Mostrar el registro sencillo del ítem
Limited evidence of coupling between above and belowground functional traits in tropical dry forest seedlings
dc.contributor.author | Arrieta-González, Rosa | |
dc.contributor.other | Paez, Juan | |
dc.contributor.other | Dominguez-Haydar, Yamileth | |
dc.contributor.other | Salgado-Negret, Beatriz | |
dc.date.accessioned | 2022-12-19T02:42:48Z | |
dc.date.available | 2022-12-19T02:42:48Z | |
dc.date.issued | 2021-06-30 | |
dc.date.submitted | 2021-04-06 | |
dc.identifier.citation | Arrieta-González, R., Paez, J., Dominguez-Haydar, Y., & Salgado Negret, B. (2021). Limited evidence of coupling between above and belowground functional traits in tropical dry forest seedlings. Revista De Biología Tropical, 69(2), 763–771. https://doi.org/10.15517/rbt.v69i2.46549 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1144 | |
dc.description.abstract | Introduction: Water availability is one of the main factors determining the distribution of woody species in the tropics. Although the functional mechanisms that determine the species tolerance to water deficit have been extensively studied in adult individuals, the responses of early ontogenetic stages have been less explored. Objective: To identify functional strategies and trait correlations between different seedlings’ dimensions (leaf, stem, and root). We expect limited coordination between above and below-ground functional traits due to a single conservation-acquisition trade-off cannot capture the variability of functions and environmental pressures to which the root system is subjected. Methods: We measured 12 functional traits belonging to 38 seedling species in a tropical dry forest in Colombia. We explored the relationships between pairs of traits using Pearson correlations, and to obtain an integrated view of the functional traits, a principal component analysis (PCA) was performed. Results: The results showed limited evidence of linkage between above- and below-ground traits, but we did find significant correlations between traits for the continuum of conservative and acquisitive strategies. Root traits related to water and nutrient take capacity formed an orthogonal axis to the acquisitive-conservative continuum. Conclusions: Our results showed that dry forest seedlings have different functional strategies to cope with water deficit. The incorporation of root traits helps to explain new functional strategies not reported for leaf and stem traits. This study contributes to understanding the mechanisms that explain species coexistence and is particularly relevant for predicting future forest trajectories. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Revista de Biología Tropical | spa |
dc.title | Limited evidence of coupling between above and belowground functional traits in tropical dry forest seedlings | spa |
dc.title.alternative | Limited evidence of coupling between above and belowground functional traits in tropical dry forest seedlings | spa |
dcterms.bibliographicCitation | Bonal, D., & Guehl, J.M. (2001). Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Functional Ecology, 15(4), 490–496. https://doi. org/10.1046/j.0269-8463.2001.00537.x | spa |
dcterms.bibliographicCitation | Borchert, R. (1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75(5), 1437–1449. https://doi. org/10.2307/1937467 | spa |
dcterms.bibliographicCitation | Čermák, J., Kucera, J., Bauerle, W.L., Phillips, N., & Hinckley, T.M. (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27(2), 181–198. https://doi.org/10.1093/ treephys/27.2.181 | spa |
dcterms.bibliographicCitation | Comita, L., & Engelbrecht, B. (2014). Drought as a driver of tropical tree species regeneration dynamics and distribution patterns. In D. Coomes, D. Burslem, & W. Simonson (Eds.), Forests and Global Change (pp. 261-308). Cambridge University Press. https://doi. org/10.1017/cbo9781107323506.013 | spa |
dcterms.bibliographicCitation | Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58. https://doi.org/10.1038/nclimate1633 | spa |
dcterms.bibliographicCitation | Eissenstat, D.M., Wells, C.E., Yanai, R.D., & Whitbeck, J.L. (2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147(1), 33–42. https://doi. org/10.1046/j.1469-8137.2000.00686.x | spa |
dcterms.bibliographicCitation | Engelbrecht, B.M., & Kursar, T.A. (2003). Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia, 136(3), 383-393. | spa |
dcterms.bibliographicCitation | Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L., & Hubbell, S.P. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447(7140), 80–82. https://doi.org/10.1038/nature05747 | spa |
dcterms.bibliographicCitation | Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3(9), 811–815. https://doi. org/10.1038/nclimate1907 | spa |
dcterms.bibliographicCitation | Freschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett, R., De Deyn, G., Johnson, D., Klimesová, J., Lukac, M., McCormack, M., Meier, I., Pages, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., … Stokes, A. (2020). Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytologist, 1-36. https://doi. org/10.1111/nph.17072 | spa |
dcterms.bibliographicCitation | González-M., R., Norden, N., Posada, J.M., Pizano, C., García, H., Idárraga-Piedrahita, Á., López-Camacho, R., Nieto, J., Rodríguez-M, G.M., Torres, A.M., Castaño-Naranjo, A., Jurado, R., Franke-Ante, R., Galindo-T, R., Hernández, E., Barbosa, A., & Salgado-Negret, B. (2019). Climate severity and landcover transformation determine plant community attributes in Colombian dry forests. Biotropica, 51(6), 826–837. https://doi.org/10.1111/btp.12715 | spa |
dcterms.bibliographicCitation | González-M., R., Posada, J.M., Carmona, C.P., Garzón, F., Salinas, V., Idárraga-Piedrahita, Á., Pizano, C., Avella, A., López-Camacho, R., Norden, N., Nieto, J., Medina, S.P., Rodríguez-M., G.M., Franke-Ante, R., Torres, A.M., Jurado, R., Cuadros, H., Castaño-Naranjo, A., García, H., & Salgado-Negret, B. (2020). Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecology Letters, 24(3), 451–463. https://doi. org/10.1111/ele.13659 | spa |
dcterms.bibliographicCitation | Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., & McCulloh, K.A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. https://doi.org/10.1007/s004420100628 | spa |
dcterms.bibliographicCitation | Hubbell, S.P., Foster, R.B., O’Brien, S.T., Harms, K.E., Condit, R., Wechsler, B., Wright, S.J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/ science.283.5401.554 | spa |
dcterms.bibliographicCitation | Lewis, S.L., & Tanner, E.V.J. (2000). Effects of above- and belowground competition on growth and survival of rain forest tree seedlings. Ecology, 81(9), 2525. https://doi.org/10.2307/177472 | spa |
dcterms.bibliographicCitation | Markesteijn, L., & Poorter, L. (2009). Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology, 97(2), 311–325. https://doi. org/10.1111/j.1365-2745.2008.01466.x | spa |
dcterms.bibliographicCitation | Markesteijn, L., Poorter, L., Bongers, F., Paz, H., & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191(2), 480–495. https://doi.org/10.1111/j.1469-8137.2011.03708.x | spa |
dcterms.bibliographicCitation | Méndez-Alonzo, R., Paz, H., Cruz, R., Rosell, J.A., & Olson, M.E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93(11), 2397–2406. https://www.jstor.org/ stable/41739311 | spa |
dcterms.bibliographicCitation | Murphy, P.G., & Lugo, A.E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17, 67–88. https://doi.org/10.1146/annurev. es.17.110186.000435 | spa |
dcterms.bibliographicCitation | Osuri, A.M., Chakravarthy, D., Mudappa, D., Raman, T.R.S., Ayyappan, N., Muthuramkumar, S., & Parthasarathy, N. (2017). Successional status, seed dispersal mode and overstorey species influence tree regeneration in tropical rain-forest fragments in Western Ghats, India. Journal of Tropical Ecology, 33(4), 270–284. https://doi.org/10.1017/S0266467417000219 | spa |
dcterms.bibliographicCitation | Paz, H., Pineda-García, F., & Pinzón-Pérez, L.F. (2015). Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest. Oecologia, 179(2), 551–561. https://doi.org/10.1007/ s00442-015-3359-6 | spa |
dcterms.bibliographicCitation | Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., De Vos, A.C., … Cornelissen, J.H.C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225 | spa |
dcterms.bibliographicCitation | Pineda-García, F., Paz, H., & Meinzer, F.C. (2013). Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant, Cell and Environment, 36(2), 405–418. https://doi. org/10.1111/j.1365-3040.2012.02582.x | spa |
dcterms.bibliographicCitation | Pineda-García, F., Paz, H., Meinzer, F.C., & Angeles, G. (2015). Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiology, 36(2), 208–217. https://doi.org/10.1093/treephys/tpv124 | spa |
dcterms.bibliographicCitation | Poorter, L., & Markesteijn, L. (2008). Seedling traits determine drought tolerance of tropical tree species. Biotropica, 40(3), 321–331. | spa |
dcterms.bibliographicCitation | Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Licona, J.C., Martínez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Peña-Claros, M., Webb, C.O., & Wright, I.J. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89(7), 1908–1920. | spa |
dcterms.bibliographicCitation | Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182(3), 565–588. https://doi. org/10.1111/j.1469-8137.2009.02830.x | spa |
dcterms.bibliographicCitation | Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J.H., Maeght, J.L., Mao, Z., Pierret, A., Portillo, N., Roupsard, O., Thammahacksa, C., & Stokes, A. (2015). Root functional parameters along a land-use gradient: Evidence of a community-level economics spectrum. Journal of Ecology, 103(2), 361–373. https://doi.org/10.1111/1365-2745.12351 | spa |
dcterms.bibliographicCitation | R Core Team. (2015). R: A language and environment for statistical computing (v3.2.2). R Foundation for Statistical Computing, Vienna, Austria. http//www.Rproject.org/ | spa |
dcterms.bibliographicCitation | Romo, M. (2005). Efecto de la luz en el crecimiento de plántulas de Dipteryx Micrantha Harms “Shihuahuaco” tranplantadas a sotobosque, claros y plantaciones. Ecología Aplicada, 4, 1–8. http://www.scielo.org.pe/ pdf/ecol/v4n1-2/a01v4n1-2.pdf | spa |
dcterms.bibliographicCitation | Roumet, C., Urcelay, C., & Díaz, S. (2006). Suites of root traits differ between annual and perennial species growing in the field. New Phytologist, 170(2), 357–368. https://doi.org/10.1111/j.1469-8137.2006.01667.x | spa |
dcterms.bibliographicCitation | Salgado-Negret, B., Rodríguez, E.N.P., Cabrera, M., Osorio, C.R., & Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (pp. 12–35). Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Colombia. | spa |
dcterms.bibliographicCitation | Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., & Miralles-Wilhelm, F. (2007). Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant, Cell and Environment, 30(2), 236–248. https://doi.org/10.1111/j.1365-3040.2006.01623.x | spa |
dcterms.bibliographicCitation | Valverde-Barrantes, O.J., Smemo, K.A., & Blackwood, C.B. (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29(6), 796-807. https://doi. org/10.1111/1365-2435.12384 | spa |
dcterms.bibliographicCitation | Weemstra, M., Mommer, L., Visser, E.J.W., van Ruijven, J., Kuyper, T.W., Mohren, G.M.J., & Sterck, F.J. (2016). Towards a multidimension root trait framework: a tree root review. New Phytologist, 211(4), 1159-1169. https://doi.org/10.1111/nph.14003 | spa |
dcterms.bibliographicCitation | Withington, J., Reich, P., Oleksyn, J., & Eissenstat, D. (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381–397. https://doi. org/10.1890/0012-9615(2006)076[0381:COSALS]2 .0.CO;2 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.15517/rbt.v69i2.46549 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | acquisitive strategy; Colombia; conservative strategy; functional traits; water deficit; water storage. | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Biología | spa |
dc.publisher.sede | Sede Norte | spa |