms.bibliographicCitationO. Caballero, G. McLaughlin, R. Surman, R. Surman, Detecting neutrinos from black hole neutron stars mergers. Phys. Rev. D 80, 123004 (2009). https://doi.org/10.1103/PhysRevD.80. 123004. arXiv:0910.1385 [astro-ph.HE]spa
dcterms.bibliographicCitationK. Kyutoku, K. Kashiyama, Detectability of thermal neutrinos from binary-neutron-star mergers and implication to neutrino physics. Phys. Rev. D 97(10), 103001 (2018). https://doi.org/10. 1103/PhysRevD.97.103001. arXiv:1710.05922 [astro-ph.HEspa
dcterms.bibliographicCitationF. Capozzi, S. W. Li, G. Zhu, J.F. Beacom, DUNE as the nextgeneration solar neutrino experiment (2018). arXiv:1808.08232 [hep-ph]spa
dcterms.bibliographicCitationA. Ioannisian, A. Smirnov, D. Wyler, Scanning the Earth with solar neutrinos and DUNE. Phys. Rev. D 96(3), 036005 (2017). https:// doi.org/10.1103/PhysRevD.96.036005. arXiv:1702.06097 [hepph]spa
dcterms.bibliographicCitationK. Moeller, A.M. Suliga, I. Tamborra, P.B. Denton, Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background. JCAP 1805(05), 066 (2018). https://doi.org/10.1088/1475-7516/2018/ 05/066. arXiv:1804.03157 [astro-ph.HE]spa
dcterms.bibliographicCitationG. Cancelo, F. Cavanna, C.O. Escobar, E. Kemp, A.A. Machado, A. Para, E. Segreto, D. Totani, D. Warner, Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap. JINST 13(03), C03040 (2018). arXiv:1802.09726 [physics.insdet]spa
dcterms.bibliographicCitationA.A. Machado, E. Segreto, D. Warner, A. Fauth, B. Gelli, R. Maximo, A. Pizolatti, L. Paulucci, F. Marinho, The X-ARAPUCA: an improvement of the ARAPUCA device (2018). https://doi.org/10. 1088/1748-0221/13/04/C04026. arXiv:1804.01407 [physics.insdet]spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, volume 2: single-phase module (2018). arXiv:1807.10327 [physics.ins-det]spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, volume 3: dual-phase module (2018). arXiv:1807.10340 [physics.ins-det]spa
dcterms.bibliographicCitationS. Gardiner, Simulating low-energy neutrino interactions with MARLEY (2020). arXiv:2101.11867 [nucl-th]spa
dcterms.bibliographicCitationA. Hayes. Private communication (2020)spa
dcterms.bibliographicCitationI. Gil Botella, A. Rubbia, Oscillation effects on supernova neutrino rates and spectra and detection of the shock breakout in a liquid argon TPC. JCAP 0310, 009 (2003). https://doi.org/10. 1088/1475-7516/2003/10/009. arXiv:hep-ph/0307244spa
dcterms.bibliographicCitationArgoNeuT Collaboration, R. Acciarri, C. Adams, J. Asaadi, B. Baller, T. Bolton, C. Bromberg, F. Cavanna, E. Church, D. Edmunds, A. Ereditato, S. Farooq, A. Ferrari, R.S. Fitzpatrick, B. Fleming, A. Hackenburg, G. Horton-Smith, C. James, K. Lang, M. Lantz, I. Lepetic, B.R. Littlejohn, X. Luo, R. Mehdiyev, B. Page, O. Palamara, B. Rebel, P.R. Sala, G. Scanavini, A. Schukraft, G. Smirnov, M. Soderberg, J. Spitz, A.M. Szelc, M. Weber, W. Wu, T. Yang, G.P. Zeller, Demonstration of mevscale physics in liquid argon time projection chambers using argoneut. Phys. Rev. D 99, 012002 (2019). https://doi.org/10. 1103/PhysRevD.99.012002spa
dcterms.bibliographicCitationLArSoft. http://larsoft.orgspa
dcterms.bibliographicCitationMicroBooNE Collaboration, R. Acciarri et al., Michel electron reconstruction using cosmic-ray data from the MicroBooNE LArTPC. JINST 12(09), P09014 (2017). https://doi.org/10.1088/ 1748-0221/12/09/P09014. arXiv:1704.02927 [physics.ins-det]spa
dcterms.bibliographicCitationTALYS. https://tendl.web.psi.ch/tendl_2019/talys.htmlspa
dcterms.bibliographicCitationM. Bhattacharya et al., Neutrino absorption efficiency of an Ar-40 detector from the beta decay of Ti-40. Phys. Rev. C58, 3677–3687 (1998). https://doi.org/10.1103/PhysRevC.58.3677spa
dcterms.bibliographicCitationM.-K. Cheoun, E. Ha, T. Kajino, High-lying excited states in Gamow Teller strength and their roles in neutrino reactions. Eur. Phys. J. A 48, 137 (2012). https://doi.org/10.1140/epja/ i2012-12137-yspa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., First results on ProtoDUNESP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. JINST 15(12), P12004 (2020). https://doi.org/10.1088/1748-0221/15/ 12/P12004. arXiv:2007.06722 [physics.ins-det]spa
dcterms.bibliographicCitationG. Zhu, S.W. Li, J.F. Beacom, Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds. Phys. Rev. C 99(5), 055810 (2019). https:// doi.org/10.1103/PhysRevC.99.055810. arXiv:1811.07912 [hepph]spa
dcterms.bibliographicCitationP. Huber, M. Lindner, W. Winter, Simulation of longbaseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator). Comput. Phys. Commun. 167, 195 (2005). https://doi.org/10.1016/j.cpc.2005.01.003. arXiv:hep-ph/0407333 [hep-ph]spa
dcterms.bibliographicCitationA.J. Roeth, Supernova neutrino pointing with DUNE (2020). https://indico.cern.ch/event/868940/contributions/3813598/ attachments/2081577/3496427/Point_Res_ICHEP_2020_07_ AJRoeth.pdfspa
dcterms.bibliographicCitationT. Totani, K. Sato, H.E. Dalhed, J.R. Wilson, Future detection of supernova neutrino burst and explosion mechanism. Astrophys. J. 496, 216–225 (1998). https://doi.org/10.1086/305364. arXiv:astro-ph/9710203spa
dcterms.bibliographicCitationJ. Gava, J. Kneller, C. Volpe, G.C. McLaughlin, A dynamical collective calculation of supernova neutrino signals. Phys. Rev. Lett. 103, 071101 (2009). https://doi.org/10.1103/PhysRevLett. 103.071101. arXiv:0902.0317 [hep-ph]spa
dcterms.bibliographicCitationI. Tamborra, F. Hanke, H.-T. Janka, B. Mueller, G.G. Raffelt et al., Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792, 96 (2014). https://doi.org/ 10.1088/0004-637X/792/2/96. arXiv:1402.5418 [astro-ph.SR]spa
dcterms.bibliographicCitationR. Laha, J.F. Beacom, Gadolinium in water Cherenkov detectors improves detection of supernova νe. Phys. Rev. D 89, 063007 (2014). https://doi.org/10.1103/PhysRevD.89.063007. arXiv:1311.6407 [astro-ph.HE]spa
dcterms.bibliographicCitationR. Laha, J.F. Beacom, S.K. Agarwalla, New power to measure Supernova νe with large liquid scintillator detectors (2014). arXiv:1412.8425 [hep-ph]spa
dcterms.bibliographicCitationG. Ge, Y. Jae Jwa, G. Karagiorgi, ML-based triggering for DUNE, DUNE doc 11311 (2018). https://docs.dunescience.org/cgi-bin/ private/ShowDocument?docid=11311&asof=2019-7-15spa
dcterms.bibliographicCitationI. Gil Botella, A. Rubbia, Decoupling supernova and neutrino oscillation physics with LAr TPC detectors. JCAP 0408, 001 (2004). https://doi.org/10.1088/1475-7516/2004/08/ 001. arXiv:hep-ph/0404151spa
dcterms.bibliographicCitationA. Nikrant, R. Laha, S. Horiuchi, Robust measurement of supernova νe spectra with future neutrino detectors. Phys. Rev. D 97(2), 023019 (2018). https://doi.org/10.1103/PhysRevD.97. 023019. arXiv:1711.00008 [astro-ph.HE]spa
dcterms.bibliographicCitationA. GalloRosso, F. Vissani, M.C. Volpe, What can we learn on supernova neutrino spectra with water Cherenkov detectors? JCAP 1804(04), 040 (2018). https://doi.org/10.1088/1475-7516/ 2018/04/040. arXiv:1712.05584 [hep-ph]spa
dcterms.bibliographicCitationK. Nakazato, K. Sumiyoshi, H. Suzuki, T. Totani, H. Umeda, S. Yamada, Supernova neutrino light curves and spectra for various progenitor stars: from core collapse to proto-neutron star cooling. Astrophys. J. Suppl. 205, 2 (2013). https://doi.org/10.1088/ 0067-0049/205/1/2. arXiv:1210.6841 [astro-ph.HE]spa
dcterms.bibliographicCitationL. Huedepohl, Neutrinos from the formation, cooling and black hole collapse of neutron stars. PhD thesis, Technische Universitat Munchen (2014). https://wwwmpa.mpa-garching.mpg.de/ ccsnarchive/data/Huedepohl2014_phd_thesis/spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1140/epjc/s10052-021-09166-w
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineFísicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por