Mostrar el registro sencillo del ítem

dc.contributor.authorDomínguez Moré, Gina Paola
dc.contributor.otherCardona, María Isabel
dc.contributor.otherSepúlveda, Paula Michelle
dc.contributor.otherMilena Echeverry, Sandra
dc.contributor.otherOliveira Simões, Cláudia Maria
dc.contributor.otherAragón, Diana Marcela
dc.date.accessioned2022-12-19T02:42:27Z
dc.date.available2022-12-19T02:42:27Z
dc.date.issued2021-02-28
dc.date.submitted2021-04-09
dc.identifier.citationDomínguez Moré GP, Cardona MI, Sepúlveda PM, Echeverry SM, Oliveira Simões CM, Aragón DM. Matrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modeling. Pharmaceutics. 2021 Apr 12;13(4):535. doi: 10.3390/pharmaceutics13040535. PMID: 33921404; PMCID: PMC8069016.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1142
dc.description.abstractRutin is the rutinose conjugate of quercetin. It presents several biological activities and is the major flavonoid in the hydroalcoholic extract of the calyces of Physalis peruviana L. It also shows hypoglycemic activity after oral administration. The aim of this work was to study the matrix effects of the extract from P. peruviana calyces on the pharmacokinetics of rutin and its metabolites in Wistar rats, using non-compartmental and population pharmacokinetic analyses. A pharmacokinetic study was performed after intravenous and oral administration of different doses of pure rutin and the extract. In the non-compartmental analysis, it was found that rutin from the extract exhibited higher distribution and clearance, as well as an 11-fold increase in the bioavailability of its active metabolites. A population pharmacokinetic model was also carried out with two compartments, double absorption and linear elimination, in which the extract and the doses were the covariates involved. This model correctly described the differences observed between rutin as a pure compound and rutin from the extract, including the dose dependency.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourcepharmaceuticsspa
dc.titleMatrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modelingspa
dc.title.alternativeMatrix Effects of the Hydroethanolic Extract of Calyces of Physalis peruviana L. on Rutin Pharmacokinetics in Wistar Rats Using Population Modelingspa
dcterms.bibliographicCitationGullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [CrossRef]spa
dcterms.bibliographicCitationGaneshpurkar, A.; Saluja, A.K. The Pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationChua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGhorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017, 96, 305–312. [CrossRef]spa
dcterms.bibliographicCitationEnogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [CrossRef]spa
dcterms.bibliographicCitationLorenzi, H.; Matus, F.J.A. Plantas Medicinais no Brasil: Nativas e Exóticas, 2nd ed.; Instituto Plantarum de Estudos da Flora: Nova Odessa, Brazil, 2008; p. 455.spa
dcterms.bibliographicCitationPerea, M.; Rodríguez, N.; Fischer, G.; Velásquez, M.; Micán, Y. Uchuva. In Biotecnología Aplicada al Mejoramiento de los Cultivos de Frutas Tropicales; Perea, M., Matallana, L.P., Tirado, A., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2010; pp. 466–490.spa
dcterms.bibliographicCitationEcheverry, S.M.; Valderrama, I.H.; Costa, G.M.; Ospina-Giraldo, L.F.; Aragón, D.M. Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. J. Appl. Pharm. Sci. 2018, 8, 10–18.spa
dcterms.bibliographicCitationDomínguez-Moré, G.P.; Feltrin, C.; Brambila, P.F.; Cardona, M.I.; Echeverry, S.M.; Simões, C.M.O.; Aragón, D.M. Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. J. Pharm. Pharmacol. 2020, 72, 738–747. [CrossRef]spa
dcterms.bibliographicCitationToro, R.M.; Aragón, D.M.; Ospina, L.F. Hepatoprotective effect of calyces extract of Physalis peruviana in hepatotoxicity induced by CCl4 in Wistar rats. Vitae 2013, 20, 125–132.spa
dcterms.bibliographicCitationToro, R.M.; Aragón, D.M.; Ospina, L.F.; Ramos, F.A.; Castellanos, L. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Nat. Prod. Commun. 2014, 9, 1–3. [CrossRef]spa
dcterms.bibliographicCitationLuca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Wo ´zniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [CrossRef]spa
dcterms.bibliographicCitationReinboth, M.; Wolffram, S.; Abraham, G.; Ungemach, F.R.; Cermak, R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br. J. Nutr. 2010, 104, 198–203. [CrossRef]spa
dcterms.bibliographicCitationBerger, L.M.; Wein, S.; Blank, R.; Metges, C.C.; Wolffram, S. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin. J. Dairy Sci. 2012, 95, 5047–5055. [CrossRef]spa
dcterms.bibliographicCitation. Ou-yang, Z.; Cao, X.; Wei, Y.; Zhang, W.W.Q.; Zhao, M.; Duan, J. Pharmacokinetic study of rutin and quercetin in rats after oral administration of total flavones of mulberry leaf extract. Rev. Bras. Farmacogn. 2013, 23, 776–782. [CrossRef]spa
dcterms.bibliographicCitationLiu, Z.; Hu, M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol. 2007, 3, 389–406. [CrossRef]spa
dcterms.bibliographicCitationWang, L.; Sun, R.; Zhang, Q.; Luo, Q.; Zeng, S.; Li, X.; Gong, X.; Li, Y.; Lu, L.; Hu, M.; et al. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol. 2019, 15, 151–165. [CrossRef]spa
dcterms.bibliographicCitationWei, Y.; Wu, B.; Jiang, W.; Yin, T.; Jia, X.; Basu, S.; Yang, G.; Hu, M. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing hela cells. Mol. Pharm. 2013, 10, 1736–1750. [CrossRef]spa
dcterms.bibliographicCitationDomínguez-Moré, G.P.; Cardenas, P.A.; Costa, G.M.; Simoes, C.M.O.; Aragon, D.M. Pharmacokinetics of botanical drugs and plant extracts. Mini Rev. Med. Chem. 2017, 17, 1646–1664. [CrossRef]spa
dcterms.bibliographicCitationBoyer, J.; Brown, D.; Liu, R.H. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers. J. Agric. Food Chem. 2004, 54, 7172–7179. [CrossRef]spa
dcterms.bibliographicCitationHenriques, J.; Falé, P.L.; Pacheco, R.; Florêncio, M.H.; Serralheiro, M.L. Phenolic compounds from Actinidia deliciosa leaves: Caco-2 permeability, enzyme inhibitory activity and cell protein profile studies. J. King Saud Univ. Sci. 2018, 30, 513–518. [CrossRef]spa
dcterms.bibliographicCitationVerjee, S.; Kelber, O.; Kolb, C.; Abdel-Aziz, H.; Butterweck, V. Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix. J. Pharm. Pharmacol. 2019, 71, 58–69. [CrossRef]spa
dcterms.bibliographicCitationGao, S.; Jiang, W.; Yin, T.; Ming, H. Highly variable contents of phenolics in St. John’s wort products impact their transport in the human intestinal Caco-2 cell model: Pharmaceutical and biopharmaceutical rationale for product standardization. J. Agric. Food Chem. 2010, 58, 6650–6659. [CrossRef]spa
dcterms.bibliographicCitationRasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, 1–12. [CrossRef]spa
dcterms.bibliographicCitationYang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014, 92, 133–147. [CrossRef]spa
dcterms.bibliographicCitationShi, J.; Fu, Q.; Chen, W.; Yang, H.P.; Liu, J.; Wang, X.M.; He, X. Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract. J. Ethnopharmacol. 2013, 145, 25–31. [CrossRef]spa
dcterms.bibliographicCitationGuan, J.; Zhao, Y.; Zhu, H.; An, Z.; Yu, Y.; Li, R.; Yu, Z. A rapid and sensitive UHPLC-MS/MS method for quantification of 2-(2-hydroxypropanamido) benzoic acid in rat plasma: Application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2014, 95, 20–25. [CrossRef]spa
dcterms.bibliographicCitationKammalla, A.K.; Ramasamy, M.K.; Chintala, J.; Dubey, G.P.; Agrawal, A.; Kaliappan, I. Comparative pharmacokinetic interactions of quercetin and rutin in rats after oral administration of European patented formulation containing Hipphophae rhamnoides and co-administration of quercetin and rutin. Eur. J. Drug Metab. Pharmacokinet. 2014, 40, 277–284. [CrossRef]spa
dcterms.bibliographicCitationLu, L.; Qian, D.; Guo, J.; Qian, Y.; Xu, B.; Sha, M.; Duan, J. Abelmoschi Corolla non-flavonoid components altered the pharmacokinetic profile of its flavonoids in rat. J. Ethnopharmacol. 2013, 148, 804–811. [CrossRef]spa
dcterms.bibliographicCitationTamura, M.; Nakagawa, H.; Tsushida, T.; Hirayama, K.; Itoh, K. Effect of pectin enhancement on plasma quercetin and fecal flora in rutin-supplemented mice. J. Food Sci. 2007, 72, 648–651. [CrossRef]spa
dcterms.bibliographicCitationLi, H.; Cao, X.; Liu, Y.; Liu, T.; Wang, M.; Ren, X. Establishment of modified biopharmaceutics classification system absorption model for oral Traditional Chinese Medicine (Sanye Tablet). J. Ethnopharmacol. 2019, 244, 112148. [CrossRef]spa
dcterms.bibliographicCitationToro, R.M. Propuesta de un Marcador Analítico Como Herramienta en la Microencapsulación de un Extracto con Actividad Antioxidante de Cálices de Physalis peruviana. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2014.spa
dcterms.bibliographicCitationFranco, L.A.; Ocampo, Y.C.; Gómez, H.A.; De La Puerta, R.; Espartero, J.L.; Ospina, L.F. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Med. 2014, 80, 1605–1614. [CrossRef]spa
dcterms.bibliographicCitationRamadan, M.F. Bioactive phytochemicals of Cape Gooseberry (Physalis peruviana L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H., Bapat, V., Eds.; Springer: New York, NY, USA, 2019; pp. 1–16.spa
dcterms.bibliographicCitationMould, D.R.; Upton, R.N. Basic concepts in population modeling, simulation, and model-based drug development—Part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacometr. Syst. Pharmacol. 2013, 2, 1–14. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSchuck, E.; Bohnert, T.; Chakravarty, A.; Damian-Iordache, V.; Gibson, C.; Hsu, C.P.; Heimbach, T.; Krishnatry, A.S.; Liederer, B.M.; Lin, J. Preclinical pharmacokinetic/pharmacodynamic modeling and simulation in the pharmaceutical industry: An IQ consortium survey examining the current landscape. AAPS J. 2015, 17, 462–473. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationWang, D.D.; Yu, Y.; Kassir, N.; Zhu, M.; Hanley, W.D.; Earp, J.C.; Chow, A.T.; Gupta, M.; Hu, C. The utility of a population approach in drug–drug interaction assessments: A simulation evaluation. J. Clin. Pharmacol. 2017, 57, 1268–1278. [CrossRef]spa
dcterms.bibliographicCitationMunekage, M.; Ichikawa, K.; Kitagawa, H.; Ishihara, K.; Uehara, H.; Watanabe, J.; Kono, T.; Hanazaki, K. Population pharmacokinetic analysis of daikenchuto, a traditional Japanese medicine (kampo) in Japanese and US health volunteers. Drug Metab. Dispos. 2013, 41, 1256–1263. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCardona, M.I.; Toro, R.M.; Costa, G.M.; Ospina, L.F.; Castellanos, L.; Ramos, F.A.; Aragón, D.M. Influence of extraction process on antioxidant activity and rutin content in Physalis peruviana calyces extract. J. Appl. Pharm. Sci. 2017, 7, 164–168.spa
dcterms.bibliographicCitationFDA; CDER; CVM. Guidance for Industry Bioanalytical Method Validation Guidance for Industry Bioanalytical Method Validation; FDA: Silver Spring, WA, USA, 2018; pp. 1–41.spa
dcterms.bibliographicCitationMichels, L.R.; Maciel, T.R.; Nakama, K.A.; Teixeira, F.E.G.; de Carvalho, F.B.; Gundel, A.; Verlindo, B.; Hass, S. Effects of surface characteristics of polymeric nanocapsules on the pharmacokinetics and efficacy of antimalarial quinine. Int. J. Nanomed. 2019, 14, 10165–10178. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHazra, A.; Gogtay, N. Biostatistics series module 3: Comparing groups: Numerical variables. Indian J. Dermatol. 2016, 61, 251–260. [CrossRef]spa
dcterms.bibliographicCitationXiao, J.; Kai, G. A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr. 2012, 52, 85–101. [CrossRef]spa
dcterms.bibliographicCitationCao, H.; Liu, X.; Ulrih, N.P.; Sengupta, P.K.; Xiao, J. Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chem. 2019, 270, 257–263. [CrossRef]spa
dcterms.bibliographicCitationSengupta, P.; Sardar, P.S.; Roy, P.; Dasgupta, S.; Bose, A. Investigation on the interaction of rutin with serum albumins: Insights from spectroscopic and molecular docking techniques. J. Photochem. Photobiol. B Biol. 2018, 183, 101–110. [CrossRef]spa
dcterms.bibliographicCitationLiua, S.; Guo, C.; Guo, Y.; Yu, H.; Greenaway, F.; Sun, M.-Z. Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin. Iran. J. Pharm. Res. 2014, 13, 1019–1028.spa
dcterms.bibliographicCitationBenet, L.Z.; Hoener, B.A. Changes in plasma protein binding have little clinical relevance. Clin. Pharmacol. Ther. 2002, 71, 115–121. [CrossRef]spa
dcterms.bibliographicCitationStern, S.T.; Martinez, M.N.; Stevens, D.M. When is it important to measure unbound drug in evaluating nanomedicine pharmacokinetics? Drug Metab. Dispos. 2016, 44, 1934–1939. [CrossRef]spa
dcterms.bibliographicCitationAbou-Baker, D.H.; Rady, H.M. Bioassay-guided approach employed to isolate and identify anticancer compounds from Physalis peruviana calyces. Plant Arch. 2020, 20 (Suppl. S1), 3285–3291.spa
dcterms.bibliographicCitationReyes-Beltrán, M.E.D.; Guanilo-Reyes, C.K.; Ibáñez-Cárdenas, M.W.; García-Collao, C.E.; Idrogo-Alfaro, J.J.; Huamán-Saavedra, J.J. Efecto del consumo de Physalis peruviana L. (aguaymanto) sobre el perfil lipídico de pacientes con hipercolesterolemia. Acta Med. Peru. 2015, 32, 195–201. [CrossRef]spa
dcterms.bibliographicCitationWilliamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [CrossRef]spa
dcterms.bibliographicCitationO’Leary, K.A.; Day, A.J.; Needs, P.W.; Mellon, F.A.; O’Brien, N.M.; Williamson, G. Metabolism of quercetin-7- and quercetin-3- glucuronides by an in vitro hepatic model: The role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem. Pharmacol. 2003, 65, 479–491. [CrossRef]spa
dcterms.bibliographicCitationYin, J.; Wang, J. Renal drug transporters and their significance in drug-drug interactions. Acta Pharm. Sin. B 2016, 6, 363–373. [CrossRef]spa
dcterms.bibliographicCitationZhang, L.; Zuo, Z.; Lin, G. Intestinal and hepatic glucuronidation of flavonoids. Mol. Pharm. 2007, 4, 833–845. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBraune, A.; Blaut, M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016, 7, 216–234. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/pharmaceutics13040535.
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsrutin; pharmacokinetics; population pharmacokinetic modeling; extract; Physalis peruvianaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineFarmaciaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por