Mostrar el registro sencillo del ítem
Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment
dc.contributor.author | Acero, M. A | |
dc.contributor.other | Adamov, G | |
dc.contributor.other | Adinolf, M | |
dc.contributor.other | Ahmad, Z | |
dc.contributor.other | Varanini, F | |
dc.contributor.other | Zennamo, J | |
dc.contributor.other | Zwaska, R | |
dc.date.accessioned | 2022-12-19T02:40:35Z | |
dc.date.available | 2022-12-19T02:40:35Z | |
dc.date.issued | 2020-11-10 | |
dc.date.submitted | 2021-04-16 | |
dc.identifier.citation | Abi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews MP, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Villanueva AC, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho JAB, Conley E, Conrad JM, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadón JI, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, da Motta H, Peres LDS, David C, David Q, Davies GS, Davini S, Dawson J, De K, De Almeida RM, Debbins P, De Bonis I, Decowski MP, de Gouvêa A, De Holanda PC, De Icaza Astiz IL, Deisting A, De Jong P, Delbart A, Delepine D, Delgado M, Dell'Acqua A, De Lurgio P, de Mello Neto JRT, DeMuth DM, Dennis S, Densham C, Deptuch G, De Roeck A, De Romeri V, De Vries JJ, Dharmapalan R, Dias M, Diaz F, Díaz JS, Di Domizio S, Di Giulio L, Ding P, Di Noto L, Distefano C, Diurba R, Diwan M, Djurcic Z, Dokania N, Dolinski MJ, Domine L, Douglas D, Drielsma F, Duchesneau D, Duffy K, Dunne P, Durkin T, Duyang H, Dvornikov O, Dwyer DA, Dyshkant AS, Eads M, Edmunds D, Eisch J, Emery S, Ereditato A, Escobar CO, Sanchez LE, Evans JJ, Ewart E, Ezeribe AC, Fahey K, Falcone A, Farnese C, Farzan Y, Felix J, Fernandez-Martinez E, Fernandez Menendez P, Ferraro F, Fields L, Filkins A, Filthaut F, Fitzpatrick RS, Flanagan W, Fleming B, Flight R, Fowler J, Fox W, Franc J, Francis K, Franco D, Freeman J, Freestone J, Fried J, Friedland A, Fuess S, Furic I, Furmanski AP, Gago A, Gallagher H, Gallego-Ros A, Gallice N, Galymov V, Gamberini E, Gamble T, Gandhi R, Gandrajula R, Gao S, Garcia-Gamez D, García-Peris MÁ, Gardiner S, Gastler D, Ge G, Gelli B, Gendotti A, Gent S, Ghorbani-Moghaddam Z, Gibin D, Gil-Botella I, Girerd C, Giri AK, Gnani D, Gogota O, Gold M, Gollapinni S, Gollwitzer K, Gomes RA, Bermeo LVG, Fajardo LSG, Gonnella F, Gonzalez-Cuevas JA, Goodman MC, Goodwin O, Goswami S, Gotti C, Goudzovski E, Grace C, Graham M, Gramellini E, Gran R, Granados E, Grant A, Grant C, Gratieri D, Green P, Green S, Greenler L, Greenwood M, Greer J, Griffith WC, Groh M, Grudzinski J, Grzelak K, Gu W, Guarino V, Guenette R, Guglielmi A, Guo B, Guthikonda KK, Gutierrez R, Guzowski P, Guzzo MM, Gwon S, Habig A, Hackenburg A, Hadavand H, Haenni R, Hahn A, Haigh J, Haiston J, Hamernik T, Hamilton P, Han J, Harder K, Harris DA, Hartnell J, Hasegawa T, Hatcher R, Hazen E, Heavey A, Heeger KM, Heise J, Hennessy K, Henry S, Morquecho MAH, Herner K, Hertel L, Hesam AS, Hewes J, Higuera A, Hill T, Hillier SJ, Himmel A, Hoff J, Hohl C, Holin A, Hoppe E, Horton-Smith GA, Hostert M, Hourlier A, Howard B, Howell R, Huang J, Huang J, Hugon J, Iles G, Ilic N, Iliescu AM, Illingworth R, Ioannisian A, Itay R, Izmaylov A, James E, Jargowsky B, Jediny F, Jesùs-Valls C, Ji X, Jiang L, Jiménez S, Jipa A, Joglekar A, Johnson C, Johnson R, Jones B, Jones S, Jung CK, Junk T, Jwa Y, Kabirnezhad M, Kaboth A, Kadenko I, Kamiya F, Karagiorgi G, Karcher A, Karolak M, Karyotakis Y, Kasai S, Kasetti SP, Kashur L, Kazaryan N, Kearns E, Keener P, Kelly KJ, Kemp E, Ketchum W, Kettell SH, Khabibullin M, Khotjantsev A, Khvedelidze A, Kim D, King B, Kirby B, Kirby M, Klein J, Koehler K, Koerner LW, Kohn S, Koller PP, Kordosky M, Kosc T, Kose U, Kostelecký VA, Kothekar K, Krennrich F, Kreslo I, Kudenko Y, Kudryavtsev VA, Kulagin S, Kumar J, Kumar R, Kuruppu C, Kus V, Kutter T, Lambert A, Lande K, Lane CE, Lang K, Langford T, Lasorak P, Last D, Lastoria C, Laundrie A, Lawrence A, Lazanu I, LaZur R, Le T, Learned J, LeBrun P, Miotto GL, Lehnert R, de Oliveira MAL, Leitner M, Leyton M, Li L, Li S, Li SW, Li T, Li Y, Liao H, Lin CS, Lin S, Lister A, Littlejohn BR, Liu J, Lockwitz S, Loew T, Lokajicek M, Lomidze I, Long K, Loo K, Lorca D, Lord T, LoSecco JM, Louis WC, Luk KB, Luo X, Lurkin N, Lux T, Luzio VP, MacFarland D, Machado AA, Machado P, Macias CT, Macier JR, Maddalena A, Madigan P, Magill S, Mahn K, Maio A, Maloney JA, Mandrioli G, Maneira J, Manenti L, Manly S, Mann A, Manolopoulos K, Plata MM, Marchionni A, Marciano W, Marfatia D, Mariani C, Maricic J, Marinho F, Marino AD, Marshak M, Marshall C, Marshall J, Marteau J, Martin-Albo J, Martinez N, Caicedo DAM, Martynenko S, Mason K, Mastbaum A, Masud M, Matsuno S, Matthews J, Mauger C, Mauri N, Mavrokoridis K, Mazza R, Mazzacane A, Mazzucato E, McCluskey E, McConkey N, McFarland KS, McGrew C, McNab A, Mefodiev A, Mehta P, Melas P, Mellinato M, Mena O, Menary S, Mendez H, Menegolli A, Meng G, Messier MD, Metcalf W, Mewes M, Meyer H, Miao T, Michna G, Miedema T, Migenda J, Milincic R, Miller W, Mills J, Milne C, Mineev O, Miranda OG, Miryala S, Mishra CS, Mishra SR, Mislivec A, Mladenov D, Mocioiu I, Moffat K, Moggi N, Mohanta R, Mohayai TA, Mokhov N, Molina J, Bueno LM, Montanari A, Montanari C, Montanari D, Zetina LMM, Moon J, Mooney M, Moor A, Moreno D, Morgan B, Morris C, Mossey C, Motuk E, Moura CA, Mousseau J, Mu W, Mualem L, Mueller J, Muether M, Mufson S, Muheim F, Muir A, Mulhearn M, Muramatsu H, Murphy S, Musser J, Nachtman J, Nagu S, Nalbandyan M, Nandakumar R, Naples D, Narita S, Navas-Nicolás D, Nayak N, Nebot-Guinot M, Necib L, Negishi K, Nelson JK, Nesbit J, Nessi M, Newbold D, Newcomer M, Newhart D, Nichol R, Niner E, Nishimura K, Norman A, Norrick A, Northrop R, Novella P, Nowak JA, Oberling M, Del Campo AO, Olivier A, Onel Y, Onishchuk Y, Ott J, Pagani L, Pakvasa S, Palamara O, Palestini S, Paley JM, Pallavicini M, Palomares C, Pantic E, Paolone V, Papadimitriou V, Papaleo R, Papanestis A, Paramesvaran S, Park JC, Parke S, Parsa Z, Parvu M, Pascoli S, Pasqualini L, Pasternak J, Pater J, Patrick C, Patrizii L, Patterson RB, Patton SJ, Patzak T, Paudel A, Paulos B, Paulucci L, Pavlovic Z, Pawloski G, Payne D, Pec V, Peeters SJM, Penichot Y, Pennacchio E, Penzo A, Peres OLG, Perry J, Pershey D, Pessina G, Petrillo G, Petta C, Petti R, Piastra F, Pickering L, Pietropaolo F, Pillow J, Pinzino J, Plunkett R, Poling R, Pons X, Poonthottathil N, Pordes S, Potekhin M, Potenza R, Potukuchi BVKS, Pozimski J, Pozzato M, Prakash S, Prakash T, Prince S, Prior G, Pugnere D, Qi K, Qian X, Raaf JL, Raboanary R, Radeka V, Rademacker J, Radics B, Rafique A, Raguzin E, Rai M, Rajaoalisoa M, Rakhno I, Rakotondramanana HT, Rakotondravohitra L, Ramachers YA, Rameika R, Delgado MAR, Ramson B, Rappoldi A, Raselli G, Ratoff P, Ravat S, Razafinime H, Real JS, Rebel B, Redondo D, Reggiani-Guzzo M, Rehak T, Reichenbacher J, Reitzner SD, Renshaw A, Rescia S, Resnati F, Reynolds A, Riccobene G, Rice LCJ, Rielage K, Rigaut Y, Rivera D, Rochester L, Roda M, Rodrigues P, Alonso MJR, Rondon JR, Roeth AJ, Rogers H, Rosauro-Alcaraz S, Rossella M, Rout J, Roy S, Rubbia A, Rubbia C, Russell B, Russell J, Ruterbories D, Saakyan R, Sacerdoti S, Safford T, Sahu N, Sala P, Samios N, Sanchez MC, Sanders DA, Sankey D, Santana S, Santos-Maldonado M, Saoulidou N, Sapienza P, Sarasty C, Sarcevic I, Savage G, Savinov V, Scaramelli A, Scarff A, Scarpelli A, Schaffer T, Schellman H, Schlabach P, Schmitz D, Scholberg K, Schukraft A, Segreto E, Sensenig J, Seong I, Sergi A, Sergiampietri F, Sgalaberna D, Shaevitz MH, Shafaq S, Shamma M, Sharma HR, Sharma R, Shaw T, Shepherd-Themistocleous C, Shin S, Shooltz D, Shrock R, Simard L, Simos N, Sinclair J, Sinev G, Singh J, Singh J, Singh V, Sipos R, Sippach FW, Sirri G, Sitraka A, Siyeon K, Smargianaki D, Smith A, Smith A, Smith E, Smith P, Smolik J, Smy M, Snopok P, Nunes MS, Sobel H, Soderberg M, Salinas CJS, Söldner-Rembold S, Solomey N, Solovov V, Sondheim WE, Sorel M, Soto-Oton J, Sousa A, Soustruznik K, Spagliardi F, Spanu M, Spitz J, Spooner NJC, Spurgeon K, Staley R, Stancari M, Stanco L, Steiner HM, Stewart J, Stillwell B, Stock J, Stocker F, Stocks D, Stokes T, Strait M, Strauss T, Striganov S, Stuart A, Summers D, Surdo A, Susic V, Suter L, Sutera CM, Svoboda R, Szczerbinska B, Szelc AM, Talaga R, Tanaka HA, Oregui BT, Tapper A, Tariq S, Tatar E, Tayloe R, Teklu AM, Tenti M, Terao K, Ternes CA, Terranova F, Testera G, Thea A, Thompson JL, Thorn C, Timm SC, Todd J, Tonazzo A, Torti M, Tortola M, Tortorici F, Totani D, Toups M, Touramanis C, Trevor J, Trzaska WH, Tsai YT, Tsamalaidze Z, Tsang KV, Tsverava N, Tufanli S, Tull C, Tyley E, Tzanov M, Uchida MA, Urheim J, Usher T, Vagins MR, Vahle P, Valdiviesso GA, Valencia E, Vallari Z, Valle JWF, Vallecorsa S, Berg RV, de Water RGV, Forero DV, Varanini F, Vargas D, Varner G, Vasel J, Vasseur G, Vaziri K, Ventura S, Verdugo A, Vergani S, Vermeulen MA, Verzocchi M, de Souza HV, Vignoli C, Vilela C, Viren B, Vrba T, Wachala T, Waldron AV, Wallbank M, Wang H, Wang J, Wang Y, Wang Y, Warburton K, Warner D, Wascko M, Waters D, Watson A, Weatherly P, Weber A, Weber M, Wei H, Weinstein A, Wenman D, Wetstein M, While MR, White A, Whitehead LH, Whittington D, Wilking MJ, Wilkinson C, Williams Z, Wilson F, Wilson RJ, Wolcott J, Wongjirad T, Wood K, Wood L, Worcester E, Worcester M, Wret C, Wu W, Wu W, Xiao Y, Yang G, Yang T, Yershov N, Yonehara K, Young T, Yu B, Yu J, Zaki R, Zalesak J, Zambelli L, Zamorano B, Zani A, Zazueta L, Zeller GP, Zennamo J, Zeug K, Zhang C, Zhao M, Zhao Y, Zhivun E, Zhu G, Zimmerman ED, Zito M, Zucchelli S, Zuklin J, Zutshi V, Zwaska R. Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment: DUNE Collaboration. Eur Phys J C Part Fields. 2021;81(4):322. doi: 10.1140/epjc/s10052-021-09007-w. Epub 2021 Apr 16. PMID: 34720713; PMCID: PMC8550327. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1136 | |
dc.description.abstract | The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | The European Physical Journal C | spa |
dc.title | Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, vol. II. DUNE Phys. arXiv:2002.03005 [hep-ex] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.05471 [physics.ins-det] | spa |
dcterms.bibliographicCitation | . DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1512.06148 [physics.ins-det] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.02984 [physics.ins-det] | spa |
dcterms.bibliographicCitation | DUNE Collaboration, B. Abi et al., Volume I. Introduction to DUNE. J. Inst. 15(08), T08008 (2020). https://doi.org/10.1088/ 1748-0221/15/08/T08008. arXiv:2002.02967 [physics.ins-det] | spa |
dcterms.bibliographicCitation | MINERvA Collaboration, L. Aliaga et al., Neutrino flux predictions for the NuMI beam. Phys. Rev. D 94(9), 092005 (2016). https://doi.org/10.1103/PhysRevD.94.092005. https:// doi.org/10.1103/PhysRevD.95.039903. arXiv:1607.00704 [hepex] [Addendum: Phys. Rev. D 95(3), 039903 (2017)] | spa |
dcterms.bibliographicCitation | GEANT4 Collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8 | spa |
dcterms.bibliographicCitation | J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006). https://doi.org/10.1109/TNS. 2006.869826 | spa |
dcterms.bibliographicCitation | J. Allison et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186–225 (2016). https://doi.org/10.1016/j.nima. 2016.06.125 | spa |
dcterms.bibliographicCitation | P. Huber, M. Lindner, W. Winter, Simulation of longbaseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator). Comput. Phys. Commun. 167, 195 (2005). https://doi.org/10.1016/j.cpc.2005.01.003. arXiv:hep-ph/0407333 | spa |
dcterms.bibliographicCitation | P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general long baseline experiment simulator. Comput. Phys. Commun. 177, 432–438 (2007). https://doi.org/10. 1016/j.cpc.2007.05.004. arXiv:hep-ph/0701187 | spa |
dcterms.bibliographicCitation | C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Methods A 614, 87–104 (2010). https://doi. org/10.1016/j.nima.2009.12.009. arXiv:0905.2517 [hep-ph] | spa |
dcterms.bibliographicCitation | C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba, The GENIE neutrino Monte Carlo generator: physics and user manual. arXiv:1510.05494 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Dentler, A. Hernández-Cabezudo, J. Kopp, P.A.N. Machado, M. Maltoni, I. Martinez-Soler, T. Schwetz, Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos. JHEP 08, 010 (2018). https://doi.org/10.1007/ JHEP08(2018)010. arXiv:1803.10661 [hep-ph] | spa |
dcterms.bibliographicCitation | . S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, Updated global 3+1 analysis of short-baseline neutrino oscillations. JHEP 06, 135 (2017). https://doi.org/10.1007/JHEP06(2017)135. arXiv:1703.00860 [hep-ph] | spa |
dcterms.bibliographicCitation | H. Harari, M. Leurer, Recommending a standard choice of Cabibbo angles and KM phases for any number of generations. Phys. Lett. B 181, 123–128 (1986). https://doi.org/10.1016/ 0370-2693(86)91268-2 | spa |
dcterms.bibliographicCitation | J. Kopp, Sterile neutrinos and non-standard neutrino interactions in GLoBES. https://www.mpi-hd.mpg.de/personalhomes/ globes/tools/snu-1.0.pdf | spa |
dcterms.bibliographicCitation | J.R. Todd, Search for sterile neutrinos with MINOS and MINOS+. PhD thesis, Cincinnati U (2018). https://doi.org/10. 2172/1484184 | spa |
dcterms.bibliographicCitation | L.S.N.D. Collaboration, A.A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of antineutrino(electron) appearance in a anti-neutrino(muon) beam. Phys. Rev. D 64, 112007 (2001). https://doi.org/10.1103/ PhysRevD.64.112007. arXiv:hep-ex/0104049 | spa |
dcterms.bibliographicCitation | R.N. Mohapatra, P.B. Pal, Massive neutrinos in physics and astrophysics. Second edition. World Sci. Lect. Notes Phys. 60, 1–397 (1998) [World Sci. Lect. Notes Phys. 72, 1 (2004)] | spa |
dcterms.bibliographicCitation | J.W.F. Valle, J.C. Romao, Neutrinos in high energy and astroparticle physics. Physics textbook. Wiley-VCH, Weinheim (2015). http://eu.wiley.com/WileyCDA/WileyTitle/ productCd-3527411976.html | spa |
dcterms.bibliographicCitation | M. Fukugita, T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003), p. 593 | spa |
dcterms.bibliographicCitation | M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315–321 (1979). arXiv:1306.4669 [hep-th] | spa |
dcterms.bibliographicCitation | T. Yanagida, Horizontal symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95–99 (1979) | spa |
dcterms.bibliographicCitation | R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980). https://doi.org/ 10.1103/PhysRevLett.44.912 | spa |
dcterms.bibliographicCitation | J. Schechter, J. Valle, Neutrino masses in SU(2) × U(1) theories. Phys. Rev. D 22, 2227 (1980). https://doi.org/10.1103/PhysRevD. 22.2227 | spa |
dcterms.bibliographicCitation | R.N. Mohapatra, J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models. Phys. Rev. D 34, 1642 (1986). https://doi.org/10.1103/PhysRevD.34.1642 | spa |
dcterms.bibliographicCitation | F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tortola, J.W.F. Valle, On the description of non-unitary neutrino mixing. Phys. Rev. D 92(5), 053009 (2015). https://doi.org/10.1103/PhysRevD. 92.053009. arXiv:1503.08879 [hep-ph] | spa |
dcterms.bibliographicCitation | Z.-Z. Xing, Correlation between the charged current interactions of light and heavy Majorana neutrinos. Phys. Lett. B 660, 515–521 (2008). https://doi.org/10.1016/j.physletb.2008.01.038. arXiv:0709.2220 [hep-ph] | spa |
dcterms.bibliographicCitation | Z.-Z. Xing, A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos. Phys. Rev. D 85, 013008 (2012). https://doi.org/10.1103/ PhysRevD.85.013008. arXiv:1110.0083 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Blennow, P. Coloma, E. Fernandez-Martinez, J. HernandezGarcia, J. Lopez-Pavon, Non-unitarity, sterile neutrinos, and nonstandard neutrino interactions. JHEP 04, 153 (2017). https://doi. org/10.1007/JHEP04(2017)153. arXiv:1609.08637 [hep-ph] | spa |
dcterms.bibliographicCitation | R.E. Shrock, New tests for, and bounds on, neutrino masses and lepton mixing. Phys. Lett. B 96, 159–164 (1980). https://doi.org/ 10.1016/0370-2693(80)90235-X | spa |
dcterms.bibliographicCitation | R.E. Shrock, General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for, and bounds on, neutrino masses and lepton mixing. Phys. Rev. D 24, 1232 (1981). https://doi.org/10.1103/PhysRevD.24. 1232 | spa |
dcterms.bibliographicCitation | R.E. Shrock, General theory of weak processes involving neutrinos. 2. Pure leptonic decays. Phys. Rev. D 24, 1275 (1981). https://doi.org/10.1103/PhysRevD.24.1275 | spa |
dcterms.bibliographicCitation | P. Langacker, D. London, Mixing between ordinary and exotic fermions. Phys. Rev. D 38, 886 (1988). https://doi.org/10.1103/ PhysRevD.38.886 | spa |
dcterms.bibliographicCitation | S.M. Bilenky, C. Giunti, Seesaw type mixing and νμ → ντ oscillations. Phys. Lett. B 300, 137–140 (1993). https://doi.org/10. 1016/0370-2693(93)90760-F. arXiv:hep-ph/9211269 | spa |
dcterms.bibliographicCitation | E. Nardi, E. Roulet, D. Tommasini, Limits on neutrino mixing with new heavy particles. Phys. Lett. B 327, 319–326 (1994). https:// doi.org/10.1016/0370-2693(94)90736-6. arXiv:hep-ph/9402224 | spa |
dcterms.bibliographicCitation | D. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog, Nondecoupling of heavy neutrinos and lepton flavor violation. Nucl. Phys. B 444, 451–467 (1995). https://doi.org/10.1016/ 0550-3213(95)00201-3. arXiv:hep-ph/9503228 | spa |
dcterms.bibliographicCitation | S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela, J. Lopez-Pavon, Unitarity of the leptonic mixing matrix. JHEP 0610, 084 (2006). https://doi.org/10.1088/1126-6708/2006/10/ 084. arXiv:hep-ph/0607020 | spa |
dcterms.bibliographicCitation | E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon, O. Yasuda, CP-violation from non-unitary leptonic mixing. Phys. Lett. B 649, 427–435 (2007). https://doi.org/10.1016/j.physletb.2007.03.069. arXiv:hep-ph/0703098 | spa |
dcterms.bibliographicCitation | S. Antusch, J.P. Baumann, E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model. Nucl. Phys. B 810, 369–388 (2009). https://doi.org/ 10.1016/j.nuclphysb.2008.11.018. arXiv:0807.1003 [hep-ph] | spa |
dcterms.bibliographicCitation | C. Biggio, The contribution of fermionic seesaws to the anomalous magnetic moment of leptons. Phys. Lett. B 668, 378–384 (2008). https://doi.org/10.1016/j.physletb.2008.09.004. arXiv:0806.2558 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Antusch, M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory. Phys. Rev. D 80, 033002 (2009). https://doi.org/10.1103/ PhysRevD.80.033002. arXiv:0903.3986 [hep-ph] | spa |
dcterms.bibliographicCitation | D.V. Forero, S. Morisi, M. Tortola, J.W.F. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw. JHEP 09, 142 (2011). https://doi.org/10.1007/JHEP09(2011)142. arXiv:1107.6009 [hep-ph] | spa |
dcterms.bibliographicCitation | R. Alonso, M. Dhen, M. Gavela, T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models. JHEP 1301, 118 (2013). https://doi.org/10.1007/JHEP01(2013)118. arXiv:1209.2679 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Antusch, O. Fischer, Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities. JHEP 1410, 94 (2014). https://doi.org/10.1007/JHEP10(2014)094. arXiv:1407.6607 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Abada, T. Toma, Electric dipole moments of charged leptons with sterile fermions. JHEP 02, 174 (2016). https://doi.org/10. 1007/JHEP02(2016)174. arXiv:1511.03265 [hep-ph] | spa |
dcterms.bibliographicCitation | E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon, M. Lucente, Loop level constraints on Seesaw neutrino mixing. JHEP 10, 130 (2015). https://doi.org/10.1007/JHEP10(2015)130. arXiv:1508.03051 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Parke, M. Ross-Lonergan, Unitarity and the three flavour neutrino mixing matrix. Phys. Rev. D 93, 113009 (2016). https://doi. org/10.1103/PhysRevD.93.113009. arXiv:1508.05095 [hep-ph] | spa |
dcterms.bibliographicCitation | O.G. Miranda, M. Tortola, J.W.F. Valle, New ambiguity in probing CP violation in neutrino oscillations. Phys. Rev. Lett. 117(6), 061804 (2016). https://doi.org/10.1103/PhysRevLett. 117.061804. arXiv:1604.05690 [hep-ph] | spa |
dcterms.bibliographicCitation | . C.S. Fong, H. Minakata, H. Nunokawa, A framework for testing leptonic unitarity by neutrino oscillation experiments. JHEP 02, 114 (2017). https://doi.org/10.1007/JHEP02(2017)114. arXiv:1609.08623 [hep-ph] | spa |
dcterms.bibliographicCitation | F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tortola, J.W.F. Valle, Probing CP violation with non-unitary mixing in longbaseline neutrino oscillation experiments: DUNE as a case study. New J. Phys. 19(9), 093005 (2017). https://doi.org/10.1088/ 1367-2630/aa79ec. arXiv:1612.07377 [hep-ph] | spa |
dcterms.bibliographicCitation | E. Fernandez-Martinez, J. Hernandez-Garcia, J. LopezPavon, Global constraints on heavy neutrino mixing. JHEP 08, 033 (2016). https://doi.org/10.1007/JHEP08(2016)033. arXiv:1605.08774 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Blennow, E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES. Comput. Phys. Commun. 181, 227–231 (2010). https://doi.org/10.1016/j.cpc.2009.09.014. arXiv:0903.3985 [hep-ph]. http://wwwth.mpp.mpg.de/members/ blennow/montecubes/ | spa |
dcterms.bibliographicCitation | Y. Farzan, M. Tortola, Neutrino oscillations and non-standard interactions. Front. Phys. 6, 10 (2018). https://doi.org/10.3389/ fphy.2018.00010. arXiv:1710.09360 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Masud, A. Chatterjee, P. Mehta, Probing CP violation signal at DUNE in presence of non-standard neutrino interactions. J. Phys. G 43(9), 095005 (2016). https://doi.org/ 10.1088/0954-3899/43/9/095005/meta. https://doi.org/10.1088/ 0954-3899/43/9/095005. arXiv:1510.08261 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Masud, P. Mehta, Nonstandard interactions spoiling the CP violation sensitivity at DUNE and other long baseline experiments. Phys. Rev. D 94, 013014 (2016). https://doi.org/10.1103/ PhysRevD.94.013014. arXiv:1603.01380 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Masud, P. Mehta, Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments. Phys. Rev. D 94(5), 053007 (2016). https://doi.org/ 10.1103/PhysRevD.94.053007. arXiv:1606.05662 [hep-ph] | spa |
dcterms.bibliographicCitation | . F. Capozzi, S.S. Chatterjee, A. Palazzo, Neutrino mass ordering obscured by non-standard interactions. Phys. Rev. Lett. 124, 111801 (2020). https://doi.org/10.1103/PhysRevLett.124. 111801. arXiv:1908.06992 [hep-ph] | spa |
dcterms.bibliographicCitation | Agarwalla, S.S. Chatterjee, A. Palazzo, Degeneracy between θ23 octant and neutrino non-standard interactions at DUNE. Phys. Lett. B 762, 64–71 (2016). https://doi.org/10.1016/j.physletb. 2016.09.020. arXiv:1607.01745 [hep-ph] | spa |
dcterms.bibliographicCitation | A. de Gouvea, K.J. Kelly, Non-standard neutrino interactions at DUNE. Nucl. Phys. B 908, 318–335 (2016). https://doi.org/10. 1016/j.nuclphysb.2016.03.013. arXiv:1511.05562 [hep-ph] | spa |
dcterms.bibliographicCitation | P. Coloma, Non-standard interactions in propagation at the deep underground neutrino experiment. JHEP 03, 016 (2016). https:// doi.org/10.1007/JHEP03(2016)016. arXiv:1511.06357 [hep-ph] | spa |
dcterms.bibliographicCitation | T. Ohlsson, Status of non-standard neutrino interactions. Rep. Prog. Phys. 76, 044201 (2013). https://doi.org/10.1088/ 0034-4885/76/4/044201. arXiv:1209.2710 [hep-ph] | spa |
dcterms.bibliographicCitation | O.G. Miranda, H. Nunokawa, Non standard neutrino interactions: current status and future prospects. New J. Phys. 17(9), 095002 (2015). https://doi.org/10.1088/1367-2630/17/9/ 095002. arXiv:1505.06254 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Blennow, S. Choubey, T. Ohlsson, D. Pramanik, S.K. Raut, A combined study of source, detector and matter non-standard neutrino interactions at DUNE. JHEP 08, 090 (2016). https://doi. org/10.1007/JHEP08(2016)090. arXiv:1606.08851 [hep-ph] | spa |
dcterms.bibliographicCitation | P. Bakhti, A.N. Khan, W. Wang, Sensitivities to chargedcurrent nonstandard neutrino interactions at DUNE. J. Phys.G44(12), 125001 (2017). https://doi.org/10.1088/1361-6471/ aa9098. arXiv:1607.00065 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Mikheev, A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913–917 (1985) | spa |
dcterms.bibliographicCitation | L. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978). https://doi.org/10.1103/PhysRevD.17.2369 | spa |
dcterms.bibliographicCitation | M. Guzzo, A. Masiero, S. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum. Phys. Lett. B 260, 154–160 (1991). https://doi.org/10.1016/ 0370-2693(91)90984-X | spa |
dcterms.bibliographicCitation | M. Guzzo, S. Petcov, On the matter enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum. Phys. Lett. B 271, 172–178 (1991). https://doi.org/10.1016/ 0370-2693(91)91295-7 | spa |
dcterms.bibliographicCitation | E. Roulet, MSW effect with flavor changing neutrino interactions. Phys. Rev. D 44, 935–938 (1991). https://doi.org/10.1103/ PhysRevD.44.R935 | spa |
dcterms.bibliographicCitation | J. Valle, Resonant oscillations of massless neutrinos in matter. Phys. Lett. B 199, 432 (1987). https://doi.org/10.1016/ 0370-2693(87)90947-6 | spa |
dcterms.bibliographicCitation | Particle Data Group Collaboration, K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014). https://doi.org/ 10.1088/1674-1137/38/9/090001 | spa |
dcterms.bibliographicCitation | S. Davidson, C. Peña Garay, N. Rius, A. Santamaria, Present and future bounds on nonstandard neutrino interactions. JHEP 0303, 011 (2003). https://doi.org/10.1088/1126-6708/2003/03/ 011. arXiv:hep-ph/0302093 | spa |
dcterms.bibliographicCitation | M. Gonzalez-Garcia, M. Maltoni, Phenomenology with massive neutrinos. Phys. Rep. 460, 1–129 (2008). https://doi.org/10.1016/ j.physrep.2007.12.004. arXiv:0704.1800 [hep-ph] | spa |
dcterms.bibliographicCitation | . C. Biggio, M. Blennow, E. Fernandez-Martinez, General bounds on non-standard neutrino interactions. JHEP 0908, 090 (2009). https://doi.org/10.1088/1126-6708/2009/08/090. arXiv:0907.0097 [hep-ph] | spa |
dcterms.bibliographicCitation | LBNE Collaboration, C. Adams et al., The long-baseline neutrino experiment: exploring fundamental symmetries of the Universe (2013). arXiv:1307.7335 [hep-ex] | spa |
dcterms.bibliographicCitation | M.C. Gonzalez-Garcia, M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data. JHEP 09, 152 (2013). https://doi.org/10.1007/JHEP09(2013)152. arXiv:1307.3092 [hep-ph] | spa |
dcterms.bibliographicCitation | I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado, Updated constraints on non-standard interactions from global analysis of oscillation data. JHEP 08, 180 (2018). https:// doi.org/10.1007/JHEP08(2018)180. arXiv:1805.04530 [hep-ph] | spa |
dcterms.bibliographicCitation | from Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density. Phys. Rev. D 95(11), 113004 (2017). https://doi.org/10.1103/PhysRevD.95. 113004. arXiv:1707.02322 [hep-ex] | spa |
dcterms.bibliographicCitation | K.J. Kelly, S.J. Parke, Matter density profile shape effects at DUNE. Phys. Rev. D 98(1), 015025 (2018). https://doi.org/10. 1103/PhysRevD.98.015025. arXiv:1802.06784 [hep-ph] | spa |
dcterms.bibliographicCitation | A.M. Dziewonski, D.L. Anderson, Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981). https://doi. org/10.1016/0031-9201(81)90046-7 | spa |
dcterms.bibliographicCitation | . F. Stacey, Physics of the Earth, 2nd edn. (Wiley, Hoboken, 1977) | spa |
dcterms.bibliographicCitation | W. Shen, M.H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States. J. Geophys. Res.: Solid Earth 121, 4306 (2016). https://doi.org/10.1002/2016JB012887 | spa |
dcterms.bibliographicCitation | A. Chatterjee, F. Kamiya, C.A. Moura, J. Yu, Impact of matter density profile shape on non-standard interactions at DUNE. arXiv:1809.09313 [hep-ph] | spa |
dcterms.bibliographicCitation | J. Rout, M. Masud, P. Mehta, Can we probe intrinsic CP and T violations and nonunitarity at long baseline accelerator experiments? Phys. Rev. D 95(7), 075035 (2017). https://doi.org/10. 1103/PhysRevD.95.075035. arXiv:1702.02163 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Masud, M. Bishai, P. Mehta, Extricating new physics scenarios at DUNE with higher energy beams. Sci. Rep. 9(1), 352 (2019). https://doi.org/10.1038/s41598-018-36790-6. arXiv:1704.08650 [hep-ph] | spa |
dcterms.bibliographicCitation | R.F. Streater, A.S. Wightman, PCT, spin and statistics, and all that (1989) | spa |
dcterms.bibliographicCitation | G. Barenboim, J.D. Lykken, A model of CPT violation for neutrinos. Phys. Lett. B 554, 73–80 (2003). https://doi.org/10.1016/ S0370-2693(02)03262-8. arXiv:hep-ph/0210411 | spa |
dcterms.bibliographicCitation | V.A. Kostelecký, M. Mewes, Lorentz and CPT violation in neutrinos. Phys. Rev. D 69, 016005 (2004). https://doi.org/10.1103/ PhysRevD.69.016005. arXiv:hep-ph/0309025 | spa |
dcterms.bibliographicCitation | J.S. Diaz, V.A. Kostelecký, M. Mewes, Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations. Phys. Rev. D 80, 076007 (2009). https://doi.org/10.1103/PhysRevD.80. 076007. arXiv:0908.1401 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Kostelecký, M. Mewes, Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85, 096005 (2012). https://doi.org/10.1103/PhysRevD.85.096005. arXiv:1112.6395 [hep-ph] | spa |
dcterms.bibliographicCitation | G. Barenboim, C.A. Ternes, M. Tórtola, Neutrinos, DUNE and the world best bound on CPT invariance. Phys. Lett. B 780, 631–637 (2018). https://doi.org/10.1016/j.physletb.2018.03.060. arXiv:1712.01714 [hep-ph] | spa |
dcterms.bibliographicCitation | G. Barenboim, C.A. Ternes, M. Tórtola, New physics vs new paradigms: distinguishing CPT violation from NSI. Eur. Phys. J. C 79(5), 390 (2019). https://doi.org/10.1140/epjc/ s10052-019-6900-7. arXiv:1804.05842 [hep-ph] | spa |
dcterms.bibliographicCitation | G. Barenboim, M. Masud, C.A. Ternes, M. Tórtola, Exploring the intrinsic Lorentz-violating parameters at DUNE. Phys. Lett. B 788, 308–315 (2019). https://doi.org/10.1016/j.physletb.2018. 11.040. arXiv:1805.11094 [hep-ph] | spa |
dcterms.bibliographicCitation | . B. Schwingenheuer et al., CPT tests in the neutral kaon system. Phys. Rev. Lett. 74, 4376–4379 (1995). https://doi.org/10.1103/ PhysRevLett.74.4376 | spa |
dcterms.bibliographicCitation | G. Barenboim, J. Salvado, Cosmology and CPT violating neutrinos. Eur. Phys. J. C 77(11), 766 (2017). https://doi.org/10.1140/ epjc/s10052-017-5347-y. arXiv:1707.08155 [hep-ph] | spa |
dcterms.bibliographicCitation | P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tórtola, J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782, 633–640 (2018). https://doi.org/10.1016/j.physletb.2018.06.019. arXiv:1708.01186 [hep-ph] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in SuperKamiokande I–IV. Phys. Rev. D 97(7), 072001 (2018). https:// doi.org/10.1103/PhysRevD.97.072001. arXiv:1710.09126 [hepex] | spa |
dcterms.bibliographicCitation | IceCube Collaboration, M.G. Aartsen et al., Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91(7), 072004 (2015). https://doi.org/10.1103/PhysRevD.91. 072004. arXiv:1410.7227 [hep-ex] | spa |
dcterms.bibliographicCitation | IceCube Collaboration, M.G. Aartsen et al., Measurement of atmospheric neutrino oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 120(7), 071801 (2018). https://doi. org/10.1103/PhysRevLett.120.071801. arXiv:1707.07081 [hepex] | spa |
dcterms.bibliographicCitation | ANTARES Collaboration, S. Adrian-Martinez et al., Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Phys. Lett. B714, 224–230 (2012). https://doi. org/10.1016/j.physletb.2012.07.002. arXiv:1206.0645 [hep-ex] | spa |
dcterms.bibliographicCitation | B. Cleveland, T. Daily, J. Davis, Raymond, J.R. Distel, K. Lande et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys.J. 496, 505–526 (1998). https://doi.org/10.1086/305343 | spa |
dcterms.bibliographicCitation | F. Kaether, W. Hampel, G. Heusser, J. Kiko, T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 685, 47–54 (2010). https://doi.org/10.1016/j.physletb. 2010.01.030. arXiv:1001.2731 [hep-ex] | spa |
dcterms.bibliographicCitation | SAGE Collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009). https://doi.org/10.1103/PhysRevC.80.015807. arXiv:0901.2200 [nucl-ex] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D 73, 112001 (2006). https://doi.org/10.1103/PhysRevD.73.112001. arXiv:hep-ex/0508053 | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78, 032002 (2008). https://doi.org/10.1103/PhysRevD.78.032002. arXiv:0803.4312 [hep-ex] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011). https://doi.org/10.1103/PhysRevD.83.052010. arXiv:1010.0118 [hep-ex] | spa |
dcterms.bibliographicCitation | Y. Nakano, PhD Thesis, University of Tokyo (2016). http:// www-sk.icrr.u-tokyo.ac.jp/sk/_pdf/articles/2016/doc_thesis_ naknao.pdf | spa |
dcterms.bibliographicCitation | SNO Collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the sudbury neutrino observatory. Phys. Rev. Lett. 101, 111301 (2008). https://doi.org/10.1103/ PhysRevLett.101.111301. arXiv:0806.0989 [nucl-ex] | spa |
dcterms.bibliographicCitation | SNO Collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the sudbury neutrino observatory. Phys. Rev. Lett. 101, 111301 (2008). https://doi.org/10.1103/ PhysRevLett.101.111301. arXiv:0806.0989 [nucl-ex] | spa |
dcterms.bibliographicCitation | Borexino Collaboration, G. Bellini et al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy. Phys. Rev. D 89(11), 112007 (2014). https://doi.org/10.1103/PhysRevD.89. 112007. arXiv:1308.0443 [hep-ex] | spa |
dcterms.bibliographicCitation | K2K Collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment. Phys. Rev. D 74, 072003 (2006). https://doi.org/10.1103/PhysRevD.74.072003. arXiv:hep-ex/0606032 [hep-ex] | spa |
dcterms.bibliographicCitation | MINOS Collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys.Rev.Lett. 110(25), 251801 (2013). https:// doi.org/10.1103/PhysRevLett.110.251801. arXiv:1304.6335 [hep-ex] | spa |
dcterms.bibliographicCitation | MINOS Collaboration, P. Adamson et al., Combined analysis of νμ disappearance and νμ → νe appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112, 191801 (2014). https://doi.org/10.1103/PhysRevLett.112. 191801. arXiv:1403.0867 [hep-ex] | spa |
dcterms.bibliographicCitation | T2K Collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K. Phys. Rev. Lett. 118(15), 151801 (2017). https://doi.org/10.1103/PhysRevLett. 118.151801. arXiv:1701.00432 [hep-ex] | spa |
dcterms.bibliographicCitation | T2K Collaboration, K. Abe et al., Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5×1021 protons on target. Phys. Rev. D 96(1), 011102 (2017). https://doi. org/10.1103/PhysRevD.96.011102. arXiv:1704.06409 [hep-ex] | spa |
dcterms.bibliographicCitation | NOvA Collaboration, P. Adamson et al., Measurement of the neutrino mixing angle θ23 in NOvA. Phys. Rev. Lett. 118(15), 151802 (2017). https://doi.org/10.1103/PhysRevLett. 118.151802. arXiv:1701.05891 [hep-ex] | spa |
dcterms.bibliographicCitation | NOvA Collaboration, P. Adamson et al., Constraints on oscillation parameters from νe appearance and νμ disappearance in NOvA. Phys. Rev. Lett. 118(23), 231801 (2017). https://doi.org/10.1103/ PhysRevLett.118.231801. arXiv:1703.03328 [hep-ex] | spa |
dcterms.bibliographicCitation | KamLAND Collaboration, A. Gando et al., Constraints on θ13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND. Phys. Rev. D 83, 052002 (2011). https://doi.org/10. 1103/PhysRevD.83.052002. arXiv:1009.4771 [hep-ex] | spa |
dcterms.bibliographicCitation | Daya Bay Collaboration, F.P. An et al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D 95(7), 072006 (2017). https:// doi.org/10.1103/PhysRevD.95.072006. arXiv:1610.04802 [hepex] | spa |
dcterms.bibliographicCitation | RENO Collaboration, J.H. Choi et al., Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 116(21), 211801 (2016). https://doi.org/10.1103/PhysRevLett. 116.211801. arXiv:1511.05849 [hep-ex] | spa |
dcterms.bibliographicCitation | Double Chooz Collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector. JHEP 10, 086 (2014). https://doi.org/10.1007/ JHEP02(2015)074, https://doi.org/10.1007/JHEP10(2014)086. arXiv:1406.7763 [hep-ex] [Erratum: JHEP 02, 074 (2015)] | spa |
dcterms.bibliographicCitation | D. Colladay, V.A. Kostelecký, CPT violation and the standard model. Phys. Rev. D 55, 6760–6774 (1997). https://doi.org/10. 1103/PhysRevD.55.6760. arXiv:hep-ph/9703464 | spa |
dcterms.bibliographicCitation | V.A. Kostelecký, M. Mewes, Lorentz and CPT violation in the neutrino sector. Phys. Rev. D 70, 031902 (2004). https://doi.org/ 10.1103/PhysRevD.70.031902. arXiv:hep-ph/0308300 | spa |
dcterms.bibliographicCitation | V.A. Kostelecký, M. Mewes, Lorentz violation and short-baseline neutrino experiments. Phys. Rev. D 70, 076002 (2004). https://doi. org/10.1103/PhysRevD.70.076002. arXiv:hep-ph/0406255 | spa |
dcterms.bibliographicCitation | J.S. Díaz, A. Kostelecký, R. Lehnert, Relativity violations and beta decay. Phys. Rev. D 88(7), 071902 (2013). https://doi.org/ 10.1103/PhysRevD.88.071902. arXiv:1305.4636 [hep-ph] | spa |
dcterms.bibliographicCitation | J.S. Díaz, A. Kostelecky, M. Mewes, Testing relativity with high-energy astrophysical neutrinos. Phys. Rev. D 89(4), 043005 (2014). https://doi.org/10.1103/PhysRevD.89.043005. arXiv:1308.6344 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | IceCube Collaboration, M.G. Aartsen et al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14(9), 961–966 (2018). https://doi.org/10.1038/ s41567-018-0172-2. arXiv:1709.03434 [hep-ex] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 91(5), 052003 (2015). https://doi.org/10.1103/PhysRevD.91.052003. arXiv:1410.4267 [hep-ex] | spa |
dcterms.bibliographicCitation | IceCube Collaboration, M.G. Aartsen et al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14(9), 961–966 (2018). https://doi.org/10.1038/ s41567-018-0172-2. arXiv:1709.03434 [hep-ex] | spa |
dcterms.bibliographicCitation | V.A. Kostelecký, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002). https://doi.org/10. 1103/PhysRevD.66.056005. arXiv:hep-ph/0205211 | spa |
dcterms.bibliographicCitation | M. Honda, M. SajjadAthar, T. Kajita, K. Kasahara, S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Phys. Rev. D 92(2), 023004 (2015). https://doi.org/10.1103/PhysRevD.92.023004. arXiv:1502.03916 [astro-ph.HE] | spa |
dcterms.bibliographicCitation | J. Picone et al., NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), SIA 15–1 (2002). https://doi.org/10.1029/ 2002JA009430 | spa |
dcterms.bibliographicCitation | Particle Data Group Collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 030001 (2018). https:// doi.org/10.1103/PhysRevD.98.030001 | spa |
dcterms.bibliographicCitation | W. Czyz, G.C. Sheppey, J.D. Walecka, Neutrino production of lepton pairs through the point four-fermion interaction. Nuovo Cim. 34, 404–435 (1964). https://doi.org/10.1007/BF02734586 | spa |
dcterms.bibliographicCitation | J. Lovseth, M. Radomiski, Kinematical distributions of neutrinoproduced lepton triplets. Phys. Rev. D 3, 2686–2706 (1971). https://doi.org/10.1103/PhysRevD.3.2686 | spa |
dcterms.bibliographicCitation | K. Fujikawa, The self-coupling of weak lepton currents in highenergy neutrino and muon reactions. Ann. Phys. 68, 102–162 (1971). https://doi.org/10.1016/0003-4916(71)90244-2 | spa |
dcterms.bibliographicCitation | K. Koike, M. Konuma, K. Kurata, K. Sugano, Neutrino production of lepton pairs. 1. Prog. Theor. Phys. 46, 1150–1169 (1971). https://doi.org/10.1143/PTP.46.1150 | spa |
dcterms.bibliographicCitation | K. Koike, M. Konuma, K. Kurata, K. Sugano, Neutrino production of lepton pairs. 2. Prog. Theor. Phys. 46, 1799–1804 (1971). https://doi.org/10.1143/PTP.46.1799 | spa |
dcterms.bibliographicCitation | R.W. Brown, R.H. Hobbs, J. Smith, N. Stanko, Intermediate boson. III. Virtual-boson effects in neutrino trident production. Phys. Rev. D 6, 3273–3292 (1972). https://doi.org/10.1103/ PhysRevD.6.3273 | spa |
dcterms.bibliographicCitation | R. Belusevic, J. Smith, W-Z interference in neutrino-nucleus scattering. Phys. Rev. D 37, 2419 (1988). https://doi.org/10.1103/ PhysRevD.37.2419 | spa |
dcterms.bibliographicCitation | B. Zhou, J.F. Beacom, Neutrino-nucleus cross sections for W-boson and trident production. Phys. Rev. D 101(3), 036011 (2020). https://doi.org/10.1103/PhysRevD.101.036011. arXiv:1910.08090 [hep-ph] | spa |
dcterms.bibliographicCitation | B. Zhou, J.F. Beacom, W -boson and trident production in TeV–PeV neutrino observatories. Phys. Rev. D 101(3), 036010 (2020). https://doi.org/10.1103/PhysRevD.101.036010. arXiv:1910.10720 [hep-ph] | spa |
dcterms.bibliographicCitation | CHARM-II Collaboration, D. Geiregat et al., First observation of neutrino trident production. Phys. Lett. B 245, 271–275 (1990). https://doi.org/10.1016/0370-2693(90)90146-W | spa |
dcterms.bibliographicCitation | CCFR Collaboration, S.R. Mishra et al., Neutrino tridents and W Z interference. Phys. Rev. Lett. 66, 3117–3120 (1991). https:// doi.org/10.1103/PhysRevLett.66.3117 | spa |
dcterms.bibliographicCitation | NuTeV Collaboration, T. Adams et al., Evidence for diffractive charm production in muon-neutrino Fe and anti-muonneutrino Fe scattering at the Tevatron. Phys. Rev. D 61, 092001 (2000). https://doi.org/10.1103/PhysRevD.61.092001. arXiv:hep-ex/9909041 [hep-ex] | spa |
dcterms.bibliographicCitation | W. Altmannshofer, S. Gori, J. Martín-Albo, A. Sousa, M. Wall2bank, Neutrino tridents at DUNE. Phys. Rev. D 100(11), 115029 (2019). https://doi.org/10.1103/PhysRevD.100.115029. arXiv:1902.06765 [hep-ph] | spa |
dcterms.bibliographicCitation | P. Ballett, M. Hostert, S. Pascoli, Y.F. Perez-Gonzalez, Z. Tabrizi, R. Zukanovich Funchal, Neutrino trident scattering at near detectors. JHEP 01, 119 (2019). https://doi.org/10.1007/ JHEP01(2019)119. arXiv:1807.10973 [hep-ph] | spa |
dcterms.bibliographicCitation | P. Ballett, M. Hostert, S. Pascoli, Y.F. Perez-Gonzalez, Z. Tabrizi, R. Zukanovich Funchal, Z s in neutrino scattering at DUNE. Phys. Rev. D 100(5), 055012 (2019). https://doi.org/10.1103/ PhysRevD.100.055012. arXiv:1902.08579 [hep-ph] | spa |
dcterms.bibliographicCitation | W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams. Phys. Rev. Lett. 113, 091801 (2014). https://doi.org/10. 1103/PhysRevLett.113.091801. arXiv:1406.2332 [hep-ph] | spa |
dcterms.bibliographicCitation | DELPHI, OPAL, LEP Electroweak, ALEPH and L3 Collaboration, S. Schael et al., Electroweak measurements in electron– positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013). https://doi.org/10.1016/j.physrep.2013.07. 004. arXiv:1302.3415 [hep-ex] | spa |
dcterms.bibliographicCitation | X.G. He, G.C. Joshi, H. Lew, R.R. Volkas, NEW Z-prime PHENOMENOLOGY. Phys. Rev. D 43, 22–24 (1991). https://doi.org/ 10.1103/PhysRevD.43.R22 | spa |
dcterms.bibliographicCitation | X.-G. He, G.C. Joshi, H. Lew, R.R. Volkas, Simplest Z-prime model. Phys. Rev. D 44, 2118–2132 (1991). https://doi.org/10. 1103/PhysRevD.44.2118 | spa |
dcterms.bibliographicCitation | S. Baek, N.G. Deshpande, X.G. He, P. Ko, Muon anomalous g-2 and gauged L(muon)- L(tau) models. Phys. Rev. D 64, 055006 (2001). https://doi.org/10.1103/PhysRevD.64.055006. arXiv:hep-ph/0104141 | spa |
dcterms.bibliographicCitation | K. Harigaya, T. Igari, M.M. Nojiri, M. Takeuchi, K. Tobe, Muon g-2 and LHC phenomenology in the Lμ − Lτ gauge symmetric model. JHEP 03, 105 (2014). https://doi.org/10.1007/ JHEP03(2014)105. arXiv:1311.0870 [hep-ph] | spa |
dcterms.bibliographicCitation | W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin, Quark flavor transitions in Lμ − Lτ models. Phys. Rev. D 89, 095033 (2014). https://doi.org/10.1103/PhysRevD.89.095033. arXiv:1403.1269 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Baek, P. Ko, Phenomenology of U(1)(L(mu)-L(tau)) charged dark matter at PAMELA and colliders. JCAP 0910, 011 (2009). https://doi.org/10.1088/1475-7516/2009/10/ 011. arXiv:0811.1646 [hep-ph] | spa |
dcterms.bibliographicCitation | W. Altmannshofer, S. Gori, S. Profumo, F.S. Queiroz, Explaining dark matter and B decay anomalies with an Lμ − Lτ model. JHEP 12, 106 (2016). https://doi.org/10.1007/JHEP12(2016)106. arXiv:1609.04026 [hep-ph] | spa |
dcterms.bibliographicCitation | CMS Collaboration, A.M. Sirunyan et al., Search for an Lμ − Lτ gauge boson using Z→ 4μ events in proton–proton collisions at √s = 13 TeV. Phys. Lett. B 792, 345–368 (2019). https://doi.org/ 10.1016/j.physletb.2019.01.072. arXiv:1808.03684 [hep-ex] | spa |
dcterms.bibliographicCitation | BaBar Collaboration, J.P. Lees et al., Search for a muonic dark force at BABAR. Phys. Rev. D 94(1), 011102 (2016). https://doi. org/10.1103/PhysRevD.94.011102. arXiv:1606.03501 [hep-ex] | spa |
dcterms.bibliographicCitation | G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 107, 141302 (2011). https://doi.org/10.1103/PhysRevLett.107. 141302. arXiv:1104.1816 [hep-ex] | spa |
dcterms.bibliographicCitation | R. Harnik, J. Kopp, P.A.N. Machado, Exploring nu signals in dark matter detectors. JCAP 1207, 026 (2012). https://doi.org/10. 1088/1475-7516/2012/07/026. arXiv:1202.6073 [hep-ph] | spa |
dcterms.bibliographicCitation | Borexino Collaboration, M. Agostini et al., First simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino phase-II. Phys. Rev. D 100(8), 082004 (2019). https:// doi.org/10.1103/PhysRevD.100.082004. arXiv:1707.09279 | spa |
dcterms.bibliographicCitation | B. Ahlgren, T. Ohlsson, S. Zhou, Comment on “Is dark matter with long-range interactions a solution to all small-scale problems of Λ cold dark matter cosmology?”. Phys. Rev. Lett. 111(19), 199001 (2013). https://doi.org/10.1103/PhysRevLett. 111.199001. arXiv:1309.0991 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Kamada, H.-B. Yu, Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube. Phys. Rev. D 92(11), 113004 (2015). https://doi.org/10.1103/PhysRevD.92. 113004. arXiv:1504.00711 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Keshavarzi, D. Nomura, T. Teubner, Muon g − 2 and α(M2 Z ): a new data-based analysis. Phys. Rev. D 97(11), 114025 (2018). https://doi.org/10.1103/PhysRevD.97.114025. arXiv:1802.02995 [hep-ph] | spa |
dcterms.bibliographicCitation | T. Araki, F. Kaneko, T. Ota, J. Sato, T. Shimomura, MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment. Phys. Rev. D 93(1), 013014 (2016). https://doi. org/10.1103/PhysRevD.93.013014. arXiv:1508.07471 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Kamada, K. Kaneta, K. Yanagi, H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged U(1)Lμ−Lτ model. JHEP 06, 117 (2018). https://doi.org/10.1007/JHEP06(2018)117. arXiv:1805.00651 [hep-ph] | spa |
dcterms.bibliographicCitation | Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO] | spa |
dcterms.bibliographicCitation | J. Alexander et al., Dark sectors 2016 workshop: community report (2016). arXiv:1608.08632 [hep-ph]. http://inspirehep.net/ record/1484628/files/arXiv:1608.08632.pdf | spa |
dcterms.bibliographicCitation | M. Battaglieri et al., US cosmic visions: new ideas in dark matter 2017: community report. arXiv:1707.04591 [hep-ph] | spa |
dcterms.bibliographicCitation | J. LoSecco, L. Sulak, R. Galik, J. Horstkotte, J. Knauer, H.H. Williams, A. Soukas, P.J. Wanderer, W. Weng, Limits on the production of neutral penetrating states in a beam dump. Phys. Lett. 102B, 209–212 (1981). https://doi.org/10.1016/ 0370-2693(81)91064-9 | spa |
dcterms.bibliographicCitation | B. Dutta, D. Kim, S. Liao, J.-C. Park, S. Shin, L.E. Strigari, Dark matter signals from timing spectra at neutrino experiments. Phys. Rev. Lett. 124(12), 121802 (2020). https://doi.org/10.1103/ PhysRevLett.124.121802. arXiv:1906.10745 [hep-ph] | spa |
dcterms.bibliographicCitation | K. Agashe, Y. Cui, L. Necib, J. Thaler, (In)direct detection of boosted dark matter. JCAP 10, 062 (2014). https://doi.org/10. 1088/1475-7516/2014/10/062. arXiv:1405.7370 [hep-ph] | spa |
dcterms.bibliographicCitation | G. Belanger, J.-C. Park, Assisted freeze-out. JCAP 1203, 038 (2012). https://doi.org/10.1088/1475-7516/2012/03/038. arXiv:1112.4491 [hep-ph] | spa |
dcterms.bibliographicCitation | F. D’Eramo, J. Thaler, Semi-annihilation of dark matter. JHEP 06, 109 (2010). https://doi.org/10.1007/JHEP06(2010)109. arXiv:1003.5912 [hep-ph] | spa |
dcterms.bibliographicCitation | J. Huang, Y. Zhao, Dark matter induced nucleon decay: model and signatures. JHEP 02, 077 (2014). https://doi.org/10.1007/ JHEP02(2014)077. arXiv:1312.0011 [hep-ph] | spa |
dcterms.bibliographicCitation | J. Berger, Y. Cui, Y. Zhao, Detecting boosted dark matter from the sun with large volume neutrino detectors. JCAP 1502(02), 005 (2015). https://doi.org/10.1088/1475-7516/2015/ 02/005. arXiv:1410.2246 [hep-ph] | spa |
dcterms.bibliographicCitation | J.F. Cherry, M.T. Frandsen, I.M. Shoemaker, Direct detection phenomenology in models where the products of dark matter annihilation interact with nuclei. Phys. Rev. Lett. 114, 231303 (2015). https://doi.org/10.1103/PhysRevLett.114. 231303. arXiv:1501.03166 [hep-ph] | spa |
dcterms.bibliographicCitation | G.F. Giudice, D. Kim, J.-C. Park, S. Shin, Inelastic boosted dark matter at direct detection experiments. Phys. Lett. B 780, 543–552 (2018). https://doi.org/10.1016/j.physletb.2018.03.043. arXiv:1712.07126 [hep-ph] | spa |
dcterms.bibliographicCitation | Y. Cui, M. Pospelov, J. Pradler, Signatures of dark radiation in neutrino and dark matter detectors. Phys. Rev. D 97(10), 103004 (2018). https://doi.org/10.1103/PhysRevD.97.103004. arXiv:1711.04531 [hep-ph] | spa |
dcterms.bibliographicCitation | T. Bringmann, M. Pospelov, Novel direct detection constraints on light dark matter. Phys. Rev. Lett. 122(17), 171801 (2019). https:// doi.org/10.1103/PhysRevLett.122.171801. arXiv:1810.10543 [hep-ph] | spa |
dcterms.bibliographicCitation | 4. H. Alhazmi, K. Kong, G. Mohlabeng, J.-C. Park, Boosted dark matter at the deep underground neutrino experiment. JHEP 04, 158 (2017). https://doi.org/10.1007/JHEP04(2017)158. arXiv:1611.09866 [hep-ph] | spa |
dcterms.bibliographicCitation | D. Kim, J.-C. Park, S. Shin, Dark matter ‘collider’ from inelastic boosted dark matter. Phys. Rev. Lett. 119(16), 161801 (2017). https://doi.org/10.1103/PhysRevLett.119.161801. arXiv:1612.06867 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Chatterjee, A. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, J. Yu, Search for boosted dark matter at ProtoDUNE. Phys. Rev. D 98(7), 075027 (2018). https://doi.org/ 10.1103/PhysRevD.98.075027. arXiv:1803.03264 [hep-ph] | spa |
dcterms.bibliographicCitation | . D. Kim, K. Kong, J.-C. Park, S. Shin, Boosted dark matter quarrying at surface neutrino detectors. JHEP 08, 155 (2018). https:// doi.org/10.1007/JHEP08(2018)155. arXiv:1804.07302 [hep-ph] | spa |
dcterms.bibliographicCitation | L. Necib, J. Moon, T. Wongjirad, J.M. Conrad, Boosted dark matter at neutrino experiments. Phys. Rev. D 95(7), 075018 (2017). https://doi.org/10.1103/PhysRevD.95.075018. arXiv:1610.03486 [hep-ph] | spa |
dcterms.bibliographicCitation | K. Kong, G. Mohlabeng, J.-C. Park, Boosted dark matter signals uplifted with self-interaction. Phys. Lett. B 743, 256–266 (2015). https://doi.org/10.1016/j.physletb.2015.02.057. arXiv:1411.6632 [hep-ph] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, C. Kachulis et al., Search for boosted dark matter interacting with electrons in superKamiokande. Phys. Rev. Lett. 120(22), 221301 (2018). https:// doi.org/10.1103/PhysRevLett.120.221301. arXiv:1711.05278 [hep-ex] | spa |
dcterms.bibliographicCitation | V. De Romeri, K.J. Kelly, P.A.N. Machado, DUNE-PRISM Sensitivity to Light Dark Matter. Phys. Rev. D 100(9), 095010 (2019). https://doi.org/10.1103/PhysRevD.100.095010. arXiv:1903.10505 [hep-ph] | spa |
dcterms.bibliographicCitation | C.M. Marshall, K.S. McFarland, C. Wilkinson, Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 101(3), 032002 (2020). https://doi.org/ 10.1103/PhysRevD.101.032002. arXiv:1910.10996 [hep-ex] | spa |
dcterms.bibliographicCitation | LDMX Collaboration, T. Åkesson et al., Light dark matter eXperiment (LDMX). arXiv:1808.05219 [hep-ex] | spa |
dcterms.bibliographicCitation | P. de Niverville, C. Frugiuele, Hunting sub-GeV dark matter with the NOνA near detector. Phys. Rev. D 99(5), 051701 (2019). https://doi.org/10.1103/PhysRevD.99.051701. arXiv:1807.06501 [hep-ph] | spa |
dcterms.bibliographicCitation | MiniBooNE DM Collaboration, A.A. Aguilar-Arevalo et al., Dark matter search in nucleon, pion, and electron channels from a proton beam dump with MiniBooNE. Phys. Rev. D 98(11), 112004 (2018). https://doi.org/10.1103/PhysRevD.98. 112004. arXiv:1807.06137 [hep-ex] | spa |
dcterms.bibliographicCitation | BaBar Collaboration, J.P. Lees et al., Search for invisible decays of a dark photon produced in e+e− collisions at BaBar. Phys. Rev. Lett. 119(13), 131804 (2017). https://doi.org/10.1103/ PhysRevLett.119.131804. arXiv:1702.03327 [hep-ex] | spa |
dcterms.bibliographicCitation | M. Davier, H. Nguyen Ngoc, An unambiguous search for a light higgs boson. Phys. Lett. B 229, 150–155 (1989). https://doi.org/ 10.1016/0370-2693(89)90174-3 | spa |
dcterms.bibliographicCitation | NA48/2 Collaboration, J.R. Batley et al., Search for the dark photon in π0 decays. Phys. Lett. B 746, 178–185 (2015). https://doi. org/10.1016/j.physletb.2015.04.068. arXiv:1504.00607 [hep-ex] | spa |
dcterms.bibliographicCitation | J.D. Bjorken, S. Ecklund, W.R. Nelson, A. Abashian, C. Church, B. Lu, L.W. Mo, T.A. Nunamaker, P. Rassmann, Search for neutral metastable penetrating particles produced in the SLAC beam dump. Phys. Rev. D 38, 3375 (1988). https://doi.org/10.1103/ PhysRevD.38.3375 | spa |
dcterms.bibliographicCitation | E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment. Phys. Rev. Lett. 59, 755 (1987). https:// doi.org/10.1103/PhysRevLett.59.755 | spa |
dcterms.bibliographicCitation | J.D. Bjorken, R. Essig, P. Schuster, N. Toro, New fixed-target experiments to search for dark gauge forces. Phys. Rev. D 80, 075018 (2009). https://doi.org/10.1103/PhysRevD.80.075018. arXiv:0906.0580 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede, J. Wrbanek, A search for shortlived particles produced in an electron beam dump. Phys. Rev. Lett. 67, 2942–2945 (1991). https://doi.org/10. 1103/PhysRevLett.67.2942 | spa |
dcterms.bibliographicCitation | J.F. Navarro, C.S. Frenk, S.D.M. White, The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996). https://doi.org/ 10.1086/177173. arXiv:astro-ph/9508025 | spa |
dcterms.bibliographicCitation | J.F. Navarro, C.S. Frenk, S.D.M. White, A Universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997). https://doi.org/10.1086/304888. arXiv:astro-ph/9611107 | spa |
dcterms.bibliographicCitation | D. Kim, P.A. Machado, J.-C. Park, S. Shin, Optimizing energetic light dark matter searches in dark matter and neutrino experiments. JHEP 07, 057 (2020). https://doi.org/10.1007/JHEP07(2020)057. arXiv:2003.07369 [hep-ph] | spa |
dcterms.bibliographicCitation | A. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, Probing energetic light dark matter with multiparticle tracks signatures at DUNE. JHEP 11, 043 (2020). https:// doi.org/10.1007/JHEP11(2020)043. arXiv:2005.08979 [hep-ph] | spa |
dcterms.bibliographicCitation | J.A. Formaggio, G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307–1341 (2012). https://doi.org/10.1103/RevModPhys.84.1307. arXiv:1305.7513 [hep-ex] | spa |
dcterms.bibliographicCitation | D. Banerjee et al., Dark matter search in missing energy events with NA64. Phys. Rev. Lett. 123(12), 121801 (2019). https://doi. org/10.1103/PhysRevLett.123.121801. arXiv:1906.00176 [hepex] | spa |
dcterms.bibliographicCitation | NA64 Collaboration, D. Banerjee et al., Search for vector mediator of Dark Matter production in invisible decay mode. Phys. Rev. D 97(7), 072002 (2018). https://doi.org/10.1103/PhysRevD.97. 072002. arXiv:1710.00971 [hep-ex | spa |
dcterms.bibliographicCitation | J. Beacham et al., Physics beyond colliders at CERN: beyond the standard model working group report. J. Phys. G 47(1), 010501 (2020). https://doi.org/10.1088/1361-6471/ ab4cd2. arXiv:1901.09966 [hep-ex] | spa |
dcterms.bibliographicCitation | NA64 Collaboration, D. Banerjee et al., Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e− pairs. Phys. Rev. D 101(7), 071101 (2020). https://doi.org/10. 1103/PhysRevD.101.071101. arXiv:1912.11389 [hep-ex] | spa |
dcterms.bibliographicCitation | A.L. Read, Modified frequentist analysis of search results (the cl(s) method), in Workshop on Confidence Limits, CERN, Geneva, Switzerland, 17–18 Jan 2000: Proceedings (2000), pp. 81–101. http://weblib.cern.ch/abstract?CERN-OPEN-2000-205 | spa |
dcterms.bibliographicCitation | ATLAS, CMS, LHC Higgs Combination Group Collaboration, Procedure for the LHC Higgs boson search combination in summer 2011 | spa |
dcterms.bibliographicCitation | R. Dermisek, J.P. Hall, E. Lunghi, S. Shin, A new avenue to charged Higgs discovery in multi-Higgs models. JHEP 04, 140 (2014). https://doi.org/10.1007/JHEP04(2014)140. arXiv:1311.7208 [hep-ph] | spa |
dcterms.bibliographicCitation | R. Dermisek, J.P. Hall, E. Lunghi, S. Shin, Limits on vectorlike leptons from searches for anomalous production of multilepton events. JHEP 12, 013 (2014). https://doi.org/10.1007/ JHEP12(2014)013. arXiv:1408.3123 [hep-ph] | spa |
dcterms.bibliographicCitation | R. Dermisek, E. Lunghi, S. Shin, New constraints and discovery potential for Higgs to Higgs cascade decays through vectorlike leptons. JHEP 10, 081 (2016). https://doi.org/10.1007/ JHEP10(2016)081. arXiv:1608.00662 [hep-ph] | spa |
dcterms.bibliographicCitation | K. Griest, D. Seckel, Cosmic asymmetry, neutrinos and the sun. Nucl. Phys. B 283, 681–705 (1987). https://doi. org/10.1016/0550-3213(87)90293-8. https://doi.org/10.1016/ 0550-3213(88)90409-9 [Erratum: Nucl. Phys. B 296, 1034 (1988)] | spa |
dcterms.bibliographicCitation | A. Gould, WIMP distribution in and evaporation from the sun. Astrophys. J. 321, 560 (1987). https://doi.org/10.1086/165652 | spa |
dcterms.bibliographicCitation | J. Berger, A module for boosted dark matter event generation in GENIE (forthcoming) | spa |
dcterms.bibliographicCitation | https://cdcvs.fnal.gov/redmine/projects/dunetpc | spa |
dcterms.bibliographicCitation | http://soltrack.sourceforge.net | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, M. Fechner et al., Kinematic reconstruction of atmospheric neutrino events in a large water Cherenkov detector with proton identification. Phys. Rev. D 79, 112010 (2009). https://doi.org/10.1103/PhysRevD.79.112010. arXiv:0901.1645 [hep-ex] | spa |
dcterms.bibliographicCitation | PICO Collaboration, C. Amole et al., Dark matter search results from the complete exposure of thePICO-60 C3F8 bubble chamber. Phys. Rev. D 100(2), 022001 (2019). https://doi.org/10.1103/ PhysRevD.100.022001. arXiv:1902.04031 [astro-ph.CO] | spa |
dcterms.bibliographicCitation | PandaX-II Collaboration, J. Xia et al., PandaX-II constraints on spin-dependent WIMP-nucleon effective interactions. Phys. Lett. B 792, 193–198 (2019). https://doi.org/10.1016/j.physletb.2019. 02.043. arXiv:1807.01936 [hep-ex] | spa |
dcterms.bibliographicCitation | J. Berger, Y. Cui, M. Graham, L. Necib, G. Petrillo, D. Stocks, Y.-T. Tsai, Y. Zhao, Prospects for detecting boosted dark matter in DUNE through hadronic interactions. arXiv:1912.05558 [hep-ph] | spa |
dcterms.bibliographicCitation | J.C. Pati, A. Salam, Is baryon number conserved? Phys. Rev. Lett. 31, 661–664 (1973). https://doi.org/10.1103/PhysRevLett.31.661 | spa |
dcterms.bibliographicCitation | H. Georgi, S. Glashow, Unity of all elementary particle forces. Phys. Rev. Lett. 32, 438–441 (1974). https://doi.org/10.1103/ PhysRevLett.32.438 | spa |
dcterms.bibliographicCitation | P. Langacker, Grand unified theories and proton decay. Phys. Rep. 72, 185 (1981). https://doi.org/10.1016/0370-1573(81)90059-4 | spa |
dcterms.bibliographicCitation | W. de Boer, Grand unified theories and supersymmetry in particle physics and cosmology. Prog. Part. Nucl. Phys. 33, 201– 302 (1994). https://doi.org/10.1016/0146-6410(94)90045-0. arXiv:hep-ph/9402266 | spa |
dcterms.bibliographicCitation | P. Nath, P. FileviezPerez, Proton stability in grand unified theories, in strings and in branes. Phys. Rep. 441, 191–317 (2007). https:// doi.org/10.1016/j.physrep.2007.02.010. arXiv:hep-ph/0601023 | spa |
dcterms.bibliographicCitation | S. Dimopoulos, S. Raby, F. Wilczek, Proton decay in supersymmetric models. Phys. Lett. B 112, 133 (1982). https://doi.org/10. 1016/0370-2693(82)90313-6 | spa |
dcterms.bibliographicCitation | S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150–162 (1981). https://doi.org/10. 1016/0550-3213(81)90522-8 | spa |
dcterms.bibliographicCitation | N. Sakai, T. Yanagida, Proton decay in a class of supersymmetric grand unified models. Nucl. Phys. B 197, 533 (1982). https://doi. org/10.1016/0550-3213(82)90457-6 | spa |
dcterms.bibliographicCitation | P. Nath, A.H. Chamseddine, R.L. Arnowitt, Nucleon decay in supergravity unified theories. Phys. Rev. D 32, 2348–2358 (1985). https://doi.org/10.1103/PhysRevD.32.2348 | spa |
dcterms.bibliographicCitation | Q. Shafi, Z. Tavartkiladze, Flavor problem, proton decay and neutrino oscillations in SUSY models with anomalous U(1). Phys. Lett. B 473, 272–280 (2000). https://doi.org/10.1016/ S0370-2693(99)01433-1. arXiv:hep-ph/9911264 | spa |
dcterms.bibliographicCitation | V. Lucas, S. Raby, Nucleon decay in a realistic SO(10) SUSY GUT. Phys. Rev. D 55, 6986–7009 (1997). https://doi.org/10. 1103/PhysRevD.55.6986. arXiv:hep-ph/9610293 | spa |
dcterms.bibliographicCitation | J.C. Pati, Probing grand unification through neutrino oscillations, leptogenesis, and proton decay. Subnucl. Ser. 40, 194–236 (2003). https://doi.org/10.1142/S0217751X03017427. arXiv:hep-ph/0305221 | spa |
dcterms.bibliographicCitation | K. Babu, J.C. Pati, F. Wilczek, Suggested new modes in supersymmetric proton decay. Phys. Lett. B 423, 337– 347 (1998). https://doi.org/10.1016/S0370-2693(98)00108-7. arXiv:hep-ph/9712307 | spa |
dcterms.bibliographicCitation | M.L. Alciati, F. Feruglio, Y. Lin, A. Varagnolo, Proton lifetime from SU(5) unification in extra dimensions. JHEP 03, 054 (2005). https://doi.org/10.1088/1126-6708/2005/03/054. arXiv:hep-ph/0501086 | spa |
dcterms.bibliographicCitation | G. Altarelli, D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below MGUT . JHEP 08, 021 (2013). https://doi.org/10.1007/JHEP08(2013)021. arXiv:1305.1001 [hep-ph] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Search for proton decay via p → νK + using 260 kiloton·year data of SuperKamiokande. Phys. Rev. D 90(7), 072005 (2014). https://doi.org/ 10.1103/PhysRevD.90.072005. arXiv:1408.1195 [hep-ex] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Search for proton decay via p → e+π0 and p → μ+π0 in 0.31 megaton·years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 95(1), 012004 (2017). https://doi.org/10.1103/ PhysRevD.95.012004. arXiv:1610.03597 [hep-ex] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Search for nucleon decay into charged antilepton plus meson in 0.316 megaton·years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 96(1), 012003 (2017). https://doi.org/10.1103/PhysRevD.96.012003. arXiv:1705.07221 [hepex] | spa |
dcterms.bibliographicCitation | Hyper-Kamiokande Collaboration, K. Abe et al., HyperKamiokande design report. arXiv:1805.04163 [physics.ins-det] | spa |
dcterms.bibliographicCitation | JUNO Collaboration, Z. Djurcic et al., JUNO conceptual design report. arXiv:1508.07166 [physics.ins-det] | spa |
dcterms.bibliographicCitation | D.G. Phillips II et al., Neutron–antineutron oscillations: theoretical status and experimental prospects. Phys. Rep. 612, 1–45 (2016). https://doi.org/10.1016/j.physrep.2015.11.001. arXiv:1410.1100 [hep-ex] | spa |
dcterms.bibliographicCitation | A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). https://doi.org/10.1070/ PU1991v034n05ABEH002497 [Usp. Fiz. Nauk 161(5), 61 (1991)] | spa |
dcterms.bibliographicCitation | S. Nussinov, R. Shrock, N–anti-N oscillations in models with large extra dimensions. Phys. Rev. Lett. 88, 171601 (2002). https://doi. org/10.1103/PhysRevLett.88.171601. arXiv:hep-ph/0112337 | spa |
dcterms.bibliographicCitation | J.M. Arnold, B. Fornal, M.B. Wise, Simplified models with baryon number violation but no proton decay. Phys. Rev. D 87, 075004 (2013). https://doi.org/10.1103/PhysRevD.87.075004. arXiv:1212.4556 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Girmohanta, R. Shrock, Baryon-number-violating nucleon and dinucleon decays in a model with large extra dimensions. Phys. Rev. D 101(1), 015017 (2020). https://doi.org/10.1103/ PhysRevD.101.015017. arXiv:1911.05102 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Girmohanta, R. Shrock, Nucleon decay and n-n¯ oscillations in a left-right symmetric model with large extra dimensions. Phys. Rev. D 101(9), 095012 (2020). https://doi.org/10.1103/ PhysRevD.101.095012. arXiv:2003.14185 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Baldo-Ceolin et al., A New experimental limit on neutron– anti-neutron oscillations. Z. Phys. C 63, 409–416 (1994). https:// doi.org/10.1007/BF01580321 | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., The search for n − ¯n oscillation in Super-Kamiokande I. Phys. Rev. D 91, 072006 (2015). https://doi.org/10.1103/PhysRevD.91.072006. arXiv:1109.4227 [hep-ex] | spa |
dcterms.bibliographicCitation | J.E.T. Hewes, Searches for bound neutron–antineutron oscillation in liquid argon time projection chambers. PhD thesis, Manchester U (2017). https://doi.org/10.2172/1426674. http://lss.fnal. gov/archive/thesis/2000/fermilab-thesis-2017-27.pdf | spa |
dcterms.bibliographicCitation | G.D. Barr, T.K. Gaisser, P. Lipari, S. Robbins, T. Stanev, A three-dimensional calculation of atmospheric neutrinos. Phys. Rev. D 70, 023006 (2004). https://doi.org/10.1103/PhysRevD.70. 023006. arXiv:astro-ph/0403630 | spa |
dcterms.bibliographicCitation | V.C.N. Meddage, Liquid argon time projection chamber calibration using cosmogenic muons, and measurement of neutrino induced charged kaon production in argon in the charged current mode (MicroBooNE experiment). PhD thesis, Kansas State U (2019) | spa |
dcterms.bibliographicCitation | A. Bueno, A.J. Melgarejo, S. Navas, Z.D. ai, Y. Ge, M. Laffranchi, A.M. Meregaglia, A. Rubbia, Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds. J. High Energy Phys. 2007(04), 041 (2007). http://stacks.iop.org/1126-6708/2007/i=04/a=041 | spa |
dcterms.bibliographicCitation | J. Klinger, V.A. Kudryavtsev, M. Richardson, N.J.C. Spooner, Muon-induced background to proton decay in the p → K +ν decay channel with large underground liquid argon TPC detectors. Phys. Lett. B 746, 44–47 (2015). https://doi.org/10.1016/j. physletb.2015.04.054. arXiv:1504.06520 [physics.ins-det] | spa |
dcterms.bibliographicCitation | D.V. Bugg et al., Kaon-nucleon total cross sections from 0.6 to 2.65 GeV/c. Phys. Rev. 168, 1466–1475 (1968). https://doi.org/ 10.1103/PhysRev.168.1466 | spa |
dcterms.bibliographicCitation | E. Friedman et al., K + nucleus reaction and total cross-sections: new analysis of transmission experiments. Phys. Rev. C 55, 1304– 1311 (1997). https://doi.org/10.1103/PhysRevC.55.1304 | spa |
dcterms.bibliographicCitation | MINERvA Collaboration, C.M. Marshall et al., Measurement of K + production in charged-current νμ interactions. Phys. Rev. D 94(1), 012002 (2016). https://doi.org/10.1103/PhysRevD.94. 012002. arXiv:1604.03920 [hep-ex] | spa |
dcterms.bibliographicCitation | ArgoNeuT Collaboration, R. Acciarri et al., A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC. JINST 8, P08005 (2013). https://doi.org/10. 1088/1748-0221/8/08/P08005. arXiv:1306.1712 [physics.insdet] | spa |
dcterms.bibliographicCitation | A. Hocker et al., TMVA-toolkit for multivariate data analysis. arXiv:physics/0703039 [physics.data-an] | spa |
dcterms.bibliographicCitation | G.D. Barr, T.K. Gaisser, S. Robbins, T. Stanev, Uncertainties in atmospheric neutrino fluxes. Phys. Rev. D 74, 094009 (2006). https://doi.org/10.1103/PhysRevD.74.094009. arXiv:astro-ph/0611266 | spa |
dcterms.bibliographicCitation | K. Mahn, C. Marshall, C. Wilkinson, Progress in measurements of 0.1–10 GeV neutrino-nucleus scattering and anticipated results from future experiments. Ann. Rev. Nucl. Part. Sci. 68, 105–129 (2018). https://doi.org/10.1146/ annurev-nucl-101917-020930. arXiv:1803.08848 [hep-ex] | spa |
dcterms.bibliographicCitation | Frejus Collaboration, C. Berger et al., Lifetime limits on (B-L) violating nucleon decay and dinucleon decay modes from the Frejus experiment. Phys. Lett. B 269, 227–233 (1991). https:// doi.org/10.1016/0370-2693(91)91479-F | spa |
dcterms.bibliographicCitation | E.S. Golubeva, J.L. Barrow, C.G. Ladd, Model of n¯ annihilation in experimental searches for n¯ transformations. Phys. Rev. D 99(3), 035002 (2019). https://doi.org/10.1103/PhysRevD.99. 035002. arXiv:1804.10270 [hep-ex] | spa |
dcterms.bibliographicCitation | J.L. Barrow, E.S. Golubeva, E. Paryev, J.-M. Richard, Progress and simulations for intranuclear neutron-antineutron transformations in 40 18 Ar. Phys. Rev. D 101(3), 036008 (2020). https://doi. org/10.1103/PhysRevD.101.036008. arXiv:1906.02833 [hep-ex] | spa |
dcterms.bibliographicCitation | E. Friedman, A. Gal, Realistic calculations of nuclear disappearance lifetimes induced by n anti-n oscillations. Phys. Rev. D 78, 016002 (2008). https://doi.org/10.1103/PhysRevD.78. 016002. arXiv:0803.3696 [hep-ph] | spa |
dcterms.bibliographicCitation | DONUT Collaboration, K. Kodama et al., Observation of tau neutrino interactions. Phys. Lett. B 504, 218–224 (2001). https://doi. org/10.1016/S0370-2693(01)00307-0. arXiv:hep-ex/0012035 | spa |
dcterms.bibliographicCitation | DONuT Collaboration, K. Kodama et al., Final tau-neutrino results from the DONuT experiment. Phys. Rev. D 78, 052002 (2008). https://doi.org/10.1103/PhysRevD.78.052002. arXiv:0711.0728 [hep-ex] | spa |
dcterms.bibliographicCitation | OPERA Collaboration, M. Guler et al., OPERA: an appearance experiment to search for nu/mu–nu/tau oscillations in the CNGS beam. Experimental proposal | spa |
dcterms.bibliographicCitation | OPERA Collaboration, N. Agafonova et al., Final results of the OPERA experiment on ντ appearance in the CNGS neutrino beam. Phys. Rev. Lett. 120(21), 211801 (2018). https://doi. org/10.1103/PhysRevLett.121.139901. https://doi.org/10.1103/ PhysRevLett.120.211801. arXiv:1804.04912 [hep-ex] [Erratum: Phys. Rev. Lett. 121(13), 139901 (2018)] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, K. Abe et al., Evidence for the appearance of atmospheric tau neutrinos in Super-Kamiokande. Phys. Rev. Lett. 110(18), 181802 (2013). https://doi.org/10.1103/ PhysRevLett.110.181802. arXiv:1206.0328 [hep-ex] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, Z. Li et al., Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Phys. Rev. D 98(5), 052006 (2018). https://doi.org/10.1103/PhysRevD.98.052006. arXiv:1711.09436 [hep-ex] | spa |
dcterms.bibliographicCitation | Super-Kamiokande Collaboration, Z. Li et al., Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Phys. Rev. D 98(5), 052006 (2018). https://doi.org/10.1103/PhysRevD.98.052006. arXiv:1711.09436 [hep-ex] | spa |
dcterms.bibliographicCitation | P. Machado, H. Schulz, J. Turner, Tau neutrinos at DUNE: new strategies, new opportunities. Phys. Rev. D 102(5), 053010 (2020). https://doi.org/10.1103/PhysRevD.102.053010. arXiv:2007.00015 [hep-ph] | spa |
dcterms.bibliographicCitation | P. Bakhti, Y. Farzan, M. Rajaee, Secret interactions of neutrinos with light gauge boson at the DUNE near detector. Phys. Rev. D 99(5), 055019 (2019). https://doi.org/10.1103/PhysRevD.99. 055019. arXiv:1810.04441 [hep-ph] | spa |
dcterms.bibliographicCitation | J. Conrad, A. de Gouvea, S. Shalgar, J. Spitz, Atmospheric tau neutrinos in a multi-kiloton liquid argon detector. Phys. Rev. D 82, 093012 (2010). https://doi.org/10.1103/PhysRevD.82. 093012. arXiv:1008.2984 [hep-ph] | spa |
dcterms.bibliographicCitation | A. De Gouvêa, K.J. Kelly, G.V. Stenico, P. Pasquini, Physics with beam tau-neutrino appearance at DUNE. Phys. Rev. D 100(1), 016004 (2019). https://doi.org/10.1103/PhysRevD.100.016004. arXiv:1904.07265 [hep-ph] | spa |
dcterms.bibliographicCitation | A. Ghoshal, A. Giarnetti, D. Meloni, On the role of the ντ appearance in DUNE in constraining standard neutrino physics and beyond. JHEP 12, 126 (2019). https://doi.org/10.1007/ JHEP12(2019)126. arXiv:1906.06212 [hep-ph] | spa |
dcterms.bibliographicCitation | K.R. Dienes, E. Dudas, T. Gherghetta, Neutrino oscillations without neutrino masses or heavy mass scales: a higher dimensional seesaw mechanism. Nucl. Phys. B 557, 25 (1999). https://doi.org/ 10.1016/S0550-3213(99)00377-6. arXiv:hep-ph/9811428 | spa |
dcterms.bibliographicCitation | N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, J. MarchRussell, Neutrino masses from large extra dimensions. Phys. Rev. D 65, 024032 (2001). https://doi.org/10.1103/PhysRevD.65. 024032. arXiv:hep-ph/9811448 | spa |
dcterms.bibliographicCitation | H. Davoudiasl, P. Langacker, M. Perelstein, Constraints on large extra dimensions from neutrino oscillation experiments. Phys. Rev. D 65, 105015 (2002). https://doi.org/10.1103/PhysRevD.65. 105015. arXiv:hep-ph/0201128 | spa |
dcterms.bibliographicCitation | MINOS Collaboration, P. Adamson et al., Constraints on large extra dimensions from the MINOS experiment. Phys. Rev. D 94(11), 111101 (2016). https://doi.org/10.1103/PhysRevD.94. 111101. arXiv:1608.06964 [hep-ex] | spa |
dcterms.bibliographicCitation | A.B. Balantekin, A. de Gouvêa, B. Kayser, Addressing the Majorana vs. Dirac question with neutrino decays. Phys. Lett. B 789, 488–495 (2019). https://doi.org/10.1016/j.physletb.2018.11.068. arXiv:1808.10518 [hep-ph] | spa |
dcterms.bibliographicCitation | P. Ballett, T. Boschi, S. Pascoli, Heavy neutral leptons from low-scale seesaws at the DUNE near detector. JHEP 03, 111 (2020). https://doi.org/10.1007/JHEP03(2020)111. arXiv:1905.00284 [hep3375 ph] | spa |
dcterms.bibliographicCitation | G. Bernardi et al., Search for neutrino decay. Phys. Lett. 166B, 479–483 (1986). https://doi.org/10.1016/0370-2693(86)91602-3 | spa |
dcterms.bibliographicCitation | G. Bernardi et al., Further limits on heavy neutrino couplings. Phys. Lett. B 203, 332–334 (1988). https://doi.org/10.1016/ 0370-2693(88)90563-1 | spa |
dcterms.bibliographicCitation | E949 Collaboration, A.V. Artamonov et al., Search for heavy neutrinos in K + → μ+νH decays. Phys. Rev. D 91(5), 052001 (2015). https://doi.org/10.1103/PhysRevD.91.059903. https://doi.org/10.1103/PhysRevD.91.052001. arXiv:1411.3963 [hep-ex] [Erratum: Phys. Rev. D 91(5), 059903 (2015)] | spa |
dcterms.bibliographicCitation | . D.I. Britton et al., Measurement of the π+ → e+ν neutrino branching ratio. Phys. Rev. Lett. 68, 3000–3003 (1992). https:// doi.org/10.1103/PhysRevLett.68.3000 | spa |
dcterms.bibliographicCitation | D.I. Britton et al., Improved search for massive neutrinos inπ+ → e+ν decay. Phys. Rev. D 46, R885–R887 (1992). https://doi.org/ 10.1103/PhysRevD.46.R885 | spa |
dcterms.bibliographicCitation | PIENU Collaboration, A. Aguilar-Arevalo et al., Improved search for heavy neutrinos in the decay π → eν. Phys. Rev. D 97(7), 072012 (2018). https://doi.org/10.1103/PhysRevD.97. 072012. arXiv:1712.03275 [hep-ex] | spa |
dcterms.bibliographicCitation | PIENU Collaboration, A. Aguilar-Arevalo et al., Search for heavy neutrinos in π → μν decay. Phys. Lett. B 798, 134980 (2019). https://doi.org/10.1016/j.physletb.2019.134980. arXiv:1904.03269 [hep-ex] | spa |
dcterms.bibliographicCitation | CHARM II Collaboration, P. Vilain et al., Search for heavy isosinglet neutrinos. Phys. Lett. B 343, 453–458 (1995). https://doi.org/10.1016/0370-2693(94)00440-I. https://doi.org/ 10.1016/0370-2693(94)01422-9. [Phys. Lett. B 351, 387 (1995)] | spa |
dcterms.bibliographicCitation | NuTeV, E815 Collaboration, A. Vaitaitis et al., Search for neutral heavy leptons in a high-energy neutrino beam. Phys. Rev. Lett. 83, 4943–4946 (1999). https://doi.org/10.1103/PhysRevLett.83. 4943. arXiv:hep-ex/9908011 | spa |
dcterms.bibliographicCitation | DELPHI Collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays. Z. Phys. C74, 57–71 (1997). https:// doi.org/10.1007/s002880050370 [Erratum: Z. Phys. C 75, 580 (1997)] | spa |
dcterms.bibliographicCitation | T2K Collaboration, K. Abe et al., Search for heavy neutrinos with the T2K near detector ND280. Phys. Rev. D 100(5), 052006 (2019). https://doi.org/10.1103/PhysRevD.100.052006. arXiv:1902.07598 [hep-ex] | spa |
dcterms.bibliographicCitation | P. Ballett, S. Pascoli, M. Ross-Lonergan, MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program. JHEP 04, 102 (2017). https://doi.org/10.1007/JHEP04(2017)102. arXiv:1610.08512 [hep-ph] | spa |
dcterms.bibliographicCitation | S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Rept. Prog. Phys. 79(12), 124201 (2016). https://doi.org/10.1088/0034-4885/79/ 12/124201. arXiv:1504.04855 [hep-ph] | spa |
dcterms.bibliographicCitation | M. Drewes, J. Hajer, J. Klaric, G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model. JHEP 07, 105 (2018). https://doi.org/10.1007/JHEP07(2018)105. arXiv:1801.04207 [hep-ph] | spa |
dcterms.bibliographicCitation | D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case. Rept. Prog. Phys. 82(11), 116201 (2019). https://doi.org/10.1088/1361-6633/ ab28d6. arXiv:1806.07396 [hep-ph] | spa |
dcterms.bibliographicCitation | F. Kling, S. Trojanowski, Heavy neutral leptons at FASER. Phys. Rev. D 97(9), 095016 (2018). https://doi.org/10.1103/PhysRevD. 97.095016. arXiv:1801.08947 [hep-ph] | spa |
dcterms.bibliographicCitation | C. Rott, S. In, J. Kumar, D. Yaylali, Directional searches at DUNE for sub-GeV monoenergetic neutrinos arising from dark matter annihilation in the sun. JCAP 1701(01), 016 (2017). https://doi. org/10.1088/1475-7516/2017/01/016. arXiv:1609.04876 [hepph] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1140/epjc/s10052-021-09007-w | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Física | spa |
dc.publisher.sede | Sede Norte | spa |