Mostrar el registro sencillo del ítem

dc.contributor.authorAcero, M. A
dc.contributor.otherAdamov, G
dc.contributor.otherAdinolf, M
dc.contributor.otherAhmad, Z
dc.contributor.otherVaranini, F
dc.contributor.otherZennamo, J
dc.contributor.otherZwaska, R
dc.date.accessioned2022-12-19T02:40:35Z
dc.date.available2022-12-19T02:40:35Z
dc.date.issued2020-11-10
dc.date.submitted2021-04-16
dc.identifier.citationAbi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews MP, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Villanueva AC, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho JAB, Conley E, Conrad JM, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadón JI, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, da Motta H, Peres LDS, David C, David Q, Davies GS, Davini S, Dawson J, De K, De Almeida RM, Debbins P, De Bonis I, Decowski MP, de Gouvêa A, De Holanda PC, De Icaza Astiz IL, Deisting A, De Jong P, Delbart A, Delepine D, Delgado M, Dell'Acqua A, De Lurgio P, de Mello Neto JRT, DeMuth DM, Dennis S, Densham C, Deptuch G, De Roeck A, De Romeri V, De Vries JJ, Dharmapalan R, Dias M, Diaz F, Díaz JS, Di Domizio S, Di Giulio L, Ding P, Di Noto L, Distefano C, Diurba R, Diwan M, Djurcic Z, Dokania N, Dolinski MJ, Domine L, Douglas D, Drielsma F, Duchesneau D, Duffy K, Dunne P, Durkin T, Duyang H, Dvornikov O, Dwyer DA, Dyshkant AS, Eads M, Edmunds D, Eisch J, Emery S, Ereditato A, Escobar CO, Sanchez LE, Evans JJ, Ewart E, Ezeribe AC, Fahey K, Falcone A, Farnese C, Farzan Y, Felix J, Fernandez-Martinez E, Fernandez Menendez P, Ferraro F, Fields L, Filkins A, Filthaut F, Fitzpatrick RS, Flanagan W, Fleming B, Flight R, Fowler J, Fox W, Franc J, Francis K, Franco D, Freeman J, Freestone J, Fried J, Friedland A, Fuess S, Furic I, Furmanski AP, Gago A, Gallagher H, Gallego-Ros A, Gallice N, Galymov V, Gamberini E, Gamble T, Gandhi R, Gandrajula R, Gao S, Garcia-Gamez D, García-Peris MÁ, Gardiner S, Gastler D, Ge G, Gelli B, Gendotti A, Gent S, Ghorbani-Moghaddam Z, Gibin D, Gil-Botella I, Girerd C, Giri AK, Gnani D, Gogota O, Gold M, Gollapinni S, Gollwitzer K, Gomes RA, Bermeo LVG, Fajardo LSG, Gonnella F, Gonzalez-Cuevas JA, Goodman MC, Goodwin O, Goswami S, Gotti C, Goudzovski E, Grace C, Graham M, Gramellini E, Gran R, Granados E, Grant A, Grant C, Gratieri D, Green P, Green S, Greenler L, Greenwood M, Greer J, Griffith WC, Groh M, Grudzinski J, Grzelak K, Gu W, Guarino V, Guenette R, Guglielmi A, Guo B, Guthikonda KK, Gutierrez R, Guzowski P, Guzzo MM, Gwon S, Habig A, Hackenburg A, Hadavand H, Haenni R, Hahn A, Haigh J, Haiston J, Hamernik T, Hamilton P, Han J, Harder K, Harris DA, Hartnell J, Hasegawa T, Hatcher R, Hazen E, Heavey A, Heeger KM, Heise J, Hennessy K, Henry S, Morquecho MAH, Herner K, Hertel L, Hesam AS, Hewes J, Higuera A, Hill T, Hillier SJ, Himmel A, Hoff J, Hohl C, Holin A, Hoppe E, Horton-Smith GA, Hostert M, Hourlier A, Howard B, Howell R, Huang J, Huang J, Hugon J, Iles G, Ilic N, Iliescu AM, Illingworth R, Ioannisian A, Itay R, Izmaylov A, James E, Jargowsky B, Jediny F, Jesùs-Valls C, Ji X, Jiang L, Jiménez S, Jipa A, Joglekar A, Johnson C, Johnson R, Jones B, Jones S, Jung CK, Junk T, Jwa Y, Kabirnezhad M, Kaboth A, Kadenko I, Kamiya F, Karagiorgi G, Karcher A, Karolak M, Karyotakis Y, Kasai S, Kasetti SP, Kashur L, Kazaryan N, Kearns E, Keener P, Kelly KJ, Kemp E, Ketchum W, Kettell SH, Khabibullin M, Khotjantsev A, Khvedelidze A, Kim D, King B, Kirby B, Kirby M, Klein J, Koehler K, Koerner LW, Kohn S, Koller PP, Kordosky M, Kosc T, Kose U, Kostelecký VA, Kothekar K, Krennrich F, Kreslo I, Kudenko Y, Kudryavtsev VA, Kulagin S, Kumar J, Kumar R, Kuruppu C, Kus V, Kutter T, Lambert A, Lande K, Lane CE, Lang K, Langford T, Lasorak P, Last D, Lastoria C, Laundrie A, Lawrence A, Lazanu I, LaZur R, Le T, Learned J, LeBrun P, Miotto GL, Lehnert R, de Oliveira MAL, Leitner M, Leyton M, Li L, Li S, Li SW, Li T, Li Y, Liao H, Lin CS, Lin S, Lister A, Littlejohn BR, Liu J, Lockwitz S, Loew T, Lokajicek M, Lomidze I, Long K, Loo K, Lorca D, Lord T, LoSecco JM, Louis WC, Luk KB, Luo X, Lurkin N, Lux T, Luzio VP, MacFarland D, Machado AA, Machado P, Macias CT, Macier JR, Maddalena A, Madigan P, Magill S, Mahn K, Maio A, Maloney JA, Mandrioli G, Maneira J, Manenti L, Manly S, Mann A, Manolopoulos K, Plata MM, Marchionni A, Marciano W, Marfatia D, Mariani C, Maricic J, Marinho F, Marino AD, Marshak M, Marshall C, Marshall J, Marteau J, Martin-Albo J, Martinez N, Caicedo DAM, Martynenko S, Mason K, Mastbaum A, Masud M, Matsuno S, Matthews J, Mauger C, Mauri N, Mavrokoridis K, Mazza R, Mazzacane A, Mazzucato E, McCluskey E, McConkey N, McFarland KS, McGrew C, McNab A, Mefodiev A, Mehta P, Melas P, Mellinato M, Mena O, Menary S, Mendez H, Menegolli A, Meng G, Messier MD, Metcalf W, Mewes M, Meyer H, Miao T, Michna G, Miedema T, Migenda J, Milincic R, Miller W, Mills J, Milne C, Mineev O, Miranda OG, Miryala S, Mishra CS, Mishra SR, Mislivec A, Mladenov D, Mocioiu I, Moffat K, Moggi N, Mohanta R, Mohayai TA, Mokhov N, Molina J, Bueno LM, Montanari A, Montanari C, Montanari D, Zetina LMM, Moon J, Mooney M, Moor A, Moreno D, Morgan B, Morris C, Mossey C, Motuk E, Moura CA, Mousseau J, Mu W, Mualem L, Mueller J, Muether M, Mufson S, Muheim F, Muir A, Mulhearn M, Muramatsu H, Murphy S, Musser J, Nachtman J, Nagu S, Nalbandyan M, Nandakumar R, Naples D, Narita S, Navas-Nicolás D, Nayak N, Nebot-Guinot M, Necib L, Negishi K, Nelson JK, Nesbit J, Nessi M, Newbold D, Newcomer M, Newhart D, Nichol R, Niner E, Nishimura K, Norman A, Norrick A, Northrop R, Novella P, Nowak JA, Oberling M, Del Campo AO, Olivier A, Onel Y, Onishchuk Y, Ott J, Pagani L, Pakvasa S, Palamara O, Palestini S, Paley JM, Pallavicini M, Palomares C, Pantic E, Paolone V, Papadimitriou V, Papaleo R, Papanestis A, Paramesvaran S, Park JC, Parke S, Parsa Z, Parvu M, Pascoli S, Pasqualini L, Pasternak J, Pater J, Patrick C, Patrizii L, Patterson RB, Patton SJ, Patzak T, Paudel A, Paulos B, Paulucci L, Pavlovic Z, Pawloski G, Payne D, Pec V, Peeters SJM, Penichot Y, Pennacchio E, Penzo A, Peres OLG, Perry J, Pershey D, Pessina G, Petrillo G, Petta C, Petti R, Piastra F, Pickering L, Pietropaolo F, Pillow J, Pinzino J, Plunkett R, Poling R, Pons X, Poonthottathil N, Pordes S, Potekhin M, Potenza R, Potukuchi BVKS, Pozimski J, Pozzato M, Prakash S, Prakash T, Prince S, Prior G, Pugnere D, Qi K, Qian X, Raaf JL, Raboanary R, Radeka V, Rademacker J, Radics B, Rafique A, Raguzin E, Rai M, Rajaoalisoa M, Rakhno I, Rakotondramanana HT, Rakotondravohitra L, Ramachers YA, Rameika R, Delgado MAR, Ramson B, Rappoldi A, Raselli G, Ratoff P, Ravat S, Razafinime H, Real JS, Rebel B, Redondo D, Reggiani-Guzzo M, Rehak T, Reichenbacher J, Reitzner SD, Renshaw A, Rescia S, Resnati F, Reynolds A, Riccobene G, Rice LCJ, Rielage K, Rigaut Y, Rivera D, Rochester L, Roda M, Rodrigues P, Alonso MJR, Rondon JR, Roeth AJ, Rogers H, Rosauro-Alcaraz S, Rossella M, Rout J, Roy S, Rubbia A, Rubbia C, Russell B, Russell J, Ruterbories D, Saakyan R, Sacerdoti S, Safford T, Sahu N, Sala P, Samios N, Sanchez MC, Sanders DA, Sankey D, Santana S, Santos-Maldonado M, Saoulidou N, Sapienza P, Sarasty C, Sarcevic I, Savage G, Savinov V, Scaramelli A, Scarff A, Scarpelli A, Schaffer T, Schellman H, Schlabach P, Schmitz D, Scholberg K, Schukraft A, Segreto E, Sensenig J, Seong I, Sergi A, Sergiampietri F, Sgalaberna D, Shaevitz MH, Shafaq S, Shamma M, Sharma HR, Sharma R, Shaw T, Shepherd-Themistocleous C, Shin S, Shooltz D, Shrock R, Simard L, Simos N, Sinclair J, Sinev G, Singh J, Singh J, Singh V, Sipos R, Sippach FW, Sirri G, Sitraka A, Siyeon K, Smargianaki D, Smith A, Smith A, Smith E, Smith P, Smolik J, Smy M, Snopok P, Nunes MS, Sobel H, Soderberg M, Salinas CJS, Söldner-Rembold S, Solomey N, Solovov V, Sondheim WE, Sorel M, Soto-Oton J, Sousa A, Soustruznik K, Spagliardi F, Spanu M, Spitz J, Spooner NJC, Spurgeon K, Staley R, Stancari M, Stanco L, Steiner HM, Stewart J, Stillwell B, Stock J, Stocker F, Stocks D, Stokes T, Strait M, Strauss T, Striganov S, Stuart A, Summers D, Surdo A, Susic V, Suter L, Sutera CM, Svoboda R, Szczerbinska B, Szelc AM, Talaga R, Tanaka HA, Oregui BT, Tapper A, Tariq S, Tatar E, Tayloe R, Teklu AM, Tenti M, Terao K, Ternes CA, Terranova F, Testera G, Thea A, Thompson JL, Thorn C, Timm SC, Todd J, Tonazzo A, Torti M, Tortola M, Tortorici F, Totani D, Toups M, Touramanis C, Trevor J, Trzaska WH, Tsai YT, Tsamalaidze Z, Tsang KV, Tsverava N, Tufanli S, Tull C, Tyley E, Tzanov M, Uchida MA, Urheim J, Usher T, Vagins MR, Vahle P, Valdiviesso GA, Valencia E, Vallari Z, Valle JWF, Vallecorsa S, Berg RV, de Water RGV, Forero DV, Varanini F, Vargas D, Varner G, Vasel J, Vasseur G, Vaziri K, Ventura S, Verdugo A, Vergani S, Vermeulen MA, Verzocchi M, de Souza HV, Vignoli C, Vilela C, Viren B, Vrba T, Wachala T, Waldron AV, Wallbank M, Wang H, Wang J, Wang Y, Wang Y, Warburton K, Warner D, Wascko M, Waters D, Watson A, Weatherly P, Weber A, Weber M, Wei H, Weinstein A, Wenman D, Wetstein M, While MR, White A, Whitehead LH, Whittington D, Wilking MJ, Wilkinson C, Williams Z, Wilson F, Wilson RJ, Wolcott J, Wongjirad T, Wood K, Wood L, Worcester E, Worcester M, Wret C, Wu W, Wu W, Xiao Y, Yang G, Yang T, Yershov N, Yonehara K, Young T, Yu B, Yu J, Zaki R, Zalesak J, Zambelli L, Zamorano B, Zani A, Zazueta L, Zeller GP, Zennamo J, Zeug K, Zhang C, Zhao M, Zhao Y, Zhivun E, Zhu G, Zimmerman ED, Zito M, Zucchelli S, Zuklin J, Zutshi V, Zwaska R. Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment: DUNE Collaboration. Eur Phys J C Part Fields. 2021;81(4):322. doi: 10.1140/epjc/s10052-021-09007-w. Epub 2021 Apr 16. PMID: 34720713; PMCID: PMC8550327.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1136
dc.description.abstractThe Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceThe European Physical Journal Cspa
dc.titleProspects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experimentspa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, vol. II. DUNE Phys. arXiv:2002.03005 [hep-ex]spa
dcterms.bibliographicCitationDUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.05471 [physics.ins-det]spa
dcterms.bibliographicCitation. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1512.06148 [physics.ins-det]spa
dcterms.bibliographicCitationDUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.02984 [physics.ins-det]spa
dcterms.bibliographicCitationDUNE Collaboration, B. Abi et al., Volume I. Introduction to DUNE. J. Inst. 15(08), T08008 (2020). https://doi.org/10.1088/ 1748-0221/15/08/T08008. arXiv:2002.02967 [physics.ins-det]spa
dcterms.bibliographicCitationMINERvA Collaboration, L. Aliaga et al., Neutrino flux predictions for the NuMI beam. Phys. Rev. D 94(9), 092005 (2016). https://doi.org/10.1103/PhysRevD.94.092005. https:// doi.org/10.1103/PhysRevD.95.039903. arXiv:1607.00704 [hepex] [Addendum: Phys. Rev. D 95(3), 039903 (2017)]spa
dcterms.bibliographicCitationGEANT4 Collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8spa
dcterms.bibliographicCitationJ. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006). https://doi.org/10.1109/TNS. 2006.869826spa
dcterms.bibliographicCitationJ. Allison et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186–225 (2016). https://doi.org/10.1016/j.nima. 2016.06.125spa
dcterms.bibliographicCitationP. Huber, M. Lindner, W. Winter, Simulation of longbaseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator). Comput. Phys. Commun. 167, 195 (2005). https://doi.org/10.1016/j.cpc.2005.01.003. arXiv:hep-ph/0407333spa
dcterms.bibliographicCitationP. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general long baseline experiment simulator. Comput. Phys. Commun. 177, 432–438 (2007). https://doi.org/10. 1016/j.cpc.2007.05.004. arXiv:hep-ph/0701187spa
dcterms.bibliographicCitationC. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Methods A 614, 87–104 (2010). https://doi. org/10.1016/j.nima.2009.12.009. arXiv:0905.2517 [hep-ph]spa
dcterms.bibliographicCitationC. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba, The GENIE neutrino Monte Carlo generator: physics and user manual. arXiv:1510.05494 [hep-ph]spa
dcterms.bibliographicCitationM. Dentler, A. Hernández-Cabezudo, J. Kopp, P.A.N. Machado, M. Maltoni, I. Martinez-Soler, T. Schwetz, Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos. JHEP 08, 010 (2018). https://doi.org/10.1007/ JHEP08(2018)010. arXiv:1803.10661 [hep-ph]spa
dcterms.bibliographicCitation. S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, Updated global 3+1 analysis of short-baseline neutrino oscillations. JHEP 06, 135 (2017). https://doi.org/10.1007/JHEP06(2017)135. arXiv:1703.00860 [hep-ph]spa
dcterms.bibliographicCitationH. Harari, M. Leurer, Recommending a standard choice of Cabibbo angles and KM phases for any number of generations. Phys. Lett. B 181, 123–128 (1986). https://doi.org/10.1016/ 0370-2693(86)91268-2spa
dcterms.bibliographicCitationJ. Kopp, Sterile neutrinos and non-standard neutrino interactions in GLoBES. https://www.mpi-hd.mpg.de/personalhomes/ globes/tools/snu-1.0.pdfspa
dcterms.bibliographicCitationJ.R. Todd, Search for sterile neutrinos with MINOS and MINOS+. PhD thesis, Cincinnati U (2018). https://doi.org/10. 2172/1484184spa
dcterms.bibliographicCitationL.S.N.D. Collaboration, A.A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of antineutrino(electron) appearance in a anti-neutrino(muon) beam. Phys. Rev. D 64, 112007 (2001). https://doi.org/10.1103/ PhysRevD.64.112007. arXiv:hep-ex/0104049spa
dcterms.bibliographicCitationR.N. Mohapatra, P.B. Pal, Massive neutrinos in physics and astrophysics. Second edition. World Sci. Lect. Notes Phys. 60, 1–397 (1998) [World Sci. Lect. Notes Phys. 72, 1 (2004)]spa
dcterms.bibliographicCitationJ.W.F. Valle, J.C. Romao, Neutrinos in high energy and astroparticle physics. Physics textbook. Wiley-VCH, Weinheim (2015). http://eu.wiley.com/WileyCDA/WileyTitle/ productCd-3527411976.htmlspa
dcterms.bibliographicCitationM. Fukugita, T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003), p. 593spa
dcterms.bibliographicCitationM. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315–321 (1979). arXiv:1306.4669 [hep-th]spa
dcterms.bibliographicCitationT. Yanagida, Horizontal symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95–99 (1979)spa
dcterms.bibliographicCitationR.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980). https://doi.org/ 10.1103/PhysRevLett.44.912spa
dcterms.bibliographicCitationJ. Schechter, J. Valle, Neutrino masses in SU(2) × U(1) theories. Phys. Rev. D 22, 2227 (1980). https://doi.org/10.1103/PhysRevD. 22.2227spa
dcterms.bibliographicCitationR.N. Mohapatra, J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models. Phys. Rev. D 34, 1642 (1986). https://doi.org/10.1103/PhysRevD.34.1642spa
dcterms.bibliographicCitationF.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tortola, J.W.F. Valle, On the description of non-unitary neutrino mixing. Phys. Rev. D 92(5), 053009 (2015). https://doi.org/10.1103/PhysRevD. 92.053009. arXiv:1503.08879 [hep-ph]spa
dcterms.bibliographicCitationZ.-Z. Xing, Correlation between the charged current interactions of light and heavy Majorana neutrinos. Phys. Lett. B 660, 515–521 (2008). https://doi.org/10.1016/j.physletb.2008.01.038. arXiv:0709.2220 [hep-ph]spa
dcterms.bibliographicCitationZ.-Z. Xing, A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos. Phys. Rev. D 85, 013008 (2012). https://doi.org/10.1103/ PhysRevD.85.013008. arXiv:1110.0083 [hep-ph]spa
dcterms.bibliographicCitationM. Blennow, P. Coloma, E. Fernandez-Martinez, J. HernandezGarcia, J. Lopez-Pavon, Non-unitarity, sterile neutrinos, and nonstandard neutrino interactions. JHEP 04, 153 (2017). https://doi. org/10.1007/JHEP04(2017)153. arXiv:1609.08637 [hep-ph]spa
dcterms.bibliographicCitationR.E. Shrock, New tests for, and bounds on, neutrino masses and lepton mixing. Phys. Lett. B 96, 159–164 (1980). https://doi.org/ 10.1016/0370-2693(80)90235-Xspa
dcterms.bibliographicCitationR.E. Shrock, General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for, and bounds on, neutrino masses and lepton mixing. Phys. Rev. D 24, 1232 (1981). https://doi.org/10.1103/PhysRevD.24. 1232spa
dcterms.bibliographicCitationR.E. Shrock, General theory of weak processes involving neutrinos. 2. Pure leptonic decays. Phys. Rev. D 24, 1275 (1981). https://doi.org/10.1103/PhysRevD.24.1275spa
dcterms.bibliographicCitationP. Langacker, D. London, Mixing between ordinary and exotic fermions. Phys. Rev. D 38, 886 (1988). https://doi.org/10.1103/ PhysRevD.38.886spa
dcterms.bibliographicCitationS.M. Bilenky, C. Giunti, Seesaw type mixing and νμ → ντ oscillations. Phys. Lett. B 300, 137–140 (1993). https://doi.org/10. 1016/0370-2693(93)90760-F. arXiv:hep-ph/9211269spa
dcterms.bibliographicCitationE. Nardi, E. Roulet, D. Tommasini, Limits on neutrino mixing with new heavy particles. Phys. Lett. B 327, 319–326 (1994). https:// doi.org/10.1016/0370-2693(94)90736-6. arXiv:hep-ph/9402224spa
dcterms.bibliographicCitationD. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog, Nondecoupling of heavy neutrinos and lepton flavor violation. Nucl. Phys. B 444, 451–467 (1995). https://doi.org/10.1016/ 0550-3213(95)00201-3. arXiv:hep-ph/9503228spa
dcterms.bibliographicCitationS. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela, J. Lopez-Pavon, Unitarity of the leptonic mixing matrix. JHEP 0610, 084 (2006). https://doi.org/10.1088/1126-6708/2006/10/ 084. arXiv:hep-ph/0607020spa
dcterms.bibliographicCitationE. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon, O. Yasuda, CP-violation from non-unitary leptonic mixing. Phys. Lett. B 649, 427–435 (2007). https://doi.org/10.1016/j.physletb.2007.03.069. arXiv:hep-ph/0703098spa
dcterms.bibliographicCitationS. Antusch, J.P. Baumann, E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model. Nucl. Phys. B 810, 369–388 (2009). https://doi.org/ 10.1016/j.nuclphysb.2008.11.018. arXiv:0807.1003 [hep-ph]spa
dcterms.bibliographicCitationC. Biggio, The contribution of fermionic seesaws to the anomalous magnetic moment of leptons. Phys. Lett. B 668, 378–384 (2008). https://doi.org/10.1016/j.physletb.2008.09.004. arXiv:0806.2558 [hep-ph]spa
dcterms.bibliographicCitationS. Antusch, M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory. Phys. Rev. D 80, 033002 (2009). https://doi.org/10.1103/ PhysRevD.80.033002. arXiv:0903.3986 [hep-ph]spa
dcterms.bibliographicCitationD.V. Forero, S. Morisi, M. Tortola, J.W.F. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw. JHEP 09, 142 (2011). https://doi.org/10.1007/JHEP09(2011)142. arXiv:1107.6009 [hep-ph]spa
dcterms.bibliographicCitationR. Alonso, M. Dhen, M. Gavela, T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models. JHEP 1301, 118 (2013). https://doi.org/10.1007/JHEP01(2013)118. arXiv:1209.2679 [hep-ph]spa
dcterms.bibliographicCitationS. Antusch, O. Fischer, Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities. JHEP 1410, 94 (2014). https://doi.org/10.1007/JHEP10(2014)094. arXiv:1407.6607 [hep-ph]spa
dcterms.bibliographicCitationA. Abada, T. Toma, Electric dipole moments of charged leptons with sterile fermions. JHEP 02, 174 (2016). https://doi.org/10. 1007/JHEP02(2016)174. arXiv:1511.03265 [hep-ph]spa
dcterms.bibliographicCitationE. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon, M. Lucente, Loop level constraints on Seesaw neutrino mixing. JHEP 10, 130 (2015). https://doi.org/10.1007/JHEP10(2015)130. arXiv:1508.03051 [hep-ph]spa
dcterms.bibliographicCitationS. Parke, M. Ross-Lonergan, Unitarity and the three flavour neutrino mixing matrix. Phys. Rev. D 93, 113009 (2016). https://doi. org/10.1103/PhysRevD.93.113009. arXiv:1508.05095 [hep-ph]spa
dcterms.bibliographicCitationO.G. Miranda, M. Tortola, J.W.F. Valle, New ambiguity in probing CP violation in neutrino oscillations. Phys. Rev. Lett. 117(6), 061804 (2016). https://doi.org/10.1103/PhysRevLett. 117.061804. arXiv:1604.05690 [hep-ph]spa
dcterms.bibliographicCitation. C.S. Fong, H. Minakata, H. Nunokawa, A framework for testing leptonic unitarity by neutrino oscillation experiments. JHEP 02, 114 (2017). https://doi.org/10.1007/JHEP02(2017)114. arXiv:1609.08623 [hep-ph]spa
dcterms.bibliographicCitationF.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tortola, J.W.F. Valle, Probing CP violation with non-unitary mixing in longbaseline neutrino oscillation experiments: DUNE as a case study. New J. Phys. 19(9), 093005 (2017). https://doi.org/10.1088/ 1367-2630/aa79ec. arXiv:1612.07377 [hep-ph]spa
dcterms.bibliographicCitationE. Fernandez-Martinez, J. Hernandez-Garcia, J. LopezPavon, Global constraints on heavy neutrino mixing. JHEP 08, 033 (2016). https://doi.org/10.1007/JHEP08(2016)033. arXiv:1605.08774 [hep-ph]spa
dcterms.bibliographicCitationM. Blennow, E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES. Comput. Phys. Commun. 181, 227–231 (2010). https://doi.org/10.1016/j.cpc.2009.09.014. arXiv:0903.3985 [hep-ph]. http://wwwth.mpp.mpg.de/members/ blennow/montecubes/spa
dcterms.bibliographicCitationY. Farzan, M. Tortola, Neutrino oscillations and non-standard interactions. Front. Phys. 6, 10 (2018). https://doi.org/10.3389/ fphy.2018.00010. arXiv:1710.09360 [hep-ph]spa
dcterms.bibliographicCitationM. Masud, A. Chatterjee, P. Mehta, Probing CP violation signal at DUNE in presence of non-standard neutrino interactions. J. Phys. G 43(9), 095005 (2016). https://doi.org/ 10.1088/0954-3899/43/9/095005/meta. https://doi.org/10.1088/ 0954-3899/43/9/095005. arXiv:1510.08261 [hep-ph]spa
dcterms.bibliographicCitationM. Masud, P. Mehta, Nonstandard interactions spoiling the CP violation sensitivity at DUNE and other long baseline experiments. Phys. Rev. D 94, 013014 (2016). https://doi.org/10.1103/ PhysRevD.94.013014. arXiv:1603.01380 [hep-ph]spa
dcterms.bibliographicCitationM. Masud, P. Mehta, Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments. Phys. Rev. D 94(5), 053007 (2016). https://doi.org/ 10.1103/PhysRevD.94.053007. arXiv:1606.05662 [hep-ph]spa
dcterms.bibliographicCitation. F. Capozzi, S.S. Chatterjee, A. Palazzo, Neutrino mass ordering obscured by non-standard interactions. Phys. Rev. Lett. 124, 111801 (2020). https://doi.org/10.1103/PhysRevLett.124. 111801. arXiv:1908.06992 [hep-ph]spa
dcterms.bibliographicCitationAgarwalla, S.S. Chatterjee, A. Palazzo, Degeneracy between θ23 octant and neutrino non-standard interactions at DUNE. Phys. Lett. B 762, 64–71 (2016). https://doi.org/10.1016/j.physletb. 2016.09.020. arXiv:1607.01745 [hep-ph]spa
dcterms.bibliographicCitationA. de Gouvea, K.J. Kelly, Non-standard neutrino interactions at DUNE. Nucl. Phys. B 908, 318–335 (2016). https://doi.org/10. 1016/j.nuclphysb.2016.03.013. arXiv:1511.05562 [hep-ph]spa
dcterms.bibliographicCitationP. Coloma, Non-standard interactions in propagation at the deep underground neutrino experiment. JHEP 03, 016 (2016). https:// doi.org/10.1007/JHEP03(2016)016. arXiv:1511.06357 [hep-ph]spa
dcterms.bibliographicCitationT. Ohlsson, Status of non-standard neutrino interactions. Rep. Prog. Phys. 76, 044201 (2013). https://doi.org/10.1088/ 0034-4885/76/4/044201. arXiv:1209.2710 [hep-ph]spa
dcterms.bibliographicCitationO.G. Miranda, H. Nunokawa, Non standard neutrino interactions: current status and future prospects. New J. Phys. 17(9), 095002 (2015). https://doi.org/10.1088/1367-2630/17/9/ 095002. arXiv:1505.06254 [hep-ph]spa
dcterms.bibliographicCitationM. Blennow, S. Choubey, T. Ohlsson, D. Pramanik, S.K. Raut, A combined study of source, detector and matter non-standard neutrino interactions at DUNE. JHEP 08, 090 (2016). https://doi. org/10.1007/JHEP08(2016)090. arXiv:1606.08851 [hep-ph]spa
dcterms.bibliographicCitationP. Bakhti, A.N. Khan, W. Wang, Sensitivities to chargedcurrent nonstandard neutrino interactions at DUNE. J. Phys.G44(12), 125001 (2017). https://doi.org/10.1088/1361-6471/ aa9098. arXiv:1607.00065 [hep-ph]spa
dcterms.bibliographicCitationS. Mikheev, A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913–917 (1985)spa
dcterms.bibliographicCitationL. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978). https://doi.org/10.1103/PhysRevD.17.2369spa
dcterms.bibliographicCitationM. Guzzo, A. Masiero, S. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum. Phys. Lett. B 260, 154–160 (1991). https://doi.org/10.1016/ 0370-2693(91)90984-Xspa
dcterms.bibliographicCitationM. Guzzo, S. Petcov, On the matter enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum. Phys. Lett. B 271, 172–178 (1991). https://doi.org/10.1016/ 0370-2693(91)91295-7spa
dcterms.bibliographicCitationE. Roulet, MSW effect with flavor changing neutrino interactions. Phys. Rev. D 44, 935–938 (1991). https://doi.org/10.1103/ PhysRevD.44.R935spa
dcterms.bibliographicCitationJ. Valle, Resonant oscillations of massless neutrinos in matter. Phys. Lett. B 199, 432 (1987). https://doi.org/10.1016/ 0370-2693(87)90947-6spa
dcterms.bibliographicCitationParticle Data Group Collaboration, K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014). https://doi.org/ 10.1088/1674-1137/38/9/090001spa
dcterms.bibliographicCitationS. Davidson, C. Peña Garay, N. Rius, A. Santamaria, Present and future bounds on nonstandard neutrino interactions. JHEP 0303, 011 (2003). https://doi.org/10.1088/1126-6708/2003/03/ 011. arXiv:hep-ph/0302093spa
dcterms.bibliographicCitationM. Gonzalez-Garcia, M. Maltoni, Phenomenology with massive neutrinos. Phys. Rep. 460, 1–129 (2008). https://doi.org/10.1016/ j.physrep.2007.12.004. arXiv:0704.1800 [hep-ph]spa
dcterms.bibliographicCitation. C. Biggio, M. Blennow, E. Fernandez-Martinez, General bounds on non-standard neutrino interactions. JHEP 0908, 090 (2009). https://doi.org/10.1088/1126-6708/2009/08/090. arXiv:0907.0097 [hep-ph]spa
dcterms.bibliographicCitationLBNE Collaboration, C. Adams et al., The long-baseline neutrino experiment: exploring fundamental symmetries of the Universe (2013). arXiv:1307.7335 [hep-ex]spa
dcterms.bibliographicCitationM.C. Gonzalez-Garcia, M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data. JHEP 09, 152 (2013). https://doi.org/10.1007/JHEP09(2013)152. arXiv:1307.3092 [hep-ph]spa
dcterms.bibliographicCitationI. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado, Updated constraints on non-standard interactions from global analysis of oscillation data. JHEP 08, 180 (2018). https:// doi.org/10.1007/JHEP08(2018)180. arXiv:1805.04530 [hep-ph]spa
dcterms.bibliographicCitationfrom Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density. Phys. Rev. D 95(11), 113004 (2017). https://doi.org/10.1103/PhysRevD.95. 113004. arXiv:1707.02322 [hep-ex]spa
dcterms.bibliographicCitationK.J. Kelly, S.J. Parke, Matter density profile shape effects at DUNE. Phys. Rev. D 98(1), 015025 (2018). https://doi.org/10. 1103/PhysRevD.98.015025. arXiv:1802.06784 [hep-ph]spa
dcterms.bibliographicCitationA.M. Dziewonski, D.L. Anderson, Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981). https://doi. org/10.1016/0031-9201(81)90046-7spa
dcterms.bibliographicCitation. F. Stacey, Physics of the Earth, 2nd edn. (Wiley, Hoboken, 1977)spa
dcterms.bibliographicCitationW. Shen, M.H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States. J. Geophys. Res.: Solid Earth 121, 4306 (2016). https://doi.org/10.1002/2016JB012887spa
dcterms.bibliographicCitationA. Chatterjee, F. Kamiya, C.A. Moura, J. Yu, Impact of matter density profile shape on non-standard interactions at DUNE. arXiv:1809.09313 [hep-ph]spa
dcterms.bibliographicCitationJ. Rout, M. Masud, P. Mehta, Can we probe intrinsic CP and T violations and nonunitarity at long baseline accelerator experiments? Phys. Rev. D 95(7), 075035 (2017). https://doi.org/10. 1103/PhysRevD.95.075035. arXiv:1702.02163 [hep-ph]spa
dcterms.bibliographicCitationM. Masud, M. Bishai, P. Mehta, Extricating new physics scenarios at DUNE with higher energy beams. Sci. Rep. 9(1), 352 (2019). https://doi.org/10.1038/s41598-018-36790-6. arXiv:1704.08650 [hep-ph]spa
dcterms.bibliographicCitationR.F. Streater, A.S. Wightman, PCT, spin and statistics, and all that (1989)spa
dcterms.bibliographicCitationG. Barenboim, J.D. Lykken, A model of CPT violation for neutrinos. Phys. Lett. B 554, 73–80 (2003). https://doi.org/10.1016/ S0370-2693(02)03262-8. arXiv:hep-ph/0210411spa
dcterms.bibliographicCitationV.A. Kostelecký, M. Mewes, Lorentz and CPT violation in neutrinos. Phys. Rev. D 69, 016005 (2004). https://doi.org/10.1103/ PhysRevD.69.016005. arXiv:hep-ph/0309025spa
dcterms.bibliographicCitationJ.S. Diaz, V.A. Kostelecký, M. Mewes, Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations. Phys. Rev. D 80, 076007 (2009). https://doi.org/10.1103/PhysRevD.80. 076007. arXiv:0908.1401 [hep-ph]spa
dcterms.bibliographicCitationA. Kostelecký, M. Mewes, Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85, 096005 (2012). https://doi.org/10.1103/PhysRevD.85.096005. arXiv:1112.6395 [hep-ph]spa
dcterms.bibliographicCitationG. Barenboim, C.A. Ternes, M. Tórtola, Neutrinos, DUNE and the world best bound on CPT invariance. Phys. Lett. B 780, 631–637 (2018). https://doi.org/10.1016/j.physletb.2018.03.060. arXiv:1712.01714 [hep-ph]spa
dcterms.bibliographicCitationG. Barenboim, C.A. Ternes, M. Tórtola, New physics vs new paradigms: distinguishing CPT violation from NSI. Eur. Phys. J. C 79(5), 390 (2019). https://doi.org/10.1140/epjc/ s10052-019-6900-7. arXiv:1804.05842 [hep-ph]spa
dcterms.bibliographicCitationG. Barenboim, M. Masud, C.A. Ternes, M. Tórtola, Exploring the intrinsic Lorentz-violating parameters at DUNE. Phys. Lett. B 788, 308–315 (2019). https://doi.org/10.1016/j.physletb.2018. 11.040. arXiv:1805.11094 [hep-ph]spa
dcterms.bibliographicCitation. B. Schwingenheuer et al., CPT tests in the neutral kaon system. Phys. Rev. Lett. 74, 4376–4379 (1995). https://doi.org/10.1103/ PhysRevLett.74.4376spa
dcterms.bibliographicCitationG. Barenboim, J. Salvado, Cosmology and CPT violating neutrinos. Eur. Phys. J. C 77(11), 766 (2017). https://doi.org/10.1140/ epjc/s10052-017-5347-y. arXiv:1707.08155 [hep-ph]spa
dcterms.bibliographicCitationP.F. de Salas, D.V. Forero, C.A. Ternes, M. Tórtola, J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782, 633–640 (2018). https://doi.org/10.1016/j.physletb.2018.06.019. arXiv:1708.01186 [hep-ph]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in SuperKamiokande I–IV. Phys. Rev. D 97(7), 072001 (2018). https:// doi.org/10.1103/PhysRevD.97.072001. arXiv:1710.09126 [hepex]spa
dcterms.bibliographicCitationIceCube Collaboration, M.G. Aartsen et al., Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91(7), 072004 (2015). https://doi.org/10.1103/PhysRevD.91. 072004. arXiv:1410.7227 [hep-ex]spa
dcterms.bibliographicCitationIceCube Collaboration, M.G. Aartsen et al., Measurement of atmospheric neutrino oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 120(7), 071801 (2018). https://doi. org/10.1103/PhysRevLett.120.071801. arXiv:1707.07081 [hepex]spa
dcterms.bibliographicCitationANTARES Collaboration, S. Adrian-Martinez et al., Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Phys. Lett. B714, 224–230 (2012). https://doi. org/10.1016/j.physletb.2012.07.002. arXiv:1206.0645 [hep-ex]spa
dcterms.bibliographicCitationB. Cleveland, T. Daily, J. Davis, Raymond, J.R. Distel, K. Lande et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys.J. 496, 505–526 (1998). https://doi.org/10.1086/305343spa
dcterms.bibliographicCitationF. Kaether, W. Hampel, G. Heusser, J. Kiko, T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 685, 47–54 (2010). https://doi.org/10.1016/j.physletb. 2010.01.030. arXiv:1001.2731 [hep-ex]spa
dcterms.bibliographicCitationSAGE Collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009). https://doi.org/10.1103/PhysRevC.80.015807. arXiv:0901.2200 [nucl-ex]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D 73, 112001 (2006). https://doi.org/10.1103/PhysRevD.73.112001. arXiv:hep-ex/0508053spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78, 032002 (2008). https://doi.org/10.1103/PhysRevD.78.032002. arXiv:0803.4312 [hep-ex]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011). https://doi.org/10.1103/PhysRevD.83.052010. arXiv:1010.0118 [hep-ex]spa
dcterms.bibliographicCitationY. Nakano, PhD Thesis, University of Tokyo (2016). http:// www-sk.icrr.u-tokyo.ac.jp/sk/_pdf/articles/2016/doc_thesis_ naknao.pdfspa
dcterms.bibliographicCitationSNO Collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the sudbury neutrino observatory. Phys. Rev. Lett. 101, 111301 (2008). https://doi.org/10.1103/ PhysRevLett.101.111301. arXiv:0806.0989 [nucl-ex]spa
dcterms.bibliographicCitationSNO Collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the sudbury neutrino observatory. Phys. Rev. Lett. 101, 111301 (2008). https://doi.org/10.1103/ PhysRevLett.101.111301. arXiv:0806.0989 [nucl-ex]spa
dcterms.bibliographicCitationBorexino Collaboration, G. Bellini et al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy. Phys. Rev. D 89(11), 112007 (2014). https://doi.org/10.1103/PhysRevD.89. 112007. arXiv:1308.0443 [hep-ex]spa
dcterms.bibliographicCitationK2K Collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment. Phys. Rev. D 74, 072003 (2006). https://doi.org/10.1103/PhysRevD.74.072003. arXiv:hep-ex/0606032 [hep-ex]spa
dcterms.bibliographicCitationMINOS Collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys.Rev.Lett. 110(25), 251801 (2013). https:// doi.org/10.1103/PhysRevLett.110.251801. arXiv:1304.6335 [hep-ex]spa
dcterms.bibliographicCitationMINOS Collaboration, P. Adamson et al., Combined analysis of νμ disappearance and νμ → νe appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112, 191801 (2014). https://doi.org/10.1103/PhysRevLett.112. 191801. arXiv:1403.0867 [hep-ex]spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K. Phys. Rev. Lett. 118(15), 151801 (2017). https://doi.org/10.1103/PhysRevLett. 118.151801. arXiv:1701.00432 [hep-ex]spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5×1021 protons on target. Phys. Rev. D 96(1), 011102 (2017). https://doi. org/10.1103/PhysRevD.96.011102. arXiv:1704.06409 [hep-ex]spa
dcterms.bibliographicCitationNOvA Collaboration, P. Adamson et al., Measurement of the neutrino mixing angle θ23 in NOvA. Phys. Rev. Lett. 118(15), 151802 (2017). https://doi.org/10.1103/PhysRevLett. 118.151802. arXiv:1701.05891 [hep-ex]spa
dcterms.bibliographicCitationNOvA Collaboration, P. Adamson et al., Constraints on oscillation parameters from νe appearance and νμ disappearance in NOvA. Phys. Rev. Lett. 118(23), 231801 (2017). https://doi.org/10.1103/ PhysRevLett.118.231801. arXiv:1703.03328 [hep-ex]spa
dcterms.bibliographicCitationKamLAND Collaboration, A. Gando et al., Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND. Phys. Rev. D 83, 052002 (2011). https://doi.org/10. 1103/PhysRevD.83.052002. arXiv:1009.4771 [hep-ex]spa
dcterms.bibliographicCitationDaya Bay Collaboration, F.P. An et al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D 95(7), 072006 (2017). https:// doi.org/10.1103/PhysRevD.95.072006. arXiv:1610.04802 [hepex]spa
dcterms.bibliographicCitationRENO Collaboration, J.H. Choi et al., Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 116(21), 211801 (2016). https://doi.org/10.1103/PhysRevLett. 116.211801. arXiv:1511.05849 [hep-ex]spa
dcterms.bibliographicCitationDouble Chooz Collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector. JHEP 10, 086 (2014). https://doi.org/10.1007/ JHEP02(2015)074, https://doi.org/10.1007/JHEP10(2014)086. arXiv:1406.7763 [hep-ex] [Erratum: JHEP 02, 074 (2015)]spa
dcterms.bibliographicCitationD. Colladay, V.A. Kostelecký, CPT violation and the standard model. Phys. Rev. D 55, 6760–6774 (1997). https://doi.org/10. 1103/PhysRevD.55.6760. arXiv:hep-ph/9703464spa
dcterms.bibliographicCitationV.A. Kostelecký, M. Mewes, Lorentz and CPT violation in the neutrino sector. Phys. Rev. D 70, 031902 (2004). https://doi.org/ 10.1103/PhysRevD.70.031902. arXiv:hep-ph/0308300spa
dcterms.bibliographicCitationV.A. Kostelecký, M. Mewes, Lorentz violation and short-baseline neutrino experiments. Phys. Rev. D 70, 076002 (2004). https://doi. org/10.1103/PhysRevD.70.076002. arXiv:hep-ph/0406255spa
dcterms.bibliographicCitationJ.S. Díaz, A. Kostelecký, R. Lehnert, Relativity violations and beta decay. Phys. Rev. D 88(7), 071902 (2013). https://doi.org/ 10.1103/PhysRevD.88.071902. arXiv:1305.4636 [hep-ph]spa
dcterms.bibliographicCitationJ.S. Díaz, A. Kostelecky, M. Mewes, Testing relativity with high-energy astrophysical neutrinos. Phys. Rev. D 89(4), 043005 (2014). https://doi.org/10.1103/PhysRevD.89.043005. arXiv:1308.6344 [astro-ph.HE]spa
dcterms.bibliographicCitationIceCube Collaboration, M.G. Aartsen et al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14(9), 961–966 (2018). https://doi.org/10.1038/ s41567-018-0172-2. arXiv:1709.03434 [hep-ex]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 91(5), 052003 (2015). https://doi.org/10.1103/PhysRevD.91.052003. arXiv:1410.4267 [hep-ex]spa
dcterms.bibliographicCitationIceCube Collaboration, M.G. Aartsen et al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14(9), 961–966 (2018). https://doi.org/10.1038/ s41567-018-0172-2. arXiv:1709.03434 [hep-ex]spa
dcterms.bibliographicCitationV.A. Kostelecký, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002). https://doi.org/10. 1103/PhysRevD.66.056005. arXiv:hep-ph/0205211spa
dcterms.bibliographicCitationM. Honda, M. SajjadAthar, T. Kajita, K. Kasahara, S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Phys. Rev. D 92(2), 023004 (2015). https://doi.org/10.1103/PhysRevD.92.023004. arXiv:1502.03916 [astro-ph.HE]spa
dcterms.bibliographicCitationJ. Picone et al., NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), SIA 15–1 (2002). https://doi.org/10.1029/ 2002JA009430spa
dcterms.bibliographicCitationParticle Data Group Collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 030001 (2018). https:// doi.org/10.1103/PhysRevD.98.030001spa
dcterms.bibliographicCitationW. Czyz, G.C. Sheppey, J.D. Walecka, Neutrino production of lepton pairs through the point four-fermion interaction. Nuovo Cim. 34, 404–435 (1964). https://doi.org/10.1007/BF02734586spa
dcterms.bibliographicCitationJ. Lovseth, M. Radomiski, Kinematical distributions of neutrinoproduced lepton triplets. Phys. Rev. D 3, 2686–2706 (1971). https://doi.org/10.1103/PhysRevD.3.2686spa
dcterms.bibliographicCitationK. Fujikawa, The self-coupling of weak lepton currents in highenergy neutrino and muon reactions. Ann. Phys. 68, 102–162 (1971). https://doi.org/10.1016/0003-4916(71)90244-2spa
dcterms.bibliographicCitationK. Koike, M. Konuma, K. Kurata, K. Sugano, Neutrino production of lepton pairs. 1. Prog. Theor. Phys. 46, 1150–1169 (1971). https://doi.org/10.1143/PTP.46.1150spa
dcterms.bibliographicCitationK. Koike, M. Konuma, K. Kurata, K. Sugano, Neutrino production of lepton pairs. 2. Prog. Theor. Phys. 46, 1799–1804 (1971). https://doi.org/10.1143/PTP.46.1799spa
dcterms.bibliographicCitationR.W. Brown, R.H. Hobbs, J. Smith, N. Stanko, Intermediate boson. III. Virtual-boson effects in neutrino trident production. Phys. Rev. D 6, 3273–3292 (1972). https://doi.org/10.1103/ PhysRevD.6.3273spa
dcterms.bibliographicCitationR. Belusevic, J. Smith, W-Z interference in neutrino-nucleus scattering. Phys. Rev. D 37, 2419 (1988). https://doi.org/10.1103/ PhysRevD.37.2419spa
dcterms.bibliographicCitationB. Zhou, J.F. Beacom, Neutrino-nucleus cross sections for W-boson and trident production. Phys. Rev. D 101(3), 036011 (2020). https://doi.org/10.1103/PhysRevD.101.036011. arXiv:1910.08090 [hep-ph]spa
dcterms.bibliographicCitationB. Zhou, J.F. Beacom, W -boson and trident production in TeV–PeV neutrino observatories. Phys. Rev. D 101(3), 036010 (2020). https://doi.org/10.1103/PhysRevD.101.036010. arXiv:1910.10720 [hep-ph]spa
dcterms.bibliographicCitationCHARM-II Collaboration, D. Geiregat et al., First observation of neutrino trident production. Phys. Lett. B 245, 271–275 (1990). https://doi.org/10.1016/0370-2693(90)90146-Wspa
dcterms.bibliographicCitationCCFR Collaboration, S.R. Mishra et al., Neutrino tridents and W Z interference. Phys. Rev. Lett. 66, 3117–3120 (1991). https:// doi.org/10.1103/PhysRevLett.66.3117spa
dcterms.bibliographicCitationNuTeV Collaboration, T. Adams et al., Evidence for diffractive charm production in muon-neutrino Fe and anti-muonneutrino Fe scattering at the Tevatron. Phys. Rev. D 61, 092001 (2000). https://doi.org/10.1103/PhysRevD.61.092001. arXiv:hep-ex/9909041 [hep-ex]spa
dcterms.bibliographicCitationW. Altmannshofer, S. Gori, J. Martín-Albo, A. Sousa, M. Wall2bank, Neutrino tridents at DUNE. Phys. Rev. D 100(11), 115029 (2019). https://doi.org/10.1103/PhysRevD.100.115029. arXiv:1902.06765 [hep-ph]spa
dcterms.bibliographicCitationP. Ballett, M. Hostert, S. Pascoli, Y.F. Perez-Gonzalez, Z. Tabrizi, R. Zukanovich Funchal, Neutrino trident scattering at near detectors. JHEP 01, 119 (2019). https://doi.org/10.1007/ JHEP01(2019)119. arXiv:1807.10973 [hep-ph]spa
dcterms.bibliographicCitationP. Ballett, M. Hostert, S. Pascoli, Y.F. Perez-Gonzalez, Z. Tabrizi, R. Zukanovich Funchal, Z s in neutrino scattering at DUNE. Phys. Rev. D 100(5), 055012 (2019). https://doi.org/10.1103/ PhysRevD.100.055012. arXiv:1902.08579 [hep-ph]spa
dcterms.bibliographicCitationW. Altmannshofer, S. Gori, M. Pospelov, I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams. Phys. Rev. Lett. 113, 091801 (2014). https://doi.org/10. 1103/PhysRevLett.113.091801. arXiv:1406.2332 [hep-ph]spa
dcterms.bibliographicCitationDELPHI, OPAL, LEP Electroweak, ALEPH and L3 Collaboration, S. Schael et al., Electroweak measurements in electron– positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013). https://doi.org/10.1016/j.physrep.2013.07. 004. arXiv:1302.3415 [hep-ex]spa
dcterms.bibliographicCitationX.G. He, G.C. Joshi, H. Lew, R.R. Volkas, NEW Z-prime PHENOMENOLOGY. Phys. Rev. D 43, 22–24 (1991). https://doi.org/ 10.1103/PhysRevD.43.R22spa
dcterms.bibliographicCitationX.-G. He, G.C. Joshi, H. Lew, R.R. Volkas, Simplest Z-prime model. Phys. Rev. D 44, 2118–2132 (1991). https://doi.org/10. 1103/PhysRevD.44.2118spa
dcterms.bibliographicCitationS. Baek, N.G. Deshpande, X.G. He, P. Ko, Muon anomalous g-2 and gauged L(muon)- L(tau) models. Phys. Rev. D 64, 055006 (2001). https://doi.org/10.1103/PhysRevD.64.055006. arXiv:hep-ph/0104141spa
dcterms.bibliographicCitationK. Harigaya, T. Igari, M.M. Nojiri, M. Takeuchi, K. Tobe, Muon g-2 and LHC phenomenology in the Lμ − Lτ gauge symmetric model. JHEP 03, 105 (2014). https://doi.org/10.1007/ JHEP03(2014)105. arXiv:1311.0870 [hep-ph]spa
dcterms.bibliographicCitationW. Altmannshofer, S. Gori, M. Pospelov, I. Yavin, Quark flavor transitions in Lμ − Lτ models. Phys. Rev. D 89, 095033 (2014). https://doi.org/10.1103/PhysRevD.89.095033. arXiv:1403.1269 [hep-ph]spa
dcterms.bibliographicCitationS. Baek, P. Ko, Phenomenology of U(1)(L(mu)-L(tau)) charged dark matter at PAMELA and colliders. JCAP 0910, 011 (2009). https://doi.org/10.1088/1475-7516/2009/10/ 011. arXiv:0811.1646 [hep-ph]spa
dcterms.bibliographicCitationW. Altmannshofer, S. Gori, S. Profumo, F.S. Queiroz, Explaining dark matter and B decay anomalies with an Lμ − Lτ model. JHEP 12, 106 (2016). https://doi.org/10.1007/JHEP12(2016)106. arXiv:1609.04026 [hep-ph]spa
dcterms.bibliographicCitationCMS Collaboration, A.M. Sirunyan et al., Search for an Lμ − Lτ gauge boson using Z→ 4μ events in proton–proton collisions at √s = 13 TeV. Phys. Lett. B 792, 345–368 (2019). https://doi.org/ 10.1016/j.physletb.2019.01.072. arXiv:1808.03684 [hep-ex]spa
dcterms.bibliographicCitationBaBar Collaboration, J.P. Lees et al., Search for a muonic dark force at BABAR. Phys. Rev. D 94(1), 011102 (2016). https://doi. org/10.1103/PhysRevD.94.011102. arXiv:1606.03501 [hep-ex]spa
dcterms.bibliographicCitationG. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 107, 141302 (2011). https://doi.org/10.1103/PhysRevLett.107. 141302. arXiv:1104.1816 [hep-ex]spa
dcterms.bibliographicCitationR. Harnik, J. Kopp, P.A.N. Machado, Exploring nu signals in dark matter detectors. JCAP 1207, 026 (2012). https://doi.org/10. 1088/1475-7516/2012/07/026. arXiv:1202.6073 [hep-ph]spa
dcterms.bibliographicCitationBorexino Collaboration, M. Agostini et al., First simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino phase-II. Phys. Rev. D 100(8), 082004 (2019). https:// doi.org/10.1103/PhysRevD.100.082004. arXiv:1707.09279spa
dcterms.bibliographicCitationB. Ahlgren, T. Ohlsson, S. Zhou, Comment on “Is dark matter with long-range interactions a solution to all small-scale problems of Λ cold dark matter cosmology?”. Phys. Rev. Lett. 111(19), 199001 (2013). https://doi.org/10.1103/PhysRevLett. 111.199001. arXiv:1309.0991 [hep-ph]spa
dcterms.bibliographicCitationA. Kamada, H.-B. Yu, Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube. Phys. Rev. D 92(11), 113004 (2015). https://doi.org/10.1103/PhysRevD.92. 113004. arXiv:1504.00711 [hep-ph]spa
dcterms.bibliographicCitationA. Keshavarzi, D. Nomura, T. Teubner, Muon g − 2 and α(M2 Z ): a new data-based analysis. Phys. Rev. D 97(11), 114025 (2018). https://doi.org/10.1103/PhysRevD.97.114025. arXiv:1802.02995 [hep-ph]spa
dcterms.bibliographicCitationT. Araki, F. Kaneko, T. Ota, J. Sato, T. Shimomura, MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment. Phys. Rev. D 93(1), 013014 (2016). https://doi. org/10.1103/PhysRevD.93.013014. arXiv:1508.07471 [hep-ph]spa
dcterms.bibliographicCitationA. Kamada, K. Kaneta, K. Yanagi, H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged U(1)Lμ−Lτ model. JHEP 06, 117 (2018). https://doi.org/10.1007/JHEP06(2018)117. arXiv:1805.00651 [hep-ph]spa
dcterms.bibliographicCitationPlanck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO]spa
dcterms.bibliographicCitationJ. Alexander et al., Dark sectors 2016 workshop: community report (2016). arXiv:1608.08632 [hep-ph]. http://inspirehep.net/ record/1484628/files/arXiv:1608.08632.pdfspa
dcterms.bibliographicCitationM. Battaglieri et al., US cosmic visions: new ideas in dark matter 2017: community report. arXiv:1707.04591 [hep-ph]spa
dcterms.bibliographicCitationJ. LoSecco, L. Sulak, R. Galik, J. Horstkotte, J. Knauer, H.H. Williams, A. Soukas, P.J. Wanderer, W. Weng, Limits on the production of neutral penetrating states in a beam dump. Phys. Lett. 102B, 209–212 (1981). https://doi.org/10.1016/ 0370-2693(81)91064-9spa
dcterms.bibliographicCitationB. Dutta, D. Kim, S. Liao, J.-C. Park, S. Shin, L.E. Strigari, Dark matter signals from timing spectra at neutrino experiments. Phys. Rev. Lett. 124(12), 121802 (2020). https://doi.org/10.1103/ PhysRevLett.124.121802. arXiv:1906.10745 [hep-ph]spa
dcterms.bibliographicCitationK. Agashe, Y. Cui, L. Necib, J. Thaler, (In)direct detection of boosted dark matter. JCAP 10, 062 (2014). https://doi.org/10. 1088/1475-7516/2014/10/062. arXiv:1405.7370 [hep-ph]spa
dcterms.bibliographicCitationG. Belanger, J.-C. Park, Assisted freeze-out. JCAP 1203, 038 (2012). https://doi.org/10.1088/1475-7516/2012/03/038. arXiv:1112.4491 [hep-ph]spa
dcterms.bibliographicCitationF. D’Eramo, J. Thaler, Semi-annihilation of dark matter. JHEP 06, 109 (2010). https://doi.org/10.1007/JHEP06(2010)109. arXiv:1003.5912 [hep-ph]spa
dcterms.bibliographicCitationJ. Huang, Y. Zhao, Dark matter induced nucleon decay: model and signatures. JHEP 02, 077 (2014). https://doi.org/10.1007/ JHEP02(2014)077. arXiv:1312.0011 [hep-ph]spa
dcterms.bibliographicCitationJ. Berger, Y. Cui, Y. Zhao, Detecting boosted dark matter from the sun with large volume neutrino detectors. JCAP 1502(02), 005 (2015). https://doi.org/10.1088/1475-7516/2015/ 02/005. arXiv:1410.2246 [hep-ph]spa
dcterms.bibliographicCitationJ.F. Cherry, M.T. Frandsen, I.M. Shoemaker, Direct detection phenomenology in models where the products of dark matter annihilation interact with nuclei. Phys. Rev. Lett. 114, 231303 (2015). https://doi.org/10.1103/PhysRevLett.114. 231303. arXiv:1501.03166 [hep-ph]spa
dcterms.bibliographicCitationG.F. Giudice, D. Kim, J.-C. Park, S. Shin, Inelastic boosted dark matter at direct detection experiments. Phys. Lett. B 780, 543–552 (2018). https://doi.org/10.1016/j.physletb.2018.03.043. arXiv:1712.07126 [hep-ph]spa
dcterms.bibliographicCitationY. Cui, M. Pospelov, J. Pradler, Signatures of dark radiation in neutrino and dark matter detectors. Phys. Rev. D 97(10), 103004 (2018). https://doi.org/10.1103/PhysRevD.97.103004. arXiv:1711.04531 [hep-ph]spa
dcterms.bibliographicCitationT. Bringmann, M. Pospelov, Novel direct detection constraints on light dark matter. Phys. Rev. Lett. 122(17), 171801 (2019). https:// doi.org/10.1103/PhysRevLett.122.171801. arXiv:1810.10543 [hep-ph]spa
dcterms.bibliographicCitation4. H. Alhazmi, K. Kong, G. Mohlabeng, J.-C. Park, Boosted dark matter at the deep underground neutrino experiment. JHEP 04, 158 (2017). https://doi.org/10.1007/JHEP04(2017)158. arXiv:1611.09866 [hep-ph]spa
dcterms.bibliographicCitationD. Kim, J.-C. Park, S. Shin, Dark matter ‘collider’ from inelastic boosted dark matter. Phys. Rev. Lett. 119(16), 161801 (2017). https://doi.org/10.1103/PhysRevLett.119.161801. arXiv:1612.06867 [hep-ph]spa
dcterms.bibliographicCitationA. Chatterjee, A. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, J. Yu, Search for boosted dark matter at ProtoDUNE. Phys. Rev. D 98(7), 075027 (2018). https://doi.org/ 10.1103/PhysRevD.98.075027. arXiv:1803.03264 [hep-ph]spa
dcterms.bibliographicCitation. D. Kim, K. Kong, J.-C. Park, S. Shin, Boosted dark matter quarrying at surface neutrino detectors. JHEP 08, 155 (2018). https:// doi.org/10.1007/JHEP08(2018)155. arXiv:1804.07302 [hep-ph]spa
dcterms.bibliographicCitationL. Necib, J. Moon, T. Wongjirad, J.M. Conrad, Boosted dark matter at neutrino experiments. Phys. Rev. D 95(7), 075018 (2017). https://doi.org/10.1103/PhysRevD.95.075018. arXiv:1610.03486 [hep-ph]spa
dcterms.bibliographicCitationK. Kong, G. Mohlabeng, J.-C. Park, Boosted dark matter signals uplifted with self-interaction. Phys. Lett. B 743, 256–266 (2015). https://doi.org/10.1016/j.physletb.2015.02.057. arXiv:1411.6632 [hep-ph]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, C. Kachulis et al., Search for boosted dark matter interacting with electrons in superKamiokande. Phys. Rev. Lett. 120(22), 221301 (2018). https:// doi.org/10.1103/PhysRevLett.120.221301. arXiv:1711.05278 [hep-ex]spa
dcterms.bibliographicCitationV. De Romeri, K.J. Kelly, P.A.N. Machado, DUNE-PRISM Sensitivity to Light Dark Matter. Phys. Rev. D 100(9), 095010 (2019). https://doi.org/10.1103/PhysRevD.100.095010. arXiv:1903.10505 [hep-ph]spa
dcterms.bibliographicCitationC.M. Marshall, K.S. McFarland, C. Wilkinson, Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 101(3), 032002 (2020). https://doi.org/ 10.1103/PhysRevD.101.032002. arXiv:1910.10996 [hep-ex]spa
dcterms.bibliographicCitationLDMX Collaboration, T. Åkesson et al., Light dark matter eXperiment (LDMX). arXiv:1808.05219 [hep-ex]spa
dcterms.bibliographicCitationP. de Niverville, C. Frugiuele, Hunting sub-GeV dark matter with the NOνA near detector. Phys. Rev. D 99(5), 051701 (2019). https://doi.org/10.1103/PhysRevD.99.051701. arXiv:1807.06501 [hep-ph]spa
dcterms.bibliographicCitationMiniBooNE DM Collaboration, A.A. Aguilar-Arevalo et al., Dark matter search in nucleon, pion, and electron channels from a proton beam dump with MiniBooNE. Phys. Rev. D 98(11), 112004 (2018). https://doi.org/10.1103/PhysRevD.98. 112004. arXiv:1807.06137 [hep-ex]spa
dcterms.bibliographicCitationBaBar Collaboration, J.P. Lees et al., Search for invisible decays of a dark photon produced in e+e− collisions at BaBar. Phys. Rev. Lett. 119(13), 131804 (2017). https://doi.org/10.1103/ PhysRevLett.119.131804. arXiv:1702.03327 [hep-ex]spa
dcterms.bibliographicCitationM. Davier, H. Nguyen Ngoc, An unambiguous search for a light higgs boson. Phys. Lett. B 229, 150–155 (1989). https://doi.org/ 10.1016/0370-2693(89)90174-3spa
dcterms.bibliographicCitationNA48/2 Collaboration, J.R. Batley et al., Search for the dark photon in π0 decays. Phys. Lett. B 746, 178–185 (2015). https://doi. org/10.1016/j.physletb.2015.04.068. arXiv:1504.00607 [hep-ex]spa
dcterms.bibliographicCitationJ.D. Bjorken, S. Ecklund, W.R. Nelson, A. Abashian, C. Church, B. Lu, L.W. Mo, T.A. Nunamaker, P. Rassmann, Search for neutral metastable penetrating particles produced in the SLAC beam dump. Phys. Rev. D 38, 3375 (1988). https://doi.org/10.1103/ PhysRevD.38.3375spa
dcterms.bibliographicCitationE.M. Riordan et al., A search for short lived axions in an electron beam dump experiment. Phys. Rev. Lett. 59, 755 (1987). https:// doi.org/10.1103/PhysRevLett.59.755spa
dcterms.bibliographicCitationJ.D. Bjorken, R. Essig, P. Schuster, N. Toro, New fixed-target experiments to search for dark gauge forces. Phys. Rev. D 80, 075018 (2009). https://doi.org/10.1103/PhysRevD.80.075018. arXiv:0906.0580 [hep-ph]spa
dcterms.bibliographicCitationA. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede, J. Wrbanek, A search for shortlived particles produced in an electron beam dump. Phys. Rev. Lett. 67, 2942–2945 (1991). https://doi.org/10. 1103/PhysRevLett.67.2942spa
dcterms.bibliographicCitationJ.F. Navarro, C.S. Frenk, S.D.M. White, The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996). https://doi.org/ 10.1086/177173. arXiv:astro-ph/9508025spa
dcterms.bibliographicCitationJ.F. Navarro, C.S. Frenk, S.D.M. White, A Universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997). https://doi.org/10.1086/304888. arXiv:astro-ph/9611107spa
dcterms.bibliographicCitationD. Kim, P.A. Machado, J.-C. Park, S. Shin, Optimizing energetic light dark matter searches in dark matter and neutrino experiments. JHEP 07, 057 (2020). https://doi.org/10.1007/JHEP07(2020)057. arXiv:2003.07369 [hep-ph]spa
dcterms.bibliographicCitationA. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, Probing energetic light dark matter with multiparticle tracks signatures at DUNE. JHEP 11, 043 (2020). https:// doi.org/10.1007/JHEP11(2020)043. arXiv:2005.08979 [hep-ph]spa
dcterms.bibliographicCitationJ.A. Formaggio, G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307–1341 (2012). https://doi.org/10.1103/RevModPhys.84.1307. arXiv:1305.7513 [hep-ex]spa
dcterms.bibliographicCitationD. Banerjee et al., Dark matter search in missing energy events with NA64. Phys. Rev. Lett. 123(12), 121801 (2019). https://doi. org/10.1103/PhysRevLett.123.121801. arXiv:1906.00176 [hepex]spa
dcterms.bibliographicCitationNA64 Collaboration, D. Banerjee et al., Search for vector mediator of Dark Matter production in invisible decay mode. Phys. Rev. D 97(7), 072002 (2018). https://doi.org/10.1103/PhysRevD.97. 072002. arXiv:1710.00971 [hep-exspa
dcterms.bibliographicCitationJ. Beacham et al., Physics beyond colliders at CERN: beyond the standard model working group report. J. Phys. G 47(1), 010501 (2020). https://doi.org/10.1088/1361-6471/ ab4cd2. arXiv:1901.09966 [hep-ex]spa
dcterms.bibliographicCitationNA64 Collaboration, D. Banerjee et al., Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e− pairs. Phys. Rev. D 101(7), 071101 (2020). https://doi.org/10. 1103/PhysRevD.101.071101. arXiv:1912.11389 [hep-ex]spa
dcterms.bibliographicCitationA.L. Read, Modified frequentist analysis of search results (the cl(s) method), in Workshop on Confidence Limits, CERN, Geneva, Switzerland, 17–18 Jan 2000: Proceedings (2000), pp. 81–101. http://weblib.cern.ch/abstract?CERN-OPEN-2000-205spa
dcterms.bibliographicCitationATLAS, CMS, LHC Higgs Combination Group Collaboration, Procedure for the LHC Higgs boson search combination in summer 2011spa
dcterms.bibliographicCitationR. Dermisek, J.P. Hall, E. Lunghi, S. Shin, A new avenue to charged Higgs discovery in multi-Higgs models. JHEP 04, 140 (2014). https://doi.org/10.1007/JHEP04(2014)140. arXiv:1311.7208 [hep-ph]spa
dcterms.bibliographicCitationR. Dermisek, J.P. Hall, E. Lunghi, S. Shin, Limits on vectorlike leptons from searches for anomalous production of multilepton events. JHEP 12, 013 (2014). https://doi.org/10.1007/ JHEP12(2014)013. arXiv:1408.3123 [hep-ph]spa
dcterms.bibliographicCitationR. Dermisek, E. Lunghi, S. Shin, New constraints and discovery potential for Higgs to Higgs cascade decays through vectorlike leptons. JHEP 10, 081 (2016). https://doi.org/10.1007/ JHEP10(2016)081. arXiv:1608.00662 [hep-ph]spa
dcterms.bibliographicCitationK. Griest, D. Seckel, Cosmic asymmetry, neutrinos and the sun. Nucl. Phys. B 283, 681–705 (1987). https://doi. org/10.1016/0550-3213(87)90293-8. https://doi.org/10.1016/ 0550-3213(88)90409-9 [Erratum: Nucl. Phys. B 296, 1034 (1988)]spa
dcterms.bibliographicCitationA. Gould, WIMP distribution in and evaporation from the sun. Astrophys. J. 321, 560 (1987). https://doi.org/10.1086/165652spa
dcterms.bibliographicCitationJ. Berger, A module for boosted dark matter event generation in GENIE (forthcoming)spa
dcterms.bibliographicCitationhttps://cdcvs.fnal.gov/redmine/projects/dunetpcspa
dcterms.bibliographicCitationhttp://soltrack.sourceforge.netspa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, M. Fechner et al., Kinematic reconstruction of atmospheric neutrino events in a large water Cherenkov detector with proton identification. Phys. Rev. D 79, 112010 (2009). https://doi.org/10.1103/PhysRevD.79.112010. arXiv:0901.1645 [hep-ex]spa
dcterms.bibliographicCitationPICO Collaboration, C. Amole et al., Dark matter search results from the complete exposure of thePICO-60 C3F8 bubble chamber. Phys. Rev. D 100(2), 022001 (2019). https://doi.org/10.1103/ PhysRevD.100.022001. arXiv:1902.04031 [astro-ph.CO]spa
dcterms.bibliographicCitationPandaX-II Collaboration, J. Xia et al., PandaX-II constraints on spin-dependent WIMP-nucleon effective interactions. Phys. Lett. B 792, 193–198 (2019). https://doi.org/10.1016/j.physletb.2019. 02.043. arXiv:1807.01936 [hep-ex]spa
dcterms.bibliographicCitationJ. Berger, Y. Cui, M. Graham, L. Necib, G. Petrillo, D. Stocks, Y.-T. Tsai, Y. Zhao, Prospects for detecting boosted dark matter in DUNE through hadronic interactions. arXiv:1912.05558 [hep-ph]spa
dcterms.bibliographicCitationJ.C. Pati, A. Salam, Is baryon number conserved? Phys. Rev. Lett. 31, 661–664 (1973). https://doi.org/10.1103/PhysRevLett.31.661spa
dcterms.bibliographicCitationH. Georgi, S. Glashow, Unity of all elementary particle forces. Phys. Rev. Lett. 32, 438–441 (1974). https://doi.org/10.1103/ PhysRevLett.32.438spa
dcterms.bibliographicCitationP. Langacker, Grand unified theories and proton decay. Phys. Rep. 72, 185 (1981). https://doi.org/10.1016/0370-1573(81)90059-4spa
dcterms.bibliographicCitationW. de Boer, Grand unified theories and supersymmetry in particle physics and cosmology. Prog. Part. Nucl. Phys. 33, 201– 302 (1994). https://doi.org/10.1016/0146-6410(94)90045-0. arXiv:hep-ph/9402266spa
dcterms.bibliographicCitationP. Nath, P. FileviezPerez, Proton stability in grand unified theories, in strings and in branes. Phys. Rep. 441, 191–317 (2007). https:// doi.org/10.1016/j.physrep.2007.02.010. arXiv:hep-ph/0601023spa
dcterms.bibliographicCitationS. Dimopoulos, S. Raby, F. Wilczek, Proton decay in supersymmetric models. Phys. Lett. B 112, 133 (1982). https://doi.org/10. 1016/0370-2693(82)90313-6spa
dcterms.bibliographicCitationS. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150–162 (1981). https://doi.org/10. 1016/0550-3213(81)90522-8spa
dcterms.bibliographicCitationN. Sakai, T. Yanagida, Proton decay in a class of supersymmetric grand unified models. Nucl. Phys. B 197, 533 (1982). https://doi. org/10.1016/0550-3213(82)90457-6spa
dcterms.bibliographicCitationP. Nath, A.H. Chamseddine, R.L. Arnowitt, Nucleon decay in supergravity unified theories. Phys. Rev. D 32, 2348–2358 (1985). https://doi.org/10.1103/PhysRevD.32.2348spa
dcterms.bibliographicCitationQ. Shafi, Z. Tavartkiladze, Flavor problem, proton decay and neutrino oscillations in SUSY models with anomalous U(1). Phys. Lett. B 473, 272–280 (2000). https://doi.org/10.1016/ S0370-2693(99)01433-1. arXiv:hep-ph/9911264spa
dcterms.bibliographicCitationV. Lucas, S. Raby, Nucleon decay in a realistic SO(10) SUSY GUT. Phys. Rev. D 55, 6986–7009 (1997). https://doi.org/10. 1103/PhysRevD.55.6986. arXiv:hep-ph/9610293spa
dcterms.bibliographicCitationJ.C. Pati, Probing grand unification through neutrino oscillations, leptogenesis, and proton decay. Subnucl. Ser. 40, 194–236 (2003). https://doi.org/10.1142/S0217751X03017427. arXiv:hep-ph/0305221spa
dcterms.bibliographicCitationK. Babu, J.C. Pati, F. Wilczek, Suggested new modes in supersymmetric proton decay. Phys. Lett. B 423, 337– 347 (1998). https://doi.org/10.1016/S0370-2693(98)00108-7. arXiv:hep-ph/9712307spa
dcterms.bibliographicCitationM.L. Alciati, F. Feruglio, Y. Lin, A. Varagnolo, Proton lifetime from SU(5) unification in extra dimensions. JHEP 03, 054 (2005). https://doi.org/10.1088/1126-6708/2005/03/054. arXiv:hep-ph/0501086spa
dcterms.bibliographicCitationG. Altarelli, D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below MGUT . JHEP 08, 021 (2013). https://doi.org/10.1007/JHEP08(2013)021. arXiv:1305.1001 [hep-ph]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Search for proton decay via p → νK + using 260 kiloton·year data of SuperKamiokande. Phys. Rev. D 90(7), 072005 (2014). https://doi.org/ 10.1103/PhysRevD.90.072005. arXiv:1408.1195 [hep-ex]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Search for proton decay via p → e+π0 and p → μ+π0 in 0.31 megaton·years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 95(1), 012004 (2017). https://doi.org/10.1103/ PhysRevD.95.012004. arXiv:1610.03597 [hep-ex]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Search for nucleon decay into charged antilepton plus meson in 0.316 megaton·years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 96(1), 012003 (2017). https://doi.org/10.1103/PhysRevD.96.012003. arXiv:1705.07221 [hepex]spa
dcterms.bibliographicCitationHyper-Kamiokande Collaboration, K. Abe et al., HyperKamiokande design report. arXiv:1805.04163 [physics.ins-det]spa
dcterms.bibliographicCitationJUNO Collaboration, Z. Djurcic et al., JUNO conceptual design report. arXiv:1508.07166 [physics.ins-det]spa
dcterms.bibliographicCitationD.G. Phillips II et al., Neutron–antineutron oscillations: theoretical status and experimental prospects. Phys. Rep. 612, 1–45 (2016). https://doi.org/10.1016/j.physrep.2015.11.001. arXiv:1410.1100 [hep-ex]spa
dcterms.bibliographicCitationA.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). https://doi.org/10.1070/ PU1991v034n05ABEH002497 [Usp. Fiz. Nauk 161(5), 61 (1991)]spa
dcterms.bibliographicCitationS. Nussinov, R. Shrock, N–anti-N oscillations in models with large extra dimensions. Phys. Rev. Lett. 88, 171601 (2002). https://doi. org/10.1103/PhysRevLett.88.171601. arXiv:hep-ph/0112337spa
dcterms.bibliographicCitationJ.M. Arnold, B. Fornal, M.B. Wise, Simplified models with baryon number violation but no proton decay. Phys. Rev. D 87, 075004 (2013). https://doi.org/10.1103/PhysRevD.87.075004. arXiv:1212.4556 [hep-ph]spa
dcterms.bibliographicCitationS. Girmohanta, R. Shrock, Baryon-number-violating nucleon and dinucleon decays in a model with large extra dimensions. Phys. Rev. D 101(1), 015017 (2020). https://doi.org/10.1103/ PhysRevD.101.015017. arXiv:1911.05102 [hep-ph]spa
dcterms.bibliographicCitationS. Girmohanta, R. Shrock, Nucleon decay and n-n¯ oscillations in a left-right symmetric model with large extra dimensions. Phys. Rev. D 101(9), 095012 (2020). https://doi.org/10.1103/ PhysRevD.101.095012. arXiv:2003.14185 [hep-ph]spa
dcterms.bibliographicCitationM. Baldo-Ceolin et al., A New experimental limit on neutron– anti-neutron oscillations. Z. Phys. C 63, 409–416 (1994). https:// doi.org/10.1007/BF01580321spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., The search for n − ¯n oscillation in Super-Kamiokande I. Phys. Rev. D 91, 072006 (2015). https://doi.org/10.1103/PhysRevD.91.072006. arXiv:1109.4227 [hep-ex]spa
dcterms.bibliographicCitationJ.E.T. Hewes, Searches for bound neutron–antineutron oscillation in liquid argon time projection chambers. PhD thesis, Manchester U (2017). https://doi.org/10.2172/1426674. http://lss.fnal. gov/archive/thesis/2000/fermilab-thesis-2017-27.pdfspa
dcterms.bibliographicCitationG.D. Barr, T.K. Gaisser, P. Lipari, S. Robbins, T. Stanev, A three-dimensional calculation of atmospheric neutrinos. Phys. Rev. D 70, 023006 (2004). https://doi.org/10.1103/PhysRevD.70. 023006. arXiv:astro-ph/0403630spa
dcterms.bibliographicCitationV.C.N. Meddage, Liquid argon time projection chamber calibration using cosmogenic muons, and measurement of neutrino induced charged kaon production in argon in the charged current mode (MicroBooNE experiment). PhD thesis, Kansas State U (2019)spa
dcterms.bibliographicCitationA. Bueno, A.J. Melgarejo, S. Navas, Z.D. ai, Y. Ge, M. Laffranchi, A.M. Meregaglia, A. Rubbia, Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds. J. High Energy Phys. 2007(04), 041 (2007). http://stacks.iop.org/1126-6708/2007/i=04/a=041spa
dcterms.bibliographicCitationJ. Klinger, V.A. Kudryavtsev, M. Richardson, N.J.C. Spooner, Muon-induced background to proton decay in the p → K +ν decay channel with large underground liquid argon TPC detectors. Phys. Lett. B 746, 44–47 (2015). https://doi.org/10.1016/j. physletb.2015.04.054. arXiv:1504.06520 [physics.ins-det]spa
dcterms.bibliographicCitationD.V. Bugg et al., Kaon-nucleon total cross sections from 0.6 to 2.65 GeV/c. Phys. Rev. 168, 1466–1475 (1968). https://doi.org/ 10.1103/PhysRev.168.1466spa
dcterms.bibliographicCitationE. Friedman et al., K + nucleus reaction and total cross-sections: new analysis of transmission experiments. Phys. Rev. C 55, 1304– 1311 (1997). https://doi.org/10.1103/PhysRevC.55.1304spa
dcterms.bibliographicCitationMINERvA Collaboration, C.M. Marshall et al., Measurement of K + production in charged-current νμ interactions. Phys. Rev. D 94(1), 012002 (2016). https://doi.org/10.1103/PhysRevD.94. 012002. arXiv:1604.03920 [hep-ex]spa
dcterms.bibliographicCitationArgoNeuT Collaboration, R. Acciarri et al., A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC. JINST 8, P08005 (2013). https://doi.org/10. 1088/1748-0221/8/08/P08005. arXiv:1306.1712 [physics.insdet]spa
dcterms.bibliographicCitationA. Hocker et al., TMVA-toolkit for multivariate data analysis. arXiv:physics/0703039 [physics.data-an]spa
dcterms.bibliographicCitationG.D. Barr, T.K. Gaisser, S. Robbins, T. Stanev, Uncertainties in atmospheric neutrino fluxes. Phys. Rev. D 74, 094009 (2006). https://doi.org/10.1103/PhysRevD.74.094009. arXiv:astro-ph/0611266spa
dcterms.bibliographicCitationK. Mahn, C. Marshall, C. Wilkinson, Progress in measurements of 0.1–10 GeV neutrino-nucleus scattering and anticipated results from future experiments. Ann. Rev. Nucl. Part. Sci. 68, 105–129 (2018). https://doi.org/10.1146/ annurev-nucl-101917-020930. arXiv:1803.08848 [hep-ex]spa
dcterms.bibliographicCitationFrejus Collaboration, C. Berger et al., Lifetime limits on (B-L) violating nucleon decay and dinucleon decay modes from the Frejus experiment. Phys. Lett. B 269, 227–233 (1991). https:// doi.org/10.1016/0370-2693(91)91479-Fspa
dcterms.bibliographicCitationE.S. Golubeva, J.L. Barrow, C.G. Ladd, Model of n¯ annihilation in experimental searches for n¯ transformations. Phys. Rev. D 99(3), 035002 (2019). https://doi.org/10.1103/PhysRevD.99. 035002. arXiv:1804.10270 [hep-ex]spa
dcterms.bibliographicCitationJ.L. Barrow, E.S. Golubeva, E. Paryev, J.-M. Richard, Progress and simulations for intranuclear neutron-antineutron transformations in 40 18 Ar. Phys. Rev. D 101(3), 036008 (2020). https://doi. org/10.1103/PhysRevD.101.036008. arXiv:1906.02833 [hep-ex]spa
dcterms.bibliographicCitationE. Friedman, A. Gal, Realistic calculations of nuclear disappearance lifetimes induced by n anti-n oscillations. Phys. Rev. D 78, 016002 (2008). https://doi.org/10.1103/PhysRevD.78. 016002. arXiv:0803.3696 [hep-ph]spa
dcterms.bibliographicCitationDONUT Collaboration, K. Kodama et al., Observation of tau neutrino interactions. Phys. Lett. B 504, 218–224 (2001). https://doi. org/10.1016/S0370-2693(01)00307-0. arXiv:hep-ex/0012035spa
dcterms.bibliographicCitationDONuT Collaboration, K. Kodama et al., Final tau-neutrino results from the DONuT experiment. Phys. Rev. D 78, 052002 (2008). https://doi.org/10.1103/PhysRevD.78.052002. arXiv:0711.0728 [hep-ex]spa
dcterms.bibliographicCitationOPERA Collaboration, M. Guler et al., OPERA: an appearance experiment to search for nu/mu–nu/tau oscillations in the CNGS beam. Experimental proposalspa
dcterms.bibliographicCitationOPERA Collaboration, N. Agafonova et al., Final results of the OPERA experiment on ντ appearance in the CNGS neutrino beam. Phys. Rev. Lett. 120(21), 211801 (2018). https://doi. org/10.1103/PhysRevLett.121.139901. https://doi.org/10.1103/ PhysRevLett.120.211801. arXiv:1804.04912 [hep-ex] [Erratum: Phys. Rev. Lett. 121(13), 139901 (2018)]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, K. Abe et al., Evidence for the appearance of atmospheric tau neutrinos in Super-Kamiokande. Phys. Rev. Lett. 110(18), 181802 (2013). https://doi.org/10.1103/ PhysRevLett.110.181802. arXiv:1206.0328 [hep-ex]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, Z. Li et al., Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Phys. Rev. D 98(5), 052006 (2018). https://doi.org/10.1103/PhysRevD.98.052006. arXiv:1711.09436 [hep-ex]spa
dcterms.bibliographicCitationSuper-Kamiokande Collaboration, Z. Li et al., Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Phys. Rev. D 98(5), 052006 (2018). https://doi.org/10.1103/PhysRevD.98.052006. arXiv:1711.09436 [hep-ex]spa
dcterms.bibliographicCitationP. Machado, H. Schulz, J. Turner, Tau neutrinos at DUNE: new strategies, new opportunities. Phys. Rev. D 102(5), 053010 (2020). https://doi.org/10.1103/PhysRevD.102.053010. arXiv:2007.00015 [hep-ph]spa
dcterms.bibliographicCitationP. Bakhti, Y. Farzan, M. Rajaee, Secret interactions of neutrinos with light gauge boson at the DUNE near detector. Phys. Rev. D 99(5), 055019 (2019). https://doi.org/10.1103/PhysRevD.99. 055019. arXiv:1810.04441 [hep-ph]spa
dcterms.bibliographicCitationJ. Conrad, A. de Gouvea, S. Shalgar, J. Spitz, Atmospheric tau neutrinos in a multi-kiloton liquid argon detector. Phys. Rev. D 82, 093012 (2010). https://doi.org/10.1103/PhysRevD.82. 093012. arXiv:1008.2984 [hep-ph]spa
dcterms.bibliographicCitationA. De Gouvêa, K.J. Kelly, G.V. Stenico, P. Pasquini, Physics with beam tau-neutrino appearance at DUNE. Phys. Rev. D 100(1), 016004 (2019). https://doi.org/10.1103/PhysRevD.100.016004. arXiv:1904.07265 [hep-ph]spa
dcterms.bibliographicCitationA. Ghoshal, A. Giarnetti, D. Meloni, On the role of the ντ appearance in DUNE in constraining standard neutrino physics and beyond. JHEP 12, 126 (2019). https://doi.org/10.1007/ JHEP12(2019)126. arXiv:1906.06212 [hep-ph]spa
dcterms.bibliographicCitationK.R. Dienes, E. Dudas, T. Gherghetta, Neutrino oscillations without neutrino masses or heavy mass scales: a higher dimensional seesaw mechanism. Nucl. Phys. B 557, 25 (1999). https://doi.org/ 10.1016/S0550-3213(99)00377-6. arXiv:hep-ph/9811428spa
dcterms.bibliographicCitationN. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, J. MarchRussell, Neutrino masses from large extra dimensions. Phys. Rev. D 65, 024032 (2001). https://doi.org/10.1103/PhysRevD.65. 024032. arXiv:hep-ph/9811448spa
dcterms.bibliographicCitationH. Davoudiasl, P. Langacker, M. Perelstein, Constraints on large extra dimensions from neutrino oscillation experiments. Phys. Rev. D 65, 105015 (2002). https://doi.org/10.1103/PhysRevD.65. 105015. arXiv:hep-ph/0201128spa
dcterms.bibliographicCitationMINOS Collaboration, P. Adamson et al., Constraints on large extra dimensions from the MINOS experiment. Phys. Rev. D 94(11), 111101 (2016). https://doi.org/10.1103/PhysRevD.94. 111101. arXiv:1608.06964 [hep-ex]spa
dcterms.bibliographicCitationA.B. Balantekin, A. de Gouvêa, B. Kayser, Addressing the Majorana vs. Dirac question with neutrino decays. Phys. Lett. B 789, 488–495 (2019). https://doi.org/10.1016/j.physletb.2018.11.068. arXiv:1808.10518 [hep-ph]spa
dcterms.bibliographicCitationP. Ballett, T. Boschi, S. Pascoli, Heavy neutral leptons from low-scale seesaws at the DUNE near detector. JHEP 03, 111 (2020). https://doi.org/10.1007/JHEP03(2020)111. arXiv:1905.00284 [hep3375 ph]spa
dcterms.bibliographicCitationG. Bernardi et al., Search for neutrino decay. Phys. Lett. 166B, 479–483 (1986). https://doi.org/10.1016/0370-2693(86)91602-3spa
dcterms.bibliographicCitationG. Bernardi et al., Further limits on heavy neutrino couplings. Phys. Lett. B 203, 332–334 (1988). https://doi.org/10.1016/ 0370-2693(88)90563-1spa
dcterms.bibliographicCitationE949 Collaboration, A.V. Artamonov et al., Search for heavy neutrinos in K + → μ+νH decays. Phys. Rev. D 91(5), 052001 (2015). https://doi.org/10.1103/PhysRevD.91.059903. https://doi.org/10.1103/PhysRevD.91.052001. arXiv:1411.3963 [hep-ex] [Erratum: Phys. Rev. D 91(5), 059903 (2015)]spa
dcterms.bibliographicCitation. D.I. Britton et al., Measurement of the π+ → e+ν neutrino branching ratio. Phys. Rev. Lett. 68, 3000–3003 (1992). https:// doi.org/10.1103/PhysRevLett.68.3000spa
dcterms.bibliographicCitationD.I. Britton et al., Improved search for massive neutrinos inπ+ → e+ν decay. Phys. Rev. D 46, R885–R887 (1992). https://doi.org/ 10.1103/PhysRevD.46.R885spa
dcterms.bibliographicCitationPIENU Collaboration, A. Aguilar-Arevalo et al., Improved search for heavy neutrinos in the decay π → eν. Phys. Rev. D 97(7), 072012 (2018). https://doi.org/10.1103/PhysRevD.97. 072012. arXiv:1712.03275 [hep-ex]spa
dcterms.bibliographicCitationPIENU Collaboration, A. Aguilar-Arevalo et al., Search for heavy neutrinos in π → μν decay. Phys. Lett. B 798, 134980 (2019). https://doi.org/10.1016/j.physletb.2019.134980. arXiv:1904.03269 [hep-ex]spa
dcterms.bibliographicCitationCHARM II Collaboration, P. Vilain et al., Search for heavy isosinglet neutrinos. Phys. Lett. B 343, 453–458 (1995). https://doi.org/10.1016/0370-2693(94)00440-I. https://doi.org/ 10.1016/0370-2693(94)01422-9. [Phys. Lett. B 351, 387 (1995)]spa
dcterms.bibliographicCitationNuTeV, E815 Collaboration, A. Vaitaitis et al., Search for neutral heavy leptons in a high-energy neutrino beam. Phys. Rev. Lett. 83, 4943–4946 (1999). https://doi.org/10.1103/PhysRevLett.83. 4943. arXiv:hep-ex/9908011spa
dcterms.bibliographicCitationDELPHI Collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays. Z. Phys. C74, 57–71 (1997). https:// doi.org/10.1007/s002880050370 [Erratum: Z. Phys. C 75, 580 (1997)]spa
dcterms.bibliographicCitationT2K Collaboration, K. Abe et al., Search for heavy neutrinos with the T2K near detector ND280. Phys. Rev. D 100(5), 052006 (2019). https://doi.org/10.1103/PhysRevD.100.052006. arXiv:1902.07598 [hep-ex]spa
dcterms.bibliographicCitationP. Ballett, S. Pascoli, M. Ross-Lonergan, MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program. JHEP 04, 102 (2017). https://doi.org/10.1007/JHEP04(2017)102. arXiv:1610.08512 [hep-ph]spa
dcterms.bibliographicCitationS. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Rept. Prog. Phys. 79(12), 124201 (2016). https://doi.org/10.1088/0034-4885/79/ 12/124201. arXiv:1504.04855 [hep-ph]spa
dcterms.bibliographicCitationM. Drewes, J. Hajer, J. Klaric, G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model. JHEP 07, 105 (2018). https://doi.org/10.1007/JHEP07(2018)105. arXiv:1801.04207 [hep-ph]spa
dcterms.bibliographicCitationD. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case. Rept. Prog. Phys. 82(11), 116201 (2019). https://doi.org/10.1088/1361-6633/ ab28d6. arXiv:1806.07396 [hep-ph]spa
dcterms.bibliographicCitationF. Kling, S. Trojanowski, Heavy neutral leptons at FASER. Phys. Rev. D 97(9), 095016 (2018). https://doi.org/10.1103/PhysRevD. 97.095016. arXiv:1801.08947 [hep-ph]spa
dcterms.bibliographicCitationC. Rott, S. In, J. Kumar, D. Yaylali, Directional searches at DUNE for sub-GeV monoenergetic neutrinos arising from dark matter annihilation in the sun. JCAP 1701(01), 016 (2017). https://doi. org/10.1088/1475-7516/2017/01/016. arXiv:1609.04876 [hepph]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1140/epjc/s10052-021-09007-w
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineFísicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por