Mostrar el registro sencillo del ítem

dc.contributor.authorEscobar-Yonoff, Rony
dc.contributor.otherMaestre-Cambronel, Daniel
dc.contributor.otherCharry, Sebastían
dc.contributor.otherRincon-Montenegro, Adriana
dc.contributor.otherPortnoy, Ivan
dc.date.accessioned2022-12-17T18:40:25Z
dc.date.available2022-12-17T18:40:25Z
dc.date.issued2020-12-07
dc.date.submitted2021-03-03
dc.identifier.citationny Escobar-Yonoff, Daniel Maestre-Cambronel, Sebastián Charry, Adriana Rincón-Montenegro, Ivan Portnoy, Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation, Heliyon, Volume 7, Issue 3, 2021, e06506, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2021.e06506. (https://www.sciencedirect.com/science/article/pii/S2405844021006095) Abstract: The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature, pressure, and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally, the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost, electricity cost, and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 °C in both devices, the efficiency is improved between 5-20%. In contrast, pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall, the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also, the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 °C, which reinforces the viability of the system. Overall, hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints. Keywords: Electrolyzer; Fuel cell; Economic assessment; Proton exchange membrane; Electric power generationspa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1135
dc.description.abstractThe study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature, pressure, and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally, the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost, electricity cost, and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 C in both devices, the efficiency is improved between 5-20%. In contrast, pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall, the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also, the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 C, which reinforces the viability of the system. Overall, hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceHeliyonspa
dc.titlePerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generationspa
dc.title.alternativePerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generationspa
dcterms.bibliographicCitationG. Abu-Rumman, A.I. Khdair, S.I. Khdair, Current status and future investment potential in renewable energy in Jordan: an overview, Heliyon 6 (2) (2020), e03346.spa
dcterms.bibliographicCitationG.V. Ochoa, C. Isaza-Roldan, J. Duarte Forero, Economic and exergo-advance analysis of a waste heat recovery system based on regenerative organic rankine cycle under organic fluids with low global warming potential, Energies 13 (6) (2020) 1317spa
dcterms.bibliographicCitationA. Ursúa, P. Sanchis, Static–dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser, Int. J. Hydrogen Energy 37 (24) (2012) 18598–18614.spa
dcterms.bibliographicCitationK. Zeng, D. Zhang Recent progress in alkaline water electrolysis for hydrogen production and applications Prog. Energy Combust. Sci., 36 (3) (2010), pp. 307-326spa
dcterms.bibliographicCitationG. Amador, et al. Characteristics of auto-ignition in internal combustion engines operated with gaseous fuels of variable methane number J. Energy Resour. Technol., 139 (2017)spa
dcterms.bibliographicCitationJ. Duarte Forero, G. Valencia Ochoa, J. Piero Rojas Effect of the geometric profile of top ring on the tribological characteristics of a low-displacement diesel engine Lubricants, 8 (8) (2020), p. 83spa
dcterms.bibliographicCitationG. Valencia, C. Peñaloza, J. Forero Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures Energies, 12 (2019), p. 4643spa
dcterms.bibliographicCitationF. Gutiérrez-Martín, L. Amodio, M. Pagano Hydrogen production by water electrolysis and off-grid solar PV Int. J. Hydrogen Energy, xxxx (2020)spa
dcterms.bibliographicCitationM.H.S. Bargal, M.A.A. Abdelkareem, Q. Tao, J. Li, J. Shi, Y. Wang Liquid cooling techniques in proton exchange membrane fuel cell stacks: a detailed survey Alexandria Eng. J., 59 (2) (2020), pp. 635-655spa
dcterms.bibliographicCitationR.E. Yonoff, G.V. Ochoa, Y. Cardenas-Escorcia, J.I. Silva-Ortega, L. Meriño-Stand Research trends in proton exchange membrane fuel cells during 2008–2018: a bibliometric analysis Heliyon, 5 (5) (2019), Article e01724spa
dcterms.bibliographicCitationM. Abdollahzadeh, P. Ribeirinha, M. Boaventura, A. Mendes Three-dimensional modeling of PEMFC with contaminated anode fuel Energy, 152 (2018), pp. 939-959spa
dcterms.bibliographicCitationM. Sahraoui, Y. Bichiou, K. Halouani Three-dimensional modeling of water transport in PEMFC Int. J. Hydrogen Energy, 38 (2012)spa
dcterms.bibliographicCitationJ.-P. Kone, X. Zhang, Y. Yan, G. Hu, G. Ahmadi Three-dimensional multiphase flow computational fluid dynamics models for proton exchange membrane fuel cell: a theoretical development J. Comput. Multiph. Flows, 9 (2017) 1757482X1769234spa
dcterms.bibliographicCitationK. Shekhar An Investigation into the Minimum Dimensionality Required for Accurate Simulation of Proton Exchange Membrane Fuel Cells by the Comparison between 1- and 3-dimension Models (2013)spa
dcterms.bibliographicCitationZ. Abdin, C.J. Webb, E.M. Gray PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters Energy, 116 (2016), pp. 1131-1144spa
dcterms.bibliographicCitationS.L. Chavan, D.B. Talange Modeling and performance evaluation of PEM fuel cell by controlling its input parameters Energy, 138 (2017), pp. 437-445spa
dcterms.bibliographicCitationT. Yigit, O.F. Selamet Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system Int. J. Hydrogen Energy, 41 (32) (2016), pp. 13901-13914spa
dcterms.bibliographicCitationZ. Abdin, C.J. Webb, E.M. Gray Modelling and simulation of an alkaline electrolyser cell Energy, 138 (2017), pp. 316-331spa
dcterms.bibliographicCitationB. Han, S.M. Steen, J. Mo, F.-Y. Zhang Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy Int. J. Hydrogen Energy, 40 (22) (2015), pp. 7006-7016spa
dcterms.bibliographicCitationB. Han, S.M. Steen, J. Mo, F.-Y. Zhang Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy Int. J. Hydrogen Energy, 40 (22) (2015), pp. 7006-7016spa
dcterms.bibliographicCitationK. Moorthy, N. Patwa, Y. Gupta, et al. Breaking barriers in deployment of renewable energy Heliyon, 5 (1) (2019), Article e01166spa
dcterms.bibliographicCitationF. Alshehri, V.G. Suárez, J.L. Rueda Torres, A. Perilla, M.A.M.M. van der Meijden Modelling and evaluation of PEM hydrogen technologies for frequency ancillary services in future multi-energy sustainable power systems Heliyon, 5 (4) (2019), Article e01396spa
dcterms.bibliographicCitationC.A. Frangopoulos, L.G. Nakos Development of a model for thermoeconomic design and operation optimization of a PEM fuel cell system Energy, 31 (10–11) (2006), pp. 1501-1519spa
dcterms.bibliographicCitationA.A. AlZahrani, I. Dincer Exergoeconomic analysis of hydrogen production using a standalone high-temperature electrolyzer Int. J. Hydrogen Energy, xxxx (2020)spa
dcterms.bibliographicCitationT. Taner, S.A.H. Naqvi, M. Ozkaymak Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates Fuel Cells, 19 (1) (2019), pp. 19-26spa
dcterms.bibliographicCitationE.I. Zoulias, N. Lymberopoulos Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems Renew. Energy, 32 (4) (2007), pp. 680-696spa
dcterms.bibliographicCitationM. Thema, F. Bauer, M. Sterner Power-to-Gas: electrolysis and methanation status review Renew. Sustain. Energy Rev., 112 (Sep-2019), pp. 775-787 Elsevier Ltdspa
dcterms.bibliographicCitationH. Steeb, W. Seeger, H. Aba Oud Hysolar: an overview on the German-Saudi Arabian programme on solar hydrogen Int. J. Hydrogen Energy, 19 (8) (1994), pp. 683-686spa
dcterms.bibliographicCitationT. Lepage, M. Kammoun, Q. Schmetz, A. Richel Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment Biomass Bioenergy, 144 (Jan-2021), p. 105920 Elsevier Ltdspa
dcterms.bibliographicCitationD. Milani, A. Kiani, R. McNaughton Renewable-powered hydrogen economy from Australia’s perspective Int. J. Hydrogen Energy, 45 (46) (2020), pp. 24125-24145spa
dcterms.bibliographicCitationI. Dincer, C. Acar Review and evaluation of hydrogen production methods for better sustainability Int. J. Hydrogen Energy, 40 (34) (2014), pp. 11094-11111spa
dcterms.bibliographicCitationK.K.T. Thanapalan, J.G. Williams, G.P. Liu, D. Rees Modelling OF a PEM fuel cell system IFAC Proc. Vol., 41 (2) (2008), pp. 4636-4641spa
dcterms.bibliographicCitationT. Mennola, et al. Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell J. Appl. Electrochem., 33 (11) (2003), pp. 979-987spa
dcterms.bibliographicCitationH. Pukrushpan, T. Jay, Anna G. Stefanopoulou, Peng Control of Fuel Cell Power Systems Springer (2004)spa
dcterms.bibliographicCitationJ.H. Nam, M. Kaviany Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium Int. J. Heat Mass Tran., 46 (24) (2003), pp. 4595-4611spa
dcterms.bibliographicCitationR. García-Valverde, N. Espinosa, A. Urbina Simple PEM water electrolyser model and experimental validation Int. J. Hydrogen Energy, 37 (2) (2012), pp. 1927-1938spa
dcterms.bibliographicCitationH. Görgün Dynamic modelling of a proton exchange membrane (PEM) electrolyzer Int. J. Hydrogen Energy, 31 (1) (2006), pp. 29-38spa
dcterms.bibliographicCitationK.S. V Santhanam, R.J. Press, M.J. Miri, A. V Bailey, G.A. Takacs Introduction to Hydrogen Technology Wiley (2017)spa
dcterms.bibliographicCitationC. Vallieres, D. Winkelmann, D. Roizard, E. Favre, P. Scharfer, M. Kind On Schroeder’s paradox J. Membr. Sci., 278 (1) (2006), pp. 357-364spa
dcterms.bibliographicCitationL. Onishi, J. Prausnitz Water−Nafion equilibria. Absence of Schroeder’s paradox J. Phys. Chem. B, 111 (2007), pp. 10166-10173spa
dcterms.bibliographicCitationT.A. Zawodzinski, M. Neeman, L.O. Sillerud, S. Gottesfeld Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes J. Phys. Chem., 95 (15) (1991), pp. 6040-6044spa
dcterms.bibliographicCitationF. Marangio, M. Santarelli, M. Calì Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production Int. J. Hydrogen Energy, 34 (3) (2009), pp. 1143-1158spa
dcterms.bibliographicCitationD.J. Kim, M.J. Jo, S.Y. Nam A review of polymer–nanocomposite electrolyte membranes for fuel cell application J. Ind. Eng. Chem., 21 (2015), pp. 36-52spa
dcterms.bibliographicCitationJ. Qi, Y. Zhai, J. St-Pierre Effect of contaminant mixtures in air on proton exchange membrane fuel cell performance J. Power Sources, 413 (2019), pp. 86-97spa
dcterms.bibliographicCitationJ. Milewski, G. Guandalini, S. Campanari Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches J. Power Sources, 269 (2014), pp. 203-211spa
dcterms.bibliographicCitationP.D. Beattie, V.I. Basura, S. Holdcroft Temperature and pressure dependence of O2 reduction at Pt∣Nafion® 117 and Pt∣BAM® 407 interfaces J. Electroanal. Chem., 468 (2) (1999), pp. 180-192spa
dcterms.bibliographicCitationN.M. Marković, B.N. Grgur, P.N. Ross Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions J. Phys. Chem. B, 101 (27) (1997), pp. 5405-5413spa
dcterms.bibliographicCitationM.G. Santarelli, M.F. Torchio, P. Cochis Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature J. Power Sources, 159 (2) (2006), pp. 824-835spa
dcterms.bibliographicCitationT.E. Springer, T.A. Zawodzinski, S. Gottesfeld Polymer electrolyte fuel cell model J. Electrochem. Soc., 138 (8) (1991), pp. 2334-2342spa
dcterms.bibliographicCitationF. Barbir Fuel cell electrochemistry PEM Fuel Cells: Theory and Practice, Academic Press, Burlington (2005), pp. 33-72spa
dcterms.bibliographicCitationR.M. Dell, P.T. Moseley, D.A.J. Rand Hydrogen, fuel cells and fuel cell vehicles Towards sustainable road transport, Academic Press, Boston (2014), pp. 260-295spa
dcterms.bibliographicCitationF. Barbir, T. Gómez Efficiency and economics of proton exchange membrane (PEM) fuel cells Int. J. Hydrogen Energy, 22 (10–11) (1997), pp. 1027-1037spa
dcterms.bibliographicCitationF. Barbir Fuel cell applications F. Barbir (Ed.), PEM Fuel Cells (second ed.), Academic Press, Boston (2013), pp. 373-434spa
dcterms.bibliographicCitationL. Zhou Progress and problems in hydrogen storage methods Renew. Sustain. Energy Rev., 9 (4) (Aug-2005), pp. 395-408 Elsevier Ltdspa
dcterms.bibliographicCitationS.K. Kamarudin, W.R.W. Daud, A. Md. Som, M.S. Takriff, A.W. Mohammad Technical design and economic evaluation of a PEM fuel cell system J. Power Sources, 157 (2) (2006), pp. 641-649spa
dcterms.bibliographicCitationS. Rahimi, M. Meratizaman, S. Monadizadeh, M. Amidpour Techno-economic analysis of wind turbine-PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area Energy, 67 (2014), pp. 381-396spa
dcterms.bibliographicCitationA. Mayyas, et al. Manufacturing cost analysis for proton exchange membrane water electrolyzers manufacturing cost analysis for proton exchange membrane water electrolyzers Natl. Renew. Energy Lab. (2019), p. 65 Augustspa
dcterms.bibliographicCitationR. Yukesh Kannah, et al. Techno-economic assessment of various hydrogen production methods – A review Bioresour. Technol., 319 (Jan-2021), p. 124175 Elsevier Ltdspa
dcterms.bibliographicCitationG. Valencia Ochoa, C. Acevedo Peñaloza, J. Duarte Forero Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine Energies, 12 (21) (2019), p. 4165spa
dcterms.bibliographicCitationF. Consuegra, A. Bula, W. Guillín, J. Sánchez, J. Duarte Forero Instantaneous in-cylinder volume considering deformation and clearance due to lubricating film in reciprocating internal combustion engines Energies, 12 (8) (2019), p. 1437spa
dcterms.bibliographicCitationG. Valencia Ochoa, J. Cárdenas Gutierrez, J. Duarte Forero Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine Resources, 9 (1) (2020), p. 2spa
dcterms.bibliographicCitationZ. Zhang, X. Wang, X. Zhang, L. Jia Optimizing the performance of a single PEM fuel cell J. Fuel Cell Sci. Technol., 5 (3) (2008)spa
dcterms.bibliographicCitationA. Fontalvo, J. Solano, C. Pedraza, A. Bula, A. Gonzalez Quiroga, R. Vasquez Padilla Energy, exergy and economic evaluation comparison of small-scale single and dual pressure organic rankine cycles integrated with low-grade heat sources Entropy, 19 (10) (2017), p. 476spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.heliyon.2021.e06506.
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsElectrolyzerFuel cellEconomic assessmentProton exchange membraneElectric power generationspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por