Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Contreras, Jorge
dc.contributor.otherReyes Linero, Alberto
dc.contributor.otherBlanco Montes, Bladimir
dc.contributor.otherB. Acosta-Humánez, Primitivo
dc.date.accessioned2022-12-19T02:42:38Z
dc.date.available2022-12-19T02:42:38Z
dc.date.issued2021-01-05
dc.date.submitted2021-04-17
dc.identifier.citationContreras, J. R., Linero, A. R., Montes, B. B., & Acosta-Humánez, P. B. (2021). Transcritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Families. arXiv preprint arXiv:2103.02773.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1143
dc.description.abstractThis article reveals an analysis of the quadratic systems that hold multiparametric families therefore, in the first instance the quadratic systems are identified and classified in order to facilitate their study and then the stability of the critical points in the finite plane, its bifurcations, stable manifold and lastly, the stability of the critical points in the infinite plane, afterwards the phase portraits resulting from the analysis of these families are graphed. To properly perform this study it was necessary to use some results of the non-linear systems theory, for this reason vital definitions and theorems were included because of their importance during the study of the multiparametric families. Algebraic aspects are also included.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceWorld Scientific and Engineering Academy and Societyspa
dc.titleTranscritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Familiesspa
dc.title.alternativeTranscritical Bifurcations and Algebraic Aspects of Quadratic Multiparametric Familiesspa
dcterms.bibliographicCitationAcosta-Humanez P.B., Lazaro J.T., Morales-Ruiz J.J. & Pantazi Ch. ´ , On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory, Discrete & Continuous Dynamical Systems-A 35 (2015): 1767–1800.. Available at arXiv:1012.4796.spa
dcterms.bibliographicCitationAcosta-Humanez P. B., Reyes Linero A. & Rodr ´ ´ıguez Contreras J., Algebraic and qualitative remarks about the family yy0 = (αxm+k−1 + βxm−k−1 )y + γx2m−2k−1 , preprint 2014. Available at arXiv:1807.03551.spa
dcterms.bibliographicCitationRodr´ıguez Contreras J., Acosta-Humanez P. B. & Reyes Linero A. ´ , Algebraic and qualitative remarks about the family yy0 = (αxm+k−1 + βxm−k−1 )y + γx2m−2k−1 , Open Mathematics 17 (2019), 1220–1238.spa
dcterms.bibliographicCitationAcosta-Humanez P. B., Reyes Linero A. & Rodr ´ ´ıguez Contreras J.,Galoisian and Qualitative Approaches to Linear Polyanin-Zaitsev Vector Fields, Open Mathematics 16 (2018), 1204–1217. Available at arXiv:1807.05272.spa
dcterms.bibliographicCitationAcosta-Hum´anez P. B., Campo Donado M., Reyes Linero A., & Rodr´ıguez Contreras J., (2019). Algebraic and qualitative aspects of quadratic vector fields related with classical orthogonal polynomials. arXiv preprint arXiv:1906.09764.spa
dcterms.bibliographicCitationRodr´ıguez Contreras J, Reyes Linero A., Campo Donado M., & Acosta-Hum´anez P. B. , (2020). Dynamical and Algebraic Analysis of Planar Polynomial Vector Fields Linked to Orthogonal Polynomials. Journal of Southwest Jiaotong University, 55(4).spa
dcterms.bibliographicCitationTorres Henao J. A. , Sistemas Din´amicos Planos. Universidad Nacional de Colombia, Facultad de Ciencias, Escuela de Matem´aticas, Medellin, Colombia (2013). http://bdigital.unal.edu.co/9478/spa
dcterms.bibliographicCitationV´ılchez Lobato M. L. , Velasco Morente F., Garc´ıa del Hoyo J. J.,Bifurcaciones transcr´ıticas y ciclos l´ımites en un modelo din´amico de competici´on entre dos especies. Una aplicaci´on a la pescadera de engraulis encrasicholus de la Regi´on Suratl´antica espan˜nola, (2002).spa
dcterms.bibliographicCitationXiangdong, X., & Jianfeng, Z.,Plane Polynomial System and it’s Accompany System,Journal of Mathematical Study, 37(2) (2004), 161–166.spa
dcterms.bibliographicCitationGaiko V.A., Multiple limit cycle bifurcations of the FitzHugh–Nagumo neuronal model, Nonlinear Analysis: Theory, Methods & Applications, 74(18), (2011) 7532–7542spa
dcterms.bibliographicCitationPerko,L., Differential Equations and Dynamical Systems (New York: Springer Verlag), 2001spa
dcterms.bibliographicCitation] Guckeinheimer, J., y Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields ( New York: Springer Verlag), 1983spa
dcterms.bibliographicCitationDumortier F., Llibre J. & Artes J.,Qualitative Theory Of Planar Differential Systems, (Berlin: Springer), 2006spa
dcterms.bibliographicCitationHale J.K & Koc¸ak H., Dynamics and Bifurcations, (Springer-Verlag), 1991.spa
dcterms.bibliographicCitationHerssens C., Maesschalck P., Artes J. C., Dumortier F. & Llibre J. ´ , P4 (http://mat.uab.es/ artes/p4/p4.htm), Dept. de Matem`atiques, Universitat Aut`onoma de Barcelona.spa
dcterms.bibliographicCitationComputational algebraic system, dynamic greometry software; Geogebraspa
dcterms.bibliographicCitationComputational algebraic system, dynamic greometry software; Geogebraspa
dcterms.bibliographicCitationAcosta-Hum´anez, M. F., Acosta-Hum´anez, P. B., & Tuir´an, Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 14, (2018) 099.spa
dcterms.bibliographicCitationAcosta-Humanez, P. B., Blazquez-Sanz, D., & Vargas-Contreras, C. A. On Hamiltonian potentials with quartic polynomial normal variational equations, Nonlinear Studies, 16(3), (2009) 299–314.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P., & Bl´azquez-Sanz, D. Non-integrability of some hamiltonians with rational potentials, Discrete & Continuous Dynamical Systems-B, 10(2&3), (2008) 265–293.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B. La teor´ıa de Morales-Ramis y el algoritmo de Kovacic. Lecturas Matem´aticas, 27(3), (2006) 21–56.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B. Nonautonomous Hamiltonian Systems and Morales–Ramis Theory I. The case x¨ = f(x, t), SIAM Journal on Applied Dynamical Systems, 8(1), (2009) 279–297.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B., & Pantazi, C. Darboux integrals for Schr¨odinger planar vector fields via Darboux transformations, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 8 (2012) 043.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B., Alvarez-Ram´ırez, M.,& Delgado, J. ´ Non-integrability of some few body problems in two degrees of freedom, Qualitative theory of dynamical systems, 8(2), (2009) 209–239.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B., Alvarez-Ram´ırez, M., Bl´azquez-Sanz, D., & Delgado, J. Nonintegrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum, Discrete & Continuous Dynamical Systems-A, 33(3), (2013) 965–986.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B., L´azaro, J. T., Morales-Ruiz, J. J., & Pantazi, C. Differential Galois theory and non-integrability of planar polynomial vector fields, Journal of Differential Equations, 264(12), 7183–7212.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B., & Bl´azquez-Sanz, D. A. V. I. D. Hamiltonian system and variational equations with polynomial coefficients Dynamic systems and applications, Dynamic, Atlanta, GA, 5, (2008) 6–10.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B., Bl´azquez-Sanz, D., & Venegas-G´omez, H. Liouvillian solutions for second order linear differential equations with polynomial coefficients, S˜ao Paulo Journal of Mathematical Sciences, (2020) 1–20.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B. M´etodos algebraicos en sistemas din´amicos, Ediciones Universidad del Atl´antico, EMALCA 2014.spa
dcterms.bibliographicCitationAcosta-Hum´anez, P. B., & Yagasaki, K. Nonintegrability of the unfoldings of codimension-two bifurcations, Nonlinearity, 33(4), (2020) 1366–1387.spa
dcterms.bibliographicCitationAbramowitz, M. and Stegun, I. Handbook of Mathematical Functions, ninth printing, New York: Dover (1972).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.37394/23206.2021.20.20
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsQuadratic Polynomial Systems, Critical Points, Bifurcations, Stable Manifold, Phase portraits of polynomial systems.spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineMatemáticasspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por