Mostrar el registro sencillo del ítem

dc.contributor.authorValencia, Ana María
dc.contributor.otherValencia, Carlos Humberto
dc.contributor.otherZuluaga, Fabio
dc.contributor.otherGrande-Tovar, Carlos David
dc.date.accessioned2022-12-19T02:43:01Z
dc.date.available2022-12-19T02:43:01Z
dc.date.issued2021-06-12
dc.date.submitted2020-07-22
dc.identifier.citationValencia AM, Valencia CH, Zuluaga F, Grande-Tovar CD. Synthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applications. Heliyon. 2021 May 21;7(5):e07058. doi: 10.1016/j.heliyon.2021.e07058. PMID: 34095569; PMCID: PMC8165423.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1145
dc.description.abstractGraphene oxide (GO) has recently gained attention as a scaffold reinforcing agent for tissue engineering. Biomechanical and biological properties through a synergistic effect can be strengthened when combined with other materials such as chitosan (CS). For that reason, chitosan was used for Graphene Oxide (GO) functionalization through an amide group whose formation was evident by bands around 1600 cm 1 in the FTIR analysis. Furthermore, bands located at 1348 cm 1 (D band), 1593 cm 1 (G band), and 2416 cm 1 (2D band) in the RAMAN spectrum, and the displacement of the signal at 87.03 ppm (C5) in solid-state 13C-NMR confirmed the amide formation. Films including the CS-GO compound were prepared and characterized by thermogravimetric analysis (TGA), where CS-GO film presented a lighter mass loss (~10% less loosed) than CS due probably to the covalent functionalization with GO, providing film thermal resistance. The CS-GO films synthesized were implanted in Wistar rats' subdermal tissue as a first approximation to the biological response. In vivo tests showed a low inflammatory response, good cicatrization, and advanced resorption at 60 days of implantation, as indicated by histological images. It was evidenced that the covalent union between CS and GO increased biocompatibility and the degradation/resorption capacity, demonstrating tissue regeneration with typical characteristics and tiny remnants of implanted material surrounded by a type III collagen capsule. These results show the potential application of the new synthesized films, including the CS-GO compound, in tissue engineering.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceHeliyonspa
dc.titleSynthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applicationsspa
dc.title.alternativeSynthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applicationsspa
dcterms.bibliographicCitationM.A. Nguyen, G. Camci-unal Unconventional tissue engineering materials in disguise Trends Biotechnol., 1–13 (2019)spa
dcterms.bibliographicCitationS. Saber-Samandari, S. Saber-Samandari Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability Mater. Sci. Eng. C, 75 (2017), pp. 721-732spa
dcterms.bibliographicCitationA. Abedi, M. Hasanzadeh, L. Tayebi Conductive nanofibrous chitosan/PEDOT:PSS tissue engineering scaffolds Mater. Chem. Phys., 237 (October 2018) (2019), p. 121882spa
dcterms.bibliographicCitationL.A. Loureiro dos Santos Natural polymeric biomaterials: processing and properties Ref. Modul. Mater. Sci. Mater. Eng. (2017), pp. 1-6spa
dcterms.bibliographicCitationK. Balagangadharan, S. Dhivya, N. Selvamurugan Chitosan based nanofibers in bone tissue engineering Int. J. Biol. Macromol., 104 (2017), pp. 1372-1382spa
dcterms.bibliographicCitationA. Muxika, A. Etxabide, J. Uranga, P. Guerrero, K. de la Caba Chitosan as a bioactive polymer: processing, properties and applications Int. J. Biol. Macromol., 105 (2017), pp. 1358-1368spa
dcterms.bibliographicCitationS.M. Ahsan, M. Thomas, K.K. Reddy, S.G. Sooraparaju, A. Asthana, I. Bhatnagar Chitosan as biomaterial in drug delivery and tissue engineering Int. J. Biol. Macromol., 110 (2017), pp. 97-109spa
dcterms.bibliographicCitationF. Tao, Y. Cheng, X. Shi, H. Zheng, Y. Du, W. Xiang, H. Deng Applications of chitin and chitosan nanofibers in bone regenerative engineering Carbohydr. Polym., 230 (October 2019) (2019), p. 115658spa
dcterms.bibliographicCitation.Z. Knaul, S.M. Hudson, K.A.M. Creber Improved mechanical properties of chitosan fibers J. Appl. Polym. Sci., 72 (13) (1999), pp. 1721-1732spa
dcterms.bibliographicCitationK. Pieklarz, M. Tylman, Z. Modrzejewska Current progress in biomedical applications of chitosan-carbon nanotube nanocomposites: a review Mini Rev. Med. Chem., 20 (16) (2020), pp. 1619-1632spa
dcterms.bibliographicCitationD.C. Grande Tovar, I.J. Castro, H.C. Valencia, P.D. Navia Porras, J. Herminsul Mina Hernandez, E.M. Valencia Zapata, N.M. Chaur Nanocomposite films of chitosan-grafted carbon nano-onions for biomedical applications Molecules (2020)spa
dcterms.bibliographicCitationC.D. Grande Tovar, J.I. Castro, C.H. Valencia, D.P. Navia Porras, M. Hernandez, J. Herminsul, M.E. Valencia, J.D. Velásquez, M.N. Chaur Preparation of chitosan/poly (vinyl alcohol) nanocomposite films incorporated with oxidized carbon nano-onions (Multi-Layer fullerenes) for tissue-engineering applications Biomolecules, 9 (11) (2019), p. 684spa
dcterms.bibliographicCitationB. Sharma, S. Shekhar, P. Jain, R. Sharma, K.K.D. Chauhan Graphene grafted chitosan nanocomposites and their applications Graphene Based Biopolymer Nanocomposites, Springer (2021), pp. 135-147spa
dcterms.bibliographicCitationA. Raslan, L.S. Del Burgo, J. Ciriza, J.L. Pedraz Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine Int. J. Pharm., 580 (2020), p. 119226spa
dcterms.bibliographicCitationD.C. Grande Tovar, I.J. Castro, H.C. Valencia, A.P. Zapata, A.M. Solano, E. Florez López, N.M. Chaur, E.M. Valencia Zapata, H.J. Mina Hernandez Synthesis of chitosan beads incorporating graphene oxide/titanium dioxide nanoparticles for in vivo studies Molecules (2020)spa
dcterms.bibliographicCitationS.C. Ray Application and Uses of Graphene Oxide and Reduced Graphene Oxide Elsevier Inc. (2015)spa
dcterms.bibliographicCitationV. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh Higher oxidation level in graphene oxide Optik, 143 (2017), pp. 115-124spa
dcterms.bibliographicCitationA.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites Nano Mater. Sci., 1 (1) (2019), pp. 31-47spa
dcterms.bibliographicCitationB. Yang, P.-B. Wang, N. Mu, K. Ma, S. Wang, C.-Y. Yang, Z.-B. Huang, Y. Lai, H. Feng, G.-F. Yin Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats Neural Regen. Res., 16 (9) (2021), p. 1829spa
dcterms.bibliographicCitationC. Xie, X. Lu, L. Han, J. Xu, Z. Wang, L. Jiang, K. Wang, H. Zhang, F. Ren, Y. Tang Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications ACS Appl. Mater. Interfaces, 8 (3) (2016), pp. 1707-1717spa
dcterms.bibliographicCitationH. Yi, L.Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver, G.F. Payne Biofabrication with chitosan Biomacromolecules, 6 (6) (2005), pp. 2881-2894spa
dcterms.bibliographicCitationF. Saeedi, A. Montazeri, Y. Bahari, M. Pishvaei, B. Jannat, M. Rasa, F. Saeedi Fabrication and characterization of chitosan-polyvinyl alcohol-graphene oxide nanocomposite scaffold for wound healing purposes Human, Heal. Halal Metrics, 1 (2) (2021), pp. 47-55spa
dcterms.bibliographicCitationN. Amiryaghoubi, M. Fathi, A. Barzegari, J. Barar, H. Omidian, Y. Omidi Recent advances in polymeric scaffolds containing carbon nanotube and graphene oxide for cartilage and bone regeneration Mater. Today Commun. (2021), p. 102097spa
dcterms.bibliographicCitationP.P. Zuo, H.F. Feng, Z.Z. Xu, L.F. Zhang, Y.L. Zhang, W. Xia, W.Q. Zhang Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films Chem. Cent. J., 7 (1) (2013), pp. 1-11spa
dcterms.bibliographicCitationD.L. Tenorio, C.H. Valencia, C. Valencia, F. Zuluaga, M.E. Valencia, J.H. Mina, C.D.G. Tovar Evaluation of the biocompatibility of Cs-graphene oxide compounds in vivo Int. J. Mol. Sci., 20 (7) (2019)spa
dcterms.bibliographicCitationC. Valencia, C.H. Valencia, F. Zuluaga, M.E. Valencia, J.H. Mina, C.D. Grande-Tovar Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration Molecules, 23 (10) (2018)spa
dcterms.bibliographicCitationS. Biranje, P. Madiwale, A.R.V. Adicarekar Preparation and characterization of chitosan/pva polymeric film for its potential application as wound dressing Material. Indian J.Sci. Res, 14 (2) (2017), pp. 250-256spa
dcterms.bibliographicCitationT. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson Functionalized graphene sheets for polymer nanocomposites Nat. Nanotechnol., 3 (6) (2008), pp. 327-331spa
dcterms.bibliographicCitationS.H.M. Wong, S.S. Lim, T.J. Tiong, P.L. Show, H.F.M. Zaid, H.-S. Loh Preliminary in vitro evaluation of chitosan–graphene oxide scaffolds on osteoblastic adhesion, proliferation, and early differentiation Int. J. Mol. Sci., 21 (15) (2020), p. 5202spa
dcterms.bibliographicCitationL. Carson, C. Kelly-Brown, M. Stewart, A. Oki, G. Regisford, Z. Luo, V.I. Bakhmutov Synthesis and characterization of chitosan-carbon nanotube composites Mater. Lett., 63 (6–7) (2009), pp. 617-620spa
dcterms.bibliographicCitationSnežzana Miljanić, Leo Frkanec, Tomislav Biljan, Zlatko Meić Mladen Žini Recent advances in linear and nonlinear Raman spectroscopy I J. Raman Spectrosc., 38 (April) (2007), pp. 1538-1553spa
dcterms.bibliographicCitationD.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour Improved synthesis of graphene oxide ACS Nano, 4 (8) (2010), pp. 4806-4814spa
dcterms.bibliographicCitationD. López-Díaz, M. López Holgado, J.L. García-Fierro, M.M. Velázquez Evolution of the Raman spectrum with the chemical composition of graphene oxide J. Phys. Chem. C, 121 (37) (2017), pp. 20489-20497spa
dcterms.bibliographicCitationD. Ma, X. Li, Y. Guo, Y. Zeng Study on IR properties of reduced graphene oxide IOP Conf. Ser. Earth Environ. Sci., 108 (2) (2018)spa
dcterms.bibliographicCitationY. Pan, T. Wu, H. Bao, L. Li Green fabrication of chitosan films reinforced with parallel aligned graphene oxide Carbohydr. Polym., 83 (4) (2011), pp. 1908-1915spa
dcterms.bibliographicCitationK.S.S.K. Muhamad, F. Mohamed, S. Radiman, A. Hamzah, S. Sarmani, K.K. Siong, M.S. Yasir, I.A. Rahman, N.R.A.M. Rosli Synthesis and characterization of exfoliated graphene oxide AIP Conf. Proc. (2016), p. 1784spa
dcterms.bibliographicCitationD. Han, L. Yan, W. Chen, W. Li Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state Carbohydr. Polym., 83 (2) (2011), pp. 653-658spa
dcterms.bibliographicCitationM.S. Muda, A. Kamari, S.A. Bakar, S.N.M. Yusoff, I. Fatimah, E. Phillip, S.M. Din Chitosan-graphene oxide nanocomposites as water-solubilising agents for rotenone pesticide J. Mol. Liq., 318 (2020), p. 114066spa
dcterms.bibliographicCitationW.F. Khalil, G.S. El-Sayyad, W.M.A. El Rouby, M.A. Sadek, A.A. Farghali, A.I. El-Batal Graphene oxide-based nanocomposites (GO-Chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria Int. J. Biol. Macromol., 164 (2020), pp. 1370-1383spa
dcterms.bibliographicCitationC. Qin, H. Li, Q. Xiao, Y. Liu, J. Zhu, Y. Du Water-solubility of chitosan and its antimicrobial activity Carbohydr. Polym., 63 (3) (2006), pp. 367-374spa
dcterms.bibliographicCitationG. Muñoz, C. Valencia, N. Valderruten, E. Ruiz-Durántez, F. Zuluaga Extraction of chitosan from Aspergillus Niger mycelium and synthesis of hydrogels for controlled release of betahistine React. Funct. Polym., 91–92 (June) (2015), pp. 1-10spa
dcterms.bibliographicCitationE.S. Alvarenga Characterization and properties of chitosan Biotechnol. Biopolym. (2011), pp. 91-108spa
dcterms.bibliographicCitationI. Younes, S. Hajji, V. Frachet, M. Rinaudo, K. Jellouli, M. Nasri Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan Int. J. Biol. Macromol., 69 (2014), pp. 489-498spa
dcterms.bibliographicCitationA.B. Muley, S.A. Chaudhari, K.H. Mulchandani, R.S. Singhal Extraction and characterization of chitosan from prawn shell waste and its conjugation with cutinase for enhanced thermo-stability Int. J. Biol. Macromol., 111 (2018), pp. 1047-1050spa
dcterms.bibliographicCitationP.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li Temperature dependence of graphene oxide reduced by hydrazine hydrate Nanotechnology, 22 (5) (2011)spa
dcterms.bibliographicCitationP. de A. Sarmento, T. da R. Ataíde, A.P. de S. Pinto, J.X. de Araújo-Júnior, I.M.L. Lúcio, M.L. de A. Bastos Avaliação do extrato da zeyheria tuberculosa Na perspectiva de Um produto para cicatrização de Feridas Rev. Lat. Am. Enfermagem, 22 (1) (2014), pp. 165-172spa
dcterms.bibliographicCitationM. Jannasch, T. Weigel, L. Engelhardt, J. Wiezoreck, S. Gaetzner, H. Walles, T. Schmitz, J. Hansmann In vitro chemotaxis and tissue remodeling assays quantitatively characterize foreign body reaction ALTEX, 34 (2) (2017), pp. 253-266spa
dcterms.bibliographicCitationM. Tomida, K. Nakano, S. Matsuura, T. K Comparative examination of subcutaneous tissue reation to high molecular materials in medical use Eur. J. Med. Res. (2011), pp. 249-252spa
dcterms.bibliographicCitationS. Al-Maawi, C. Mota, A. Kubesch, C. James Kirkpatrick, L. Moroni, S. Ghanaati Multiwell three-dimensional systems enable in vivo screening of immune reactions to biomaterials: a new strategy toward translational biomaterial research J. Mater. Sci. Mater. Med., 30 (6) (2019), pp. 1-6spa
dcterms.bibliographicCitationJ.M. Anderson, A. Rodriguez, D.T. Chang Foreign body reaction to biomaterials Semin. Immunol., 20 (2) (2008), pp. 86-100spa
dcterms.bibliographicCitationD.S. Steinbrech, M.T. Longaker, B.J. Mehrara, P.B. Saadeh, G.S. Chin, R.P. Gerrets, D.C. Chau, N.M. Rowe, G.K. Gittes Fibroblast response to hypoxia: the relationship between angiogenesis and matrix regulation J. Surg. Res., 84 (2) (1999), pp. 127-133spa
dcterms.bibliographicCitationP. Kumar, S. Kumar, E.P. Udupa, U. Kumar, P. Rao, T. Honnegowda Role of angiogenesis and angiogenic factors in acute and chronic wound healing Plast. Aesthetic Res., 2 (5) (2015), p. 243spa
dcterms.bibliographicCitationS.M. Sari Kiliçaslan, Ş. Coşkun Cevher, E.G. Güleç Peker Ultrastructural changes in blood vessels in epidermal growth factor treated experimental cutaneous wound model Pathol. Res. Pract., 209 (11) (2013), pp. 710-715spa
dcterms.bibliographicCitationM.R. Major, V.W. Wong, E.R. Nelson, M.T. Longaker, G.C. Gurtner The foreign body response: at the interface of surgery and bioengineering Plast. Reconstr. Surg., 135 (5) (2015), pp. 1489-1498spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.heliyon.2021.e07058.
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsChitosan Graphene oxide Regenerative medicine Tissue engineeringspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por