Mostrar el registro sencillo del ítem

dc.contributor.authorMejía-Cortés, Cristian
dc.contributor.otherI. Molina, Mario
dc.date.accessioned2022-12-19T02:41:11Z
dc.date.available2022-12-19T02:41:11Z
dc.date.issued2021-02-09
dc.date.submitted2020-12-14
dc.identifier.citationMejía-Cortés, C., & Molina, M.I. (2021). Fractional discrete vortex solitons. Optics letters, 46 10, 2256-2259 .spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1137
dc.description.abstractWe examine the existence and stability of nonlinear discrete vortex solitons in a square lattice when the standard discrete Laplacian is replaced by a fractional version. This creates a new, effective site-energy term, and a coupling among sites, whose range depends on the value of the fractional exponent α, becoming effectively long-range at small α values. At long-distance, it can be shown that this coupling decreases faster than exponential: ∼ exp(−|n|)/ p |n|. In general, we observe that the stability domain of the discrete vortex solitons is extended to lower power levels, as the α coefficient diminishes, independently of their topological charge and/or pattern distribution.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceThe Optical Societyspa
dc.titleFractional discrete vortex solitonsspa
dc.title.alternativeFractional discrete vortex solitonsspa
dcterms.bibliographicCitationG. Molina-Terriza, J. P. Torres, and L. Torner, Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum, Phys. Rev. Lett. 88, 013601 (2001).spa
dcterms.bibliographicCitationA. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Entanglement of the orbital angular momentum states of photons, Nature 412, 313 (2001).spa
dcterms.bibliographicCitationA. Chong, C. Wan, J. Chen, and Q. Zhan, Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum, Nature Photonics 14, 350 (2020).spa
dcterms.bibliographicCitationX. Zhuang, Unraveling dna condensation with optical tweezers, Science 305, 188 (2004), https://science.sciencemag.org/content/305/5681/188.full.pdf.spa
dcterms.bibliographicCitationI. A. Favre-Bulle, A. B. Stilgoe, E. K. Scott, and H. Rubinsztein-Dunlop, Optical trapping in vivo: theory, practice, and applications, Nanophotonics 8, 1023 (2019).spa
dcterms.bibliographicCitationJ. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nature Physics 4, 282 (2008).spa
dcterms.bibliographicCitationS. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, Conversion of spin into directed electric current in quantum wells, Phys. Rev. Lett. 86, 4358 (2001).spa
dcterms.bibliographicCitationP. Kevrekidis, The discrete nonlinear schr¨odinger equation (2009).spa
dcterms.bibliographicCitationJ. Eilbeck, P. Lomdahl, and A. Scott, The discrete self-trapping equation, Physica D: Nonlinear Phenomena 16, 318 (1985).spa
dcterms.bibliographicCitationJ. Eilbeck and M. Johansson, The discrete nonlinear schr¨odinger equation - 20 years on, in Localization and Energy Transfer in Nonlinear Systems (2002) pp. 44–67.spa
dcterms.bibliographicCitationJ. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of twodimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422, 147 (2003).spa
dcterms.bibliographicCitationF. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Physics Reports 463, 1 (2008).spa
dcterms.bibliographicCitationR. A. Vicencio, M. I. Molina, and Y. S. Kivshar, Switching of discrete optical solitons in engineered waveguide arrays, Phys. Rev. E 70, 026602 (2004).spa
dcterms.bibliographicCitationA. Davydov, Solitons and energy transfer along protein molecules, Journal of Theoretical Biology 66, 379 (1977).spa
dcterms.bibliographicCitationP. L. Christiansen and A. C. Scott, eds., Davydov’s soliton revisited : self-trapping of vibrational energy in protein, Nato Science Series B:, Vol. 243 (Plenum Press New York, 1990).spa
dcterms.bibliographicCitationV. Zakharov, Collapse and self-focusing of langmuir waves, Basic Plasma Physics: Selected Chapters, Handbook of Plasma Physics, Volume 1 , 419 (1983).spa
dcterms.bibliographicCitationV. E. Zakharov et al., Collapse of langmuir waves, Sov. Phys. JETP 35, 908 (1972).spa
dcterms.bibliographicCitationO. Morsch and M. Oberthaler, Dynamics of bose-einstein condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).spa
dcterms.bibliographicCitationV. A. BRAZHNYI and V. V. KONOTOP, Theory of nonlinear matter waves in optical lattices, Modern Physics Letters B 18, 627 (2004), https://doi.org/10.1142/S0217984904007190.spa
dcterms.bibliographicCitationM. Molina and G. Tsironis, Dynamics of self-trapping in the discrete nonlinear schr¨odinger equation, Physica D: Nonlinear Phenomena 65, 267 (1993).spa
dcterms.bibliographicCitationG. Tsironis, W. Deering, and M. Molina, Applications of self-trapping in optically coupled devices, Physica D: Nonlinear Phenomena 68, 135 (1993).spa
dcterms.bibliographicCitationB. A. Malomed and P. G. Kevrekidis, Discrete vortex solitons, Phys. Rev. E 64, 026601 (2001).spa
dcterms.bibliographicCitationD. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett. 92, 123903 (2004).spa
dcterms.bibliographicCitationE. Ar´evalo, Soliton theory of two-dimensional lattices: The discrete nonlinear schr¨odinger equation, Phys. Rev. Lett. 102, 224102 (2009).spa
dcterms.bibliographicCitationJ. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, Observation of vortex-ring “discrete” solitons in 2d photonic lattices, Phys. Rev. Lett. 92, 123904 (2004).spa
dcterms.bibliographicCitationC. Mej´ıa-Cort´es, J. Castillo-Barake, and M. I. Molina, Localized vortex beams in anisotropic lieb lattices, Opt. Lett. 45, 3569 (2020).spa
dcterms.bibliographicCitationK. J. H. Law, P. G. Kevrekidis, T. J. Alexander, W. Kr´olikowski, and Y. S. Kivshar, Stable higher-charge discrete vortices in hexagonal optical lattices, Phys. Rev. A 79, 025801 (2009).spa
dcterms.bibliographicCitationH. Leblond, B. A. Malomed, and D. Mihalache, Spatiotemporal vortex solitons in hexagonal arrays of waveguides, Phys. Rev. A 83, 063825 (2011).spa
dcterms.bibliographicCitationB. Terhalle, T. Richter, K. J. H. Law, D. G¨ories, P. Rose, T. J. Alexander, P. G. Kevrekidis, A. S. Desyatnikov, W. Krolikowski, F. Kaiser, C. Denz, and Y. S. Kivshar, Observation of double-charge discrete vortex solitons in hexagonal photonic lattices, Phys. Rev. A 79, 043821 (2009).spa
dcterms.bibliographicCitationD. Jovi´c Savi´c, A. Piper, R. Ziki´c, and D. Timotijevi´c, Vortex solitons at the interface sepa- ˇ rating square and hexagonal lattices, Physics Letters A 379, 1110 (2015).spa
dcterms.bibliographicCitationR. Herrmann, Fractional Calculus, 2nd ed. (WORLD SCIENTIFIC, 2014) https://www.worldscientific.com/doi/pdf/10.1142/8934.spa
dcterms.bibliographicCitationB. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Institute for Nonlinear Science (Springer New York, 2012).spa
dcterms.bibliographicCitationK. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, 1993).spa
dcterms.bibliographicCitationN. S. Landkof, Foundations of modern potential theory, Vol. 180 (Springer, 1972).spa
dcterms.bibliographicCitationN. Cufaro Petroni and M. Pusterla, L´evy processes and schr¨odinger equation, Physica A: Statistical Mechanics and its Applications 388, 824 (2009).spa
dcterms.bibliographicCitationX. Yao and X. Liu, Off-site and on-site vortex solitons in space-fractional photonic lattices, Opt. Lett. 43, 5749 (2018).spa
dcterms.bibliographicCitationI. Sokolov, J. Klafter, and A. Blumen, Fractional kinetics, Physics Today - PHYS TODAY 55, 48 (2002).spa
dcterms.bibliographicCitationG. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports 371, 461 (2002).spa
dcterms.bibliographicCitationL. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Annals of Mathematics 171, 1903 (2010).spa
dcterms.bibliographicCitationL. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi13 geostrophic equation, Annals of Mathematics 171, 1903 (2010).spa
dcterms.bibliographicCitationN. Laskin, Fractional quantum mechanics, Phys. Rev. E 62, 3135 (2000).spa
dcterms.bibliographicCitationN. Laskin, Fractional schr¨odinger equation, Phys. Rev. E 66, 056108 (2002).spa
dcterms.bibliographicCitationM. Allen, A fractional free boundary problem related to a plasma problem, Communications in Analysis and Geometry 27, 10.4310/CAG.2019.v27.n8.a1 (2015).spa
dcterms.bibliographicCitationA. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, and K. Burrage, Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization, Journal of The Royal Society Interface 11, 20140352 (2014), https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2014.0352.spa
dcterms.bibliographicCitationH. Berestycki, J.-M. Roquejoffre, and L. Rossi, The influence of a line with fast diffusion on fisher-kpp propagation., J Math Biol 66, 743 (2013).spa
dcterms.bibliographicCitationM. I. Molina, The fractional discrete nonlinear schr¨odinger equation, Physics Letters A 384, 126180 (2020).spa
dcterms.bibliographicCitationM. I. Molina, The two-dimensional fractional discrete nonlinear schr¨odinger equation, Physics Letters A 384, 126835 (2020).spa
dcterms.bibliographicCitationO. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona, Nonlocal discrete diffu- ´ sion equations and the fractional discrete laplacian, regularity and applications, Advances in Mathematics 330, 688 (2018).spa
dcterms.bibliographicCitationL. Roncal, Personal communication.spa
dcterms.bibliographicCitationC. Mej´ıa-Cort´es, J. M. Soto-Crespo, R. A. Vicencio, and M. I. Molina, Bound states and interactions of vortex solitons in the discrete ginzburg-landau equation, Phys. Rev. A 86, 023834 (2012).spa
dcterms.bibliographicCitationR. A. Vicencio, M. I. Molina, and Y. S. Kivshar, Controlled switching of discrete solitons in waveguide arrays, Opt. Lett. 28, 1942 (2003).spa
dcterms.bibliographicCitationA. Szameit and S. Nolte, Discrete optics in femtosecond-laser-written photonic structures, Journal of Physics B: Atomic, Molecular and Optical Physics 43, 163001 (2010).spa
dcterms.bibliographicCitationG. R. Castillo, L. Labrador-P´aez, F. Chen, S. Camacho-L´opez, and J. R. V. de Aldana, Depressed-cladding 3-d waveguide arrays fabricated with femtosecond laser pulses, J. Lightwave Technol. 35, 2520 (2017).spa
dcterms.bibliographicCitationJ. Armijo, R. Allio, and C. Mej´ıa-Cort´es, Absolute calibration of the refractive index in photoinduced photonic lattices, Opt. Express 22, 20574 (2014).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1364/OL.421970
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineFísicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por