Mostrar el registro sencillo del ítem
Supernova neutrino burst detection with the Deep Underground Neutrino Experiment
dc.contributor.author | Acero, M. A. | |
dc.contributor.other | Andringa, S | |
dc.contributor.other | Antonova, M | |
dc.contributor.other | Biagi, S | |
dc.contributor.other | Bonesini, M | |
dc.contributor.other | Calvez, S | |
dc.contributor.other | Chen, M | |
dc.date.accessioned | 2022-12-19T21:06:55Z | |
dc.date.available | 2022-12-19T21:06:55Z | |
dc.date.issued | 2021-05-15 | |
dc.date.submitted | 2020-08-15 | |
dc.identifier.citation | Abi, B., Acciarri, R., Acero, M.A. et al. Supernova neutrino burst detection with the Deep Underground Neutrino Experiment. Eur. Phys. J. C 81, 423 (2021). https://doi.org/10.1140/epjc/s10052-021-09166-w | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1147 | |
dc.description.abstract | The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electronneutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the νe spectral parameters of the neutrino burst will be considered. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | The European Phisical Journal C | spa |
dc.title | Supernova neutrino burst detection with the Deep Underground Neutrino Experiment | spa |
dc.title.alternative | Supernova neutrino burst detection with the Deep Underground Neutrino Experiment | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, volume I Introduction to DUNE (2020). arXiv:2002.02967 [physics.insdet] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, volume II DUNE physics (2020). arXiv:2002.03005 [hep-ex] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, volume IV far detector single-phase technology (2020). arXiv:2002.03010 [physics.ins-det] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report volume 1: physics, technology and strategies (2018). arXiv:1807.10334 [physics.ins-det] | spa |
dcterms.bibliographicCitation | S. Gardiner, B. Svoboda, C. Grant, E. Pantic, MARLEY (Model of Argon Reaction Low Energy Yields) (2020). http://www. marleygen.org/ | spa |
dcterms.bibliographicCitation | SNOwGLoBES. http://www.phy.duke.edu/~schol/snowglobes | spa |
dcterms.bibliographicCitation | E. Braaten, D. Segel, Neutrino energy loss from the plasma process at all temperatures and densities. Phys. Rev. D 48, 1478–1491 (1993). https://doi.org/10.1103/PhysRevD.48.1478. arXiv:hep-ph/9302213 | spa |
dcterms.bibliographicCitation | L. Hudepohl, B. Muller, H.-T. Janka, A. Marek, G. Raffelt, Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104, 251101 (2010). https://doi. org/10.1103/PhysRevLett.104.251101, https://doi.org/10.1103/ PhysRevLett.105.249901. arXiv:0912.0260 [astro-ph.SR] | spa |
dcterms.bibliographicCitation | K. Scholberg, Neutrinos from supernovae and other astrophysical sources. In The State of the Art of Neutrino Physics: A Tutorial for Graduate Students and Young Researches, ed. by A. Ereditato, ch. 8 (World Scientific, Singapore, 2018), pp. 299–324 | spa |
dcterms.bibliographicCitation | H. Minakata, H. Nunokawa, R. Tomas, J.W. Valle, Parameter degeneracy in flavor-dependent reconstruction of supernova neutrino fluxes. JCAP 0812, 006 (2008). https://doi.org/10.1088/ 1475-7516/2008/12/006. arXiv:0802.1489 [hep-ph] | spa |
dcterms.bibliographicCitation | I. Tamborra, B. Muller, L. Hudepohl, H.-T. Janka, G. Raffelt, High-resolution supernova neutrino spectra represented by a simple fit. Phys. Rev. D 86, 125031 (2012). https://doi.org/10.1103/ PhysRevD.86.125031. arXiv:1211.3920 [astro-ph.SR] | spa |
dcterms.bibliographicCitation | J.F. Cherry, J. Carlson, A. Friedland, G.M. Fuller, A. Vlasenko, Halo modification of a supernova neutronization neutrino burst. Phys. Rev. D 87, 085037 (2013). https://doi.org/10.1103/ PhysRevD.87.085037. arXiv:1302.1159 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | J.F. Beacom, R. Boyd, A. Mezzacappa, Black hole formation in core collapse supernovae and time-of-flight measurements of the neutrino masses. Phys. Rev. D 63, 073011 (2001). https://doi.org/ 10.1103/PhysRevD.63.073011. arXiv:astro-ph/0010398 | spa |
dcterms.bibliographicCitation | T. Fischer, S.C. Whitehouse, A. Mezzacappa, F.K. Thielemann, M. Liebendorfer, The neutrino signal from protoneutron star accretion and black hole formation. Astron. Astrophys. 499, 1 (2009). https://doi.org/10.1051/0004-6361/200811055. arXiv:0809.5129 [astro-ph] | spa |
dcterms.bibliographicCitation | S.W. Li, L.F. Roberts, J.F. Beacom, Exciting prospects for detecting late-time neutrinos from core-collapse supernovae. Phys. Rev. D 103(2), 023016 (2021). https://doi.org/10.1103/PhysRevD. 103.023016. arXiv:2008.04340 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | R.C. Schirato, G.M. Fuller, Connection between supernova shocks, flavor transformation, and the neutrino signal (2002). arXiv:astro-ph/0205390 | spa |
dcterms.bibliographicCitation | F. Hanke, A. Marek, B. Muller, H.-T. Janka, Is strong SASI activity the key to successful neutrino-driven supernova explosions? Astrophys. J. 755, 138 (2012). https://doi.org/10.1088/ 0004-637X/755/2/138. arXiv:1108.4355 [astro-ph.SR] | spa |
dcterms.bibliographicCitation | F. Hanke, B. Mueller, A. Wongwathanarat, A. Marek, H.-T. Janka, SASI activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores. Astrophys. J. 770, 66 (2013). https:// doi.org/10.1088/0004-637X/770/1/66. arXiv:1303.6269 [astroph.SR] | spa |
dcterms.bibliographicCitation | A. Friedland, A. Gruzinov, Neutrino signatures of supernova turbulence (2006). arXiv:astro-ph/0607244 | spa |
dcterms.bibliographicCitation | T. Lund, J.P. Kneller, Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution. Phys. Rev. D 88(2), 023008 (2013). https://doi.org/10.1103/PhysRevD.88. 023008. arXiv:1304.6372 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | P. Antonioli et al., SNEWS: The SuperNova early warning system. New J. Phys. 6, 114 (2004). arXiv:astro-ph/0406214 | spa |
dcterms.bibliographicCitation | K. Scholberg, The SuperNova early warning system. Astron. Nachr. 329, 337–339 (2008). arXiv:0803.0531 [astro-ph] | spa |
dcterms.bibliographicCitation | N. Arnaud, M. Barsuglia, M.-A. Bizouard, V. Brisson, F. Cavalier et al., Detection of a close supernova gravitational wave burst in a network of interferometers, neutrino and optical detectors. Astropart. Phys. 21, 201–221 (2004). https://doi.org/10.1016/j. astropartphys.2003.12.005. arXiv:gr-qc/0307101 | spa |
dcterms.bibliographicCitation | C. Ott, E. O’Connor, S. Gossan, E. Abdikamalov, U. Gamma et al., Core-collapse supernovae, neutrinos, and gravitational waves. Nucl. Phys. Proc. Suppl. 235–236, 381– 387 (2013). https://doi.org/10.1016/j.nuclphysbps.2013.04.036. arXiv:1212.4250 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | B. Mueller, H.-T. Janka, A. Marek, A new multi-dimensional general relativistic neutrino hydrodynamics code of core-collapse Supernovae III. Gravitational wave signals from supernova explosion models. Astrophys. J. 766, 43 (2013). https://doi.org/10. 1088/0004-637X/766/1/43. arXiv:1210.6984 [astro-ph.SR] | spa |
dcterms.bibliographicCitation | A. Nishizawa, T. Nakamura, Measuring speed of gravitational waves by observations of photons and neutrinos from compact binary mergers and Supernovae. Phys. Rev. D 90(4), 044048 (2014). https://doi.org/10.1103/PhysRevD.90.044048. arXiv:1406.5544 [gr-qc] | spa |
dcterms.bibliographicCitation | D.N. Schramm, J.W. Truran, New physics from Supernova SN1987A. Phys. Rept. 189, 89–126 (1990). https://doi.org/10. 1016/0370-1573(90)90020-3 | spa |
dcterms.bibliographicCitation | G.G. Raffelt, Particle physics from stars. Ann. Rev. Nucl. Part. Sci. 49, 163–216 (1999). https://doi.org/10.1146/annurev.nucl. 49.1.163. arXiv:hep-ph/9903472 | spa |
dcterms.bibliographicCitation | V.A. Kostelecký, M. Mewes, Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85, 096005 (2012). https://doi.org/10.1103/PhysRevD.85.096005. arXiv:1112.6395 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, S. Chakraborty, Supernova neutrinos: production. Oscillations and detection. Riv. Nuovo Cim. 39(1– 2), 1–112 (2016). https://doi.org/10.1393/ncr/i2016-10120-8. arXiv:1508.00785 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | H. Duan, G.M. Fuller, Y.-Z. Qian, Collective neutrino flavor transformation in supernovae. Phys. Rev. D 74, 123004 (2006). https:// doi.org/10.1103/PhysRevD.74.123004. arXiv:astro-ph/0511275 [astro-ph] | spa |
dcterms.bibliographicCitation | G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, Collective neutrino flavor transitions in supernovae and the role of trajectory averaging. JCAP 0712, 010 (2007). https://doi.org/10.1088/1475-7516/ 2007/12/010. arXiv:0707.1998 [hep-ph] | spa |
dcterms.bibliographicCitation | G.G. Raffelt, A.Y. Smirnov, Self-induced spectral splits in supernova neutrino fluxes. Phys. Rev. D 76, 125008 (2007). https:// doi.org/10.1103/PhysRevD.76.081301, https://doi.org/10.1103/ PhysRevD.77.029903. arXiv:0705.1830 [hep-ph] | spa |
dcterms.bibliographicCitation | G.G. Raffelt, A.Y. Smirnov, Adiabaticity and spectral splits in collective neutrino transformations. Phys. Rev. D 76, 125008 (2007). https://doi.org/10.1103/PhysRevD.76.125008. arXiv:0709.4641 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomas, G. Raffelt et al., Role of dense matter in collective supernova neutrino transformations. Phys. Rev. D 78, 085012 (2008). https://doi.org/10. 1103/PhysRevD.78.085012. arXiv:0807.0659 [astro-ph] | spa |
dcterms.bibliographicCitation | H. Duan, J.P. Kneller, Neutrino flavour transformation in supernovae. J. Phys. G 36, 113201 (2009). https://doi.org/10.1088/ 0954-3899/36/11/113201. arXiv:0904.0974 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | B. Dasgupta, A. Dighe, G.G. Raffelt, A.Y. Smirnov, Multiple spectral splits of supernova neutrinos. Phys. Rev. Lett. 103, 051105 (2009). https://doi.org/10.1103/PhysRevLett.103. 051105. arXiv:0904.3542 [hep-ph] | spa |
dcterms.bibliographicCitation | H. Duan, G.M. Fuller, Y.-Z. Qian, Collective neutrino oscillations. Ann. Rev. Nucl. Part. Sci. 60, 569–594 (2010). https://doi.org/10. 1146/annurev.nucl.012809.104524. arXiv:1001.2799 [hep-ph] | spa |
dcterms.bibliographicCitation | H. Duan, A. Friedland, Self-induced suppression of collective neutrino oscillations in a supernova. Phys. Rev. Lett. 106, 091101 (2011). https://doi.org/10.1103/PhysRevLett.106. 091101. arXiv:1006.2359 [hep-ph] | spa |
dcterms.bibliographicCitation | M.-R. Wu, Y.-Z. Qian, G. Martinez-Pinedo, T. Fischer, L. Huther, Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M supernova model. Phys. Rev. D 91(6), 065016 (2015). https://doi.org/10.1103/PhysRevD.91. 065016. arXiv:1412.8587 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | O.L.G. Peres, A. Smirnov, (3+1) spectrum of neutrino masses: A Chance for LSND? Nucl. Phys. B 599, 3 (2001). https://doi.org/ 10.1016/S0550-3213(01)00012-8. arXiv:hep-ph/0011054 | spa |
dcterms.bibliographicCitation | A. Esmaili, O.L.G. Peres, P.D. Serpico, Impact of sterile neutrinos on the early time flux from a galactic supernova. Phys. Rev. D 90(3), 033013 (2014). https://doi.org/10.1103/PhysRevD.90. 033013. arXiv:1402.1453 [hep-ph] | spa |
dcterms.bibliographicCitation | J. Tang, T. Wang, M.-R. Wu, Constraining sterile neutrinos by core-collapse supernovae with multiple detectors (2020). arXiv:2005.09168 [hep-ph] | spa |
dcterms.bibliographicCitation | K. Scholberg, Supernova signatures of neutrino mass ordering. J. Phys. G 45(1), 014002 (2018). https://doi.org/10.1088/ 1361-6471/aa97be. arXiv:1707.06384 [hep-ex] | spa |
dcterms.bibliographicCitation | R. Bionta, G. Blewitt, C. Bratton, D. Casper, A. Ciocio et al., Observation of a neutrino burst in coincidence with Supernova SN 1987a in the large magellanic cloud. Phys. Rev. Lett. 58, 1494 (1987). https://doi.org/10.1103/PhysRevLett.58.1494 | spa |
dcterms.bibliographicCitation | KAMIOKANDE-II Collaboration, K. Hirata et al., Observation of a neutrino burst from the Supernova SN, 1987a Phys. Rev. Lett. 58, 1490–1493 (1987). https://doi.org/10.1103/PhysRevLett.58. 1490 | spa |
dcterms.bibliographicCitation | E.N. Alekseev, L.N. Alekseeva, V.I. Volchenko, I.V. Krivosheina, Possible detection of a neutrino signal on 23 February 1987 at the Baksan underground scintillation telescope of the Institute of Nuclear Research. JETP Lett. 45, 589–592 (1987) | spa |
dcterms.bibliographicCitation | F. Vissani, Comparative analysis of SN1987A antineutrino fluence. J. Phys. G 42, 013001 (2015). https://doi.org/10.1088/ 0954-3899/42/1/013001. arXiv:1409.4710 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | S. Horiuchi, J.P. Kneller, What can be learned from a future supernova neutrino detection? J. Phys. G45(4), 043002 (2018). https:// doi.org/10.1088/1361-6471/aaa90a. arXiv:1709.01515 [astroph.HE] | spa |
dcterms.bibliographicCitation | . K. Scholberg, Supernova neutrino detection. Ann. Rev. Nucl. Part. Sci. 62, 81–103 (2012). arXiv:1205.6003 [astro-ph.IM] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, M. Ikeda et al., Search for Supernova neutrino bursts at Super-Kamiokande. Astrophys. J. 669, 519–524 (2007). https://doi.org/10.1086/521547. arXiv:0706.2283 [astro-ph] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Real-time supernova neutrino burst monitor at Super-Kamiokande. Astropart. Phys. 81, 39–48 (2016). https://doi.org/10.1016/j.astropartphys. 2016.04.003. arXiv:1601.04778 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | IceCube Collaboration, R. Abbasi et al., IceCube sensitivity for low-energy neutrinos from nearby Supernovae. Astron. Astrophys. 535, A109 (2011). https://doi.org/10.1051/0004-6361/ 201117810e, https://doi.org/10.1051/0004-6361/201117810. arXiv:1108.0171 [astro-ph.HE] [Erratum: Astron. Astrophys.563,C1(2014)] | spa |
dcterms.bibliographicCitation | KamLAND Collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti- neutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003). https://doi.org/10.1103/ PhysRevLett.90.021802. arXiv:hep-ex/0212021 | spa |
dcterms.bibliographicCitation | L.V.D. Collaboration, N.Y. Agafonova et al., Implication for the core-collapse Supernova rate from 21 years of data of the large volume detector. Astrophys. J. 802(1), 47 (2015). https://doi.org/ 10.1088/0004-637X/802/1/47. arXiv:1411.1709 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | M.E. Monzani, Supernova neutrino detection in Borexino. Nuovo Cim. C 29, 269–280 (2006). https://doi.org/10.1393/ncc/ i2005-10230-2 | spa |
dcterms.bibliographicCitation | NOvA Collaboration, M.A. Acero et al., Supernova neutrino detection in NOvA. JCAP 10, 014 (2020). https://doi.org/10. 1088/1475-7516/2020/10/014. arXiv:2005.07155 [physics.insdet] | spa |
dcterms.bibliographicCitation | H. Wei, L. Lebanowski, F. Li, Z. Wang, S. Chen, Design, characterization, and sensitivity of the supernova trigger system at Daya Bay. Astropart. Phys. 75, 38–43 (2016). https://doi.org/10.1016/ j.astropartphys.2015.10.011. arXiv:1505.02501 [astro-ph.IM] | spa |
dcterms.bibliographicCitation | C.A. Duba et al., HALO: The helium and lead observatory for supernova neutrinos. J. Phys. Conf. Ser. 136, 042077 (2008). https://doi.org/10.1088/1742-6596/136/4/042077 | spa |
dcterms.bibliographicCitation | MicroBooNE Collaboration, P. Abratenko et al., The continuous readout stream of the MicroBooNE liquid argon time projection chamber for detection of Supernova Burst Neutrinos. JINST 16(02), P02008 (2021). https://doi.org/10.1088/1748-0221/16/ 02/P02008. arXiv:2008.13761 [physics.ins-det] | spa |
dcterms.bibliographicCitation | Hyper-Kamiokande Collaboration, K. Abe et al., HyperKamiokande design report (2018). arXiv:1805.04163 [physics.ins-det] | spa |
dcterms.bibliographicCitation | JUNO Collaboration, F. An et al., Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016). https://doi.org/10.1088/ 0954-3899/43/3/030401. arXiv:1507.05613 [physics.ins-det] | spa |
dcterms.bibliographicCitation | IceCube Collaboration, M.G. Aartsen et al., IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica (2014). arXiv:1412.5106 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | KM3Net Collaboration, S. Adrian-Martinez et al., Letter of intent for KM3NeT 2.0. J. Phys. G 43(8), 084001 (2016). https://doi. org/10.1088/0954-3899/43/8/084001. arXiv:1601.07459 [astroph.IM] | spa |
dcterms.bibliographicCitation | DARWIN Collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector. JCAP 1611, 017 (2016). https://doi. org/10.1088/1475-7516/2016/11/017. arXiv:1606.07001 [astroph.IM] | spa |
dcterms.bibliographicCitation | GROND, SALT Group, OzGrav, DFN, INTEGRAL, Virgo, Insight-Hxmt, MAXI Team, Fermi-LAT, J-GEM, RATIR, IceCube, CAASTRO, LWA, ePESSTO, GRAWITA, RIMAS, SKA South Africa/MeerKAT, H.E.S.S., 1M2H Team, IKI-GW Followup, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster Program), Dark Energy Survey, MASTER, AstroSat Cadmium Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE, JAGWAR, Chandra Team at McGill University, TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3, TOROS, PanSTARRS, NuSTAR, ATLAS Telescopes, BOOTES, CaltechNRAO, LIGO Scientific, High Time Resolution Universe Survey, Nordic Optical Telescope, Las Cumbres Observatory Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech University, HAWC, ANTARES, KU, Dark Energy Camera GW-EM, CALET, Euro VLBI Team, ALMA Collaboration, B.P. Abbott et al., Multimessenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/ aa91c9. arXiv:1710.05833 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | P. Antonioli et al., SNEWS: The SuperNova early warning system. New J. Phys. 6, 114 (2004). https://doi.org/10.1088/1367-2630/ 6/1/114. arXiv:astro-ph/0406214 | spa |
dcterms.bibliographicCitation | SNEWS Collaboration, S. Al Kharusi et al., SNEWS 2.0: A NextGeneration SuperNova early warning system for multi-messenger astronomy (2020). arXiv:2011.00035 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | A. Ankowski et al., Supernova Physics at DUNE. In Supernova Physics at DUNE Blacksburg, Virginia, USA, March 11-12, 2016 (2016). arXiv:1608.07853 [hep-ex] | spa |
dcterms.bibliographicCitation | W.P. Wright, J.P. Kneller, S.T. Ohlmann, F.K. Roepke, K. Scholberg, I.R. Seitenzahl, Neutrinos from type Ia supernovae: The gravitationally confined detonation scenario. Phys. Rev. D 95(4), 043006 (2017). https://doi.org/10.1103/PhysRevD.95. 043006. arXiv:1609.07403 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | W.P. Wright, G. Nagaraj, J.P. Kneller, K. Scholberg, I.R. Seitenzahl, Neutrinos from type Ia supernovae: The deflagrationto-detonation transition scenario. Phys. Rev. D 94(2), 025026 (2016). https://doi.org/10.1103/PhysRevD.94.025026. arXiv:1605.01408 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | W.P. Wright, M.S. Gilmer, C. Fröhlich, J.P. Kneller, Neutrino signal from pair-instability supernovae. Phys. Rev. D 96(10), 103008 (2017). https://doi.org/10.1103/PhysRevD.96. 103008. arXiv:1706.08410 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | O. Caballero, G. McLaughlin, R. Surman, R. Surman, Detecting neutrinos from black hole neutron stars mergers. Phys. Rev. D 80, 123004 (2009). https://doi.org/10.1103/PhysRevD.80. 123004. arXiv:0910.1385 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | K. Kyutoku, K. Kashiyama, Detectability of thermal neutrinos from binary-neutron-star mergers and implication to neutrino physics. Phys. Rev. D 97(10), 103001 (2018). https://doi.org/10. 1103/PhysRevD.97.103001. arXiv:1710.05922 [astro-ph.HE | spa |
dcterms.bibliographicCitation | F. Capozzi, S. W. Li, G. Zhu, J.F. Beacom, DUNE as the nextgeneration solar neutrino experiment (2018). arXiv:1808.08232 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Ioannisian, A. Smirnov, D. Wyler, Scanning the Earth with solar neutrinos and DUNE. Phys. Rev. D 96(3), 036005 (2017). https:// doi.org/10.1103/PhysRevD.96.036005. arXiv:1702.06097 [hepph] | spa |
dcterms.bibliographicCitation | K. Moeller, A.M. Suliga, I. Tamborra, P.B. Denton, Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background. JCAP 1805(05), 066 (2018). https://doi.org/10.1088/1475-7516/2018/ 05/066. arXiv:1804.03157 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | G. Cancelo, F. Cavanna, C.O. Escobar, E. Kemp, A.A. Machado, A. Para, E. Segreto, D. Totani, D. Warner, Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap. JINST 13(03), C03040 (2018). arXiv:1802.09726 [physics.insdet] | spa |
dcterms.bibliographicCitation | A.A. Machado, E. Segreto, D. Warner, A. Fauth, B. Gelli, R. Maximo, A. Pizolatti, L. Paulucci, F. Marinho, The X-ARAPUCA: an improvement of the ARAPUCA device (2018). https://doi.org/10. 1088/1748-0221/13/04/C04026. arXiv:1804.01407 [physics.insdet] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, volume 2: single-phase module (2018). arXiv:1807.10327 [physics.ins-det] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, volume 3: dual-phase module (2018). arXiv:1807.10340 [physics.ins-det] | spa |
dcterms.bibliographicCitation | S. Gardiner, Simulating low-energy neutrino interactions with MARLEY (2020). arXiv:2101.11867 [nucl-th] | spa |
dcterms.bibliographicCitation | A. Hayes. Private communication (2020) | spa |
dcterms.bibliographicCitation | I. Gil Botella, A. Rubbia, Oscillation effects on supernova neutrino rates and spectra and detection of the shock breakout in a liquid argon TPC. JCAP 0310, 009 (2003). https://doi.org/10. 1088/1475-7516/2003/10/009. arXiv:hep-ph/0307244 | spa |
dcterms.bibliographicCitation | ArgoNeuT Collaboration, R. Acciarri, C. Adams, J. Asaadi, B. Baller, T. Bolton, C. Bromberg, F. Cavanna, E. Church, D. Edmunds, A. Ereditato, S. Farooq, A. Ferrari, R.S. Fitzpatrick, B. Fleming, A. Hackenburg, G. Horton-Smith, C. James, K. Lang, M. Lantz, I. Lepetic, B.R. Littlejohn, X. Luo, R. Mehdiyev, B. Page, O. Palamara, B. Rebel, P.R. Sala, G. Scanavini, A. Schukraft, G. Smirnov, M. Soderberg, J. Spitz, A.M. Szelc, M. Weber, W. Wu, T. Yang, G.P. Zeller, Demonstration of mevscale physics in liquid argon time projection chambers using argoneut. Phys. Rev. D 99, 012002 (2019). https://doi.org/10. 1103/PhysRevD.99.012002 | spa |
dcterms.bibliographicCitation | LArSoft. http://larsoft.org | spa |
dcterms.bibliographicCitation | MicroBooNE Collaboration, R. Acciarri et al., Michel electron reconstruction using cosmic-ray data from the MicroBooNE LArTPC. JINST 12(09), P09014 (2017). https://doi.org/10.1088/ 1748-0221/12/09/P09014. arXiv:1704.02927 [physics.ins-det] | spa |
dcterms.bibliographicCitation | TALYS. https://tendl.web.psi.ch/tendl_2019/talys.html | spa |
dcterms.bibliographicCitation | M. Bhattacharya et al., Neutrino absorption efficiency of an Ar-40 detector from the beta decay of Ti-40. Phys. Rev. C58, 3677–3687 (1998). https://doi.org/10.1103/PhysRevC.58.3677 | spa |
dcterms.bibliographicCitation | M.-K. Cheoun, E. Ha, T. Kajino, High-lying excited states in Gamow Teller strength and their roles in neutrino reactions. Eur. Phys. J. A 48, 137 (2012). https://doi.org/10.1140/epja/ i2012-12137-y | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., First results on ProtoDUNESP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. JINST 15(12), P12004 (2020). https://doi.org/10.1088/1748-0221/15/ 12/P12004. arXiv:2007.06722 [physics.ins-det] | spa |
dcterms.bibliographicCitation | G. Zhu, S.W. Li, J.F. Beacom, Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds. Phys. Rev. C 99(5), 055810 (2019). https:// doi.org/10.1103/PhysRevC.99.055810. arXiv:1811.07912 [hepph] | spa |
dcterms.bibliographicCitation | P. Huber, M. Lindner, W. Winter, Simulation of longbaseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator). Comput. Phys. Commun. 167, 195 (2005). https://doi.org/10.1016/j.cpc.2005.01.003. arXiv:hep-ph/0407333 [hep-ph] | spa |
dcterms.bibliographicCitation | A.J. Roeth, Supernova neutrino pointing with DUNE (2020). https://indico.cern.ch/event/868940/contributions/3813598/ attachments/2081577/3496427/Point_Res_ICHEP_2020_07_ AJRoeth.pdf | spa |
dcterms.bibliographicCitation | T. Totani, K. Sato, H.E. Dalhed, J.R. Wilson, Future detection of supernova neutrino burst and explosion mechanism. Astrophys. J. 496, 216–225 (1998). https://doi.org/10.1086/305364. arXiv:astro-ph/9710203 | spa |
dcterms.bibliographicCitation | J. Gava, J. Kneller, C. Volpe, G.C. McLaughlin, A dynamical collective calculation of supernova neutrino signals. Phys. Rev. Lett. 103, 071101 (2009). https://doi.org/10.1103/PhysRevLett. 103.071101. arXiv:0902.0317 [hep-ph] | spa |
dcterms.bibliographicCitation | I. Tamborra, F. Hanke, H.-T. Janka, B. Mueller, G.G. Raffelt et al., Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792, 96 (2014). https://doi.org/ 10.1088/0004-637X/792/2/96. arXiv:1402.5418 [astro-ph.SR] | spa |
dcterms.bibliographicCitation | R. Laha, J.F. Beacom, Gadolinium in water Cherenkov detectors improves detection of supernova νe. Phys. Rev. D 89, 063007 (2014). https://doi.org/10.1103/PhysRevD.89.063007. arXiv:1311.6407 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | R. Laha, J.F. Beacom, S.K. Agarwalla, New power to measure Supernova νe with large liquid scintillator detectors (2014). arXiv:1412.8425 [hep-ph] | spa |
dcterms.bibliographicCitation | G. Ge, Y. Jae Jwa, G. Karagiorgi, ML-based triggering for DUNE, DUNE doc 11311 (2018). https://docs.dunescience.org/cgi-bin/ private/ShowDocument?docid=11311&asof=2019-7-15 | spa |
dcterms.bibliographicCitation | I. Gil Botella, A. Rubbia, Decoupling supernova and neutrino oscillation physics with LAr TPC detectors. JCAP 0408, 001 (2004). https://doi.org/10.1088/1475-7516/2004/08/ 001. arXiv:hep-ph/0404151 | spa |
dcterms.bibliographicCitation | A. Nikrant, R. Laha, S. Horiuchi, Robust measurement of supernova νe spectra with future neutrino detectors. Phys. Rev. D 97(2), 023019 (2018). https://doi.org/10.1103/PhysRevD.97. 023019. arXiv:1711.00008 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | A. GalloRosso, F. Vissani, M.C. Volpe, What can we learn on supernova neutrino spectra with water Cherenkov detectors? JCAP 1804(04), 040 (2018). https://doi.org/10.1088/1475-7516/ 2018/04/040. arXiv:1712.05584 [hep-ph] | spa |
dcterms.bibliographicCitation | K. Nakazato, K. Sumiyoshi, H. Suzuki, T. Totani, H. Umeda, S. Yamada, Supernova neutrino light curves and spectra for various progenitor stars: from core collapse to proto-neutron star cooling. Astrophys. J. Suppl. 205, 2 (2013). https://doi.org/10.1088/ 0067-0049/205/1/2. arXiv:1210.6841 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | L. Huedepohl, Neutrinos from the formation, cooling and black hole collapse of neutron stars. PhD thesis, Technische Universitat Munchen (2014). https://wwwmpa.mpa-garching.mpg.de/ ccsnarchive/data/Huedepohl2014_phd_thesis/ | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1140/epjc/s10052-021-09166-w | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Física | spa |
dc.publisher.sede | Sede Norte | spa |