Mostrar el registro sencillo del ítem

dc.contributor.authorArrieta-González, Rosa
dc.contributor.otherPaez, Juan
dc.contributor.otherDominguez-Haydar, Yamileth
dc.contributor.otherSalgado-Negret, Beatriz
dc.date.accessioned2022-12-19T02:42:48Z
dc.date.available2022-12-19T02:42:48Z
dc.date.issued2021-06-30
dc.date.submitted2021-04-06
dc.identifier.citationArrieta-González, R., Paez, J., Dominguez-Haydar, Y., & Salgado Negret, B. (2021). Limited evidence of coupling between above and belowground functional traits in tropical dry forest seedlings. Revista De Biología Tropical, 69(2), 763–771. https://doi.org/10.15517/rbt.v69i2.46549spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1144
dc.description.abstractIntroduction: Water availability is one of the main factors determining the distribution of woody species in the tropics. Although the functional mechanisms that determine the species tolerance to water deficit have been extensively studied in adult individuals, the responses of early ontogenetic stages have been less explored. Objective: To identify functional strategies and trait correlations between different seedlings’ dimensions (leaf, stem, and root). We expect limited coordination between above and below-ground functional traits due to a single conservation-acquisition trade-off cannot capture the variability of functions and environmental pressures to which the root system is subjected. Methods: We measured 12 functional traits belonging to 38 seedling species in a tropical dry forest in Colombia. We explored the relationships between pairs of traits using Pearson correlations, and to obtain an integrated view of the functional traits, a principal component analysis (PCA) was performed. Results: The results showed limited evidence of linkage between above- and below-ground traits, but we did find significant correlations between traits for the continuum of conservative and acquisitive strategies. Root traits related to water and nutrient take capacity formed an orthogonal axis to the acquisitive-conservative continuum. Conclusions: Our results showed that dry forest seedlings have different functional strategies to cope with water deficit. The incorporation of root traits helps to explain new functional strategies not reported for leaf and stem traits. This study contributes to understanding the mechanisms that explain species coexistence and is particularly relevant for predicting future forest trajectories.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceRevista de Biología Tropicalspa
dc.titleLimited evidence of coupling between above and belowground functional traits in tropical dry forest seedlingsspa
dc.title.alternativeLimited evidence of coupling between above and belowground functional traits in tropical dry forest seedlingsspa
dcterms.bibliographicCitationBonal, D., & Guehl, J.M. (2001). Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Functional Ecology, 15(4), 490–496. https://doi. org/10.1046/j.0269-8463.2001.00537.xspa
dcterms.bibliographicCitationBorchert, R. (1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75(5), 1437–1449. https://doi. org/10.2307/1937467spa
dcterms.bibliographicCitationČermák, J., Kucera, J., Bauerle, W.L., Phillips, N., & Hinckley, T.M. (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27(2), 181–198. https://doi.org/10.1093/ treephys/27.2.181spa
dcterms.bibliographicCitationComita, L., & Engelbrecht, B. (2014). Drought as a driver of tropical tree species regeneration dynamics and distribution patterns. In D. Coomes, D. Burslem, & W. Simonson (Eds.), Forests and Global Change (pp. 261-308). Cambridge University Press. https://doi. org/10.1017/cbo9781107323506.013spa
dcterms.bibliographicCitationDai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58. https://doi.org/10.1038/nclimate1633spa
dcterms.bibliographicCitationEissenstat, D.M., Wells, C.E., Yanai, R.D., & Whitbeck, J.L. (2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147(1), 33–42. https://doi. org/10.1046/j.1469-8137.2000.00686.xspa
dcterms.bibliographicCitationEngelbrecht, B.M., & Kursar, T.A. (2003). Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia, 136(3), 383-393.spa
dcterms.bibliographicCitationEngelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L., & Hubbell, S.P. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447(7140), 80–82. https://doi.org/10.1038/nature05747spa
dcterms.bibliographicCitationFeng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3(9), 811–815. https://doi. org/10.1038/nclimate1907spa
dcterms.bibliographicCitationFreschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett, R., De Deyn, G., Johnson, D., Klimesová, J., Lukac, M., McCormack, M., Meier, I., Pages, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., … Stokes, A. (2020). Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytologist, 1-36. https://doi. org/10.1111/nph.17072spa
dcterms.bibliographicCitationGonzález-M., R., Norden, N., Posada, J.M., Pizano, C., García, H., Idárraga-Piedrahita, Á., López-Camacho, R., Nieto, J., Rodríguez-M, G.M., Torres, A.M., Castaño-Naranjo, A., Jurado, R., Franke-Ante, R., Galindo-T, R., Hernández, E., Barbosa, A., & Salgado-Negret, B. (2019). Climate severity and landcover transformation determine plant community attributes in Colombian dry forests. Biotropica, 51(6), 826–837. https://doi.org/10.1111/btp.12715spa
dcterms.bibliographicCitationGonzález-M., R., Posada, J.M., Carmona, C.P., Garzón, F., Salinas, V., Idárraga-Piedrahita, Á., Pizano, C., Avella, A., López-Camacho, R., Norden, N., Nieto, J., Medina, S.P., Rodríguez-M., G.M., Franke-Ante, R., Torres, A.M., Jurado, R., Cuadros, H., Castaño-Naranjo, A., García, H., & Salgado-Negret, B. (2020). Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecology Letters, 24(3), 451–463. https://doi. org/10.1111/ele.13659spa
dcterms.bibliographicCitationHacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., & McCulloh, K.A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. https://doi.org/10.1007/s004420100628spa
dcterms.bibliographicCitationHubbell, S.P., Foster, R.B., O’Brien, S.T., Harms, K.E., Condit, R., Wechsler, B., Wright, S.J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/ science.283.5401.554spa
dcterms.bibliographicCitationLewis, S.L., & Tanner, E.V.J. (2000). Effects of above- and belowground competition on growth and survival of rain forest tree seedlings. Ecology, 81(9), 2525. https://doi.org/10.2307/177472spa
dcterms.bibliographicCitationMarkesteijn, L., & Poorter, L. (2009). Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology, 97(2), 311–325. https://doi. org/10.1111/j.1365-2745.2008.01466.xspa
dcterms.bibliographicCitationMarkesteijn, L., Poorter, L., Bongers, F., Paz, H., & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191(2), 480–495. https://doi.org/10.1111/j.1469-8137.2011.03708.xspa
dcterms.bibliographicCitationMéndez-Alonzo, R., Paz, H., Cruz, R., Rosell, J.A., & Olson, M.E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93(11), 2397–2406. https://www.jstor.org/ stable/41739311spa
dcterms.bibliographicCitationMurphy, P.G., & Lugo, A.E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17, 67–88. https://doi.org/10.1146/annurev. es.17.110186.000435spa
dcterms.bibliographicCitationOsuri, A.M., Chakravarthy, D., Mudappa, D., Raman, T.R.S., Ayyappan, N., Muthuramkumar, S., & Parthasarathy, N. (2017). Successional status, seed dispersal mode and overstorey species influence tree regeneration in tropical rain-forest fragments in Western Ghats, India. Journal of Tropical Ecology, 33(4), 270–284. https://doi.org/10.1017/S0266467417000219spa
dcterms.bibliographicCitationPaz, H., Pineda-García, F., & Pinzón-Pérez, L.F. (2015). Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest. Oecologia, 179(2), 551–561. https://doi.org/10.1007/ s00442-015-3359-6spa
dcterms.bibliographicCitationPérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., De Vos, A.C., … Cornelissen, J.H.C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225spa
dcterms.bibliographicCitationPineda-García, F., Paz, H., & Meinzer, F.C. (2013). Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant, Cell and Environment, 36(2), 405–418. https://doi. org/10.1111/j.1365-3040.2012.02582.xspa
dcterms.bibliographicCitationPineda-García, F., Paz, H., Meinzer, F.C., & Angeles, G. (2015). Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiology, 36(2), 208–217. https://doi.org/10.1093/treephys/tpv124spa
dcterms.bibliographicCitationPoorter, L., & Markesteijn, L. (2008). Seedling traits determine drought tolerance of tropical tree species. Biotropica, 40(3), 321–331.spa
dcterms.bibliographicCitationPoorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Licona, J.C., Martínez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Peña-Claros, M., Webb, C.O., & Wright, I.J. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89(7), 1908–1920.spa
dcterms.bibliographicCitationPoorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182(3), 565–588. https://doi. org/10.1111/j.1469-8137.2009.02830.xspa
dcterms.bibliographicCitationPrieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J.H., Maeght, J.L., Mao, Z., Pierret, A., Portillo, N., Roupsard, O., Thammahacksa, C., & Stokes, A. (2015). Root functional parameters along a land-use gradient: Evidence of a community-level economics spectrum. Journal of Ecology, 103(2), 361–373. https://doi.org/10.1111/1365-2745.12351spa
dcterms.bibliographicCitationR Core Team. (2015). R: A language and environment for statistical computing (v3.2.2). R Foundation for Statistical Computing, Vienna, Austria. http//www.Rproject.org/spa
dcterms.bibliographicCitationRomo, M. (2005). Efecto de la luz en el crecimiento de plántulas de Dipteryx Micrantha Harms “Shihuahuaco” tranplantadas a sotobosque, claros y plantaciones. Ecología Aplicada, 4, 1–8. http://www.scielo.org.pe/ pdf/ecol/v4n1-2/a01v4n1-2.pdfspa
dcterms.bibliographicCitationRoumet, C., Urcelay, C., & Díaz, S. (2006). Suites of root traits differ between annual and perennial species growing in the field. New Phytologist, 170(2), 357–368. https://doi.org/10.1111/j.1469-8137.2006.01667.xspa
dcterms.bibliographicCitationSalgado-Negret, B., Rodríguez, E.N.P., Cabrera, M., Osorio, C.R., & Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (pp. 12–35). Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Colombia.spa
dcterms.bibliographicCitationScholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., & Miralles-Wilhelm, F. (2007). Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant, Cell and Environment, 30(2), 236–248. https://doi.org/10.1111/j.1365-3040.2006.01623.xspa
dcterms.bibliographicCitationValverde-Barrantes, O.J., Smemo, K.A., & Blackwood, C.B. (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29(6), 796-807. https://doi. org/10.1111/1365-2435.12384spa
dcterms.bibliographicCitationWeemstra, M., Mommer, L., Visser, E.J.W., van Ruijven, J., Kuyper, T.W., Mohren, G.M.J., & Sterck, F.J. (2016). Towards a multidimension root trait framework: a tree root review. New Phytologist, 211(4), 1159-1169. https://doi.org/10.1111/nph.14003spa
dcterms.bibliographicCitationWithington, J., Reich, P., Oleksyn, J., & Eissenstat, D. (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381–397. https://doi. org/10.1890/0012-9615(2006)076[0381:COSALS]2 .0.CO;2spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.15517/rbt.v69i2.46549
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsacquisitive strategy; Colombia; conservative strategy; functional traits; water deficit; water storage.spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineBiologíaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por