Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-M, Roy
dc.contributor.otherM Posada, Juan
dc.contributor.otherP Carmona, Carlos
dc.contributor.otherGarzón, Fabián
dc.contributor.otherSalinas, Viviana
dc.contributor.otherIdárraga-Piedrahita, Álvaro
dc.contributor.otherPizano, Camila
dc.contributor.otherAvella, Andrés
dc.contributor.otherLópez-Camacho, René
dc.contributor.otherNorden, Natalia
dc.contributor.otherNieto, Jhon
dc.contributor.otherP Medina, Sandra
dc.contributor.otherRodríguez-M, Gina M
dc.contributor.otherFranke-Ante, Rebeca
dc.contributor.otherM Torres, Alba
dc.contributor.otherJurado, Rubén
dc.contributor.otherCuadros, Hermes
dc.contributor.otherCastaño-Naranjo, Alejandro
dc.contributor.otherGarcía, Hernando
dc.contributor.otherSalgado-Negret, Beatriz
dc.date.accessioned2022-12-17T18:40:01Z
dc.date.available2022-12-17T18:40:01Z
dc.date.issued2020-12-14
dc.date.submitted2021-03-24
dc.identifier.citationGonzález-M R, Posada JM, Carmona CP, Garzón F, Salinas V, Idárraga-Piedrahita Á, Pizano C, Avella A, López-Camacho R, Norden N, Nieto J, Medina SP, Rodríguez-M GM, Franke-Ante R, Torres AM, Jurado R, Cuadros H, Castaño-Naranjo A, García H, Salgado-Negret B. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol Lett. 2021 Mar;24(3):451-463. doi: 10.1111/ele.13659. Epub 2020 Dec 14. PMID: 33316132; PMCID: PMC9292319.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1133
dc.description.abstractExtreme drought events have negative effects on forest diversity and functioning. At the species level, however, these effects are still unclear, as species vary in their response to drought through specific functional trait combinations. We used long-term demographic records of 21,821 trees and extensive databases of traits to understand the responses of 338 tropical dry forests tree species to ENSO2015, the driest event in decades in Northern South America. Functional differences between species were related to the hydraulic safety-efficiency trade-off, but unexpectedly, dominant species were characterised by high investment in leaf and wood tissues regardless of their leaf phenological habit. Despite broad functional trait combinations, tree mortality was more widespread in the functional space than tree growth, where less adapted species showed more negative net biomass balances. Our results suggest that if dry conditions increase in this ecosystem, ecological functionality and biomass gain would be reduced.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceEcology Lettersspa
dc.titleDiverging functional strategies but high sensitivity to an extreme drought in tropical dry forestsspa
dc.title.alternativeDiverging functional strategies but high sensitivity to an extreme drought in tropical dry forestsspa
dcterms.bibliographicCitationAguirre‐Gutiérrez, J. , Malhi, Y. , Lewis, S.L. , Fauset, S. , Adu‐Bredu, S. , Affum‐Baffoe, K. et al. (2020). Long‐term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun., 11, 1–10. - PMC - PubMedspa
dcterms.bibliographicCitationAguirre‐Gutiérrez, J. , Oliveras, I. , Rifai, S. , Fauset, S. , Adu‐Bredu, S. , Affum‐Baffoe, K. et al. (2019). Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol. Lett., 22, 855–865. - PubMedspa
dcterms.bibliographicCitationAllen, C.D. , Breshears, D.D. & McDowell, N.G. (2015). On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6, 1–55.spa
dcterms.bibliographicCitationAllen, C.D. , Macalady, A.K. , Chenchouni, H. , Bachelet, D. , McDowell, N. , Vennetier, M. et al. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660–684.spa
dcterms.bibliographicCitationAllen, K. , Dupuy, J.M. , Gei, M.G. , Hulshof, C. , Medvigy, D. , Pizano, C. et al. (2017a). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett., 12, 023001.spa
dcterms.bibliographicCitationAllen, W.L. , Street, S.E. & Capellini, I. (2017b). Fast life history traits promote invasion success in amphibians and reptiles. Ecol. Lett., 20, 222–230. - PMC - PubMedspa
dcterms.bibliographicCitationÁlvarez, E. , Duque, A. , Saldarriaga, J. , Cabrera, K. , de las Salas, G. , del Valle, I. et al. (2012). Tree above‐ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manage., 267, 297–308.spa
dcterms.bibliographicCitationAnyamba, A. , Chretien, J.P. , Britch, S.C. , Soebiyanto, R.P. , Small, J.L. , Jepsen, R. et al. (2019). Global disease outbreaks associated with the 2015–2016 El Niño event. Sci. Rep., 9, 1–14. - PMC - PubMedspa
dcterms.bibliographicCitationAubry‐Kientz, M. , Hérault, B. , Ayotte‐Trépanier, C. , Baraloto, C. & Rossi, V. (2013). Toward trait‐based mortality models for tropical forests. PLoS One, 8, e63678. - PMC - PubMedspa
dcterms.bibliographicCitationBaraloto, C. , Paine, C.E.T. , Poorter, L. , Beauchene, J. , Bonal, D. , Domenach, A.M. et al. (2010). Decoupled leaf and stem economics in rain forest trees. Ecol. Lett., 13, 1338–1347. - PubMedspa
dcterms.bibliographicCitationBeeckman, H. (2016). Wood anatomy and trait‐based ecology. IAWA J., 37, 127–151.spa
dcterms.bibliographicCitationBerry, S.L. & Roderick, M.L. (2005). Plant‐water relations and the fibre saturation point. New Phytol., 168, 25–37. - PubMedspa
dcterms.bibliographicCitationBrodribb, T.J. , Feild, T.S. & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol., 37, 488–498.spa
dcterms.bibliographicCitationCarmona, C.P. , de Bello, F. , Mason, N.W.H. & Lepš, J. (2016). Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol., 31, 382–394. - PubMedspa
dcterms.bibliographicCitationCarmona, C.P. , de Bello, F. , Mason, N.W.H. & Lepš, J. (2019). Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology, 100, 1–8. - PubMedspa
dcterms.bibliographicCitationCarmona, C.P. , Rota, C. , Azcárate, F.M. & Peco, B. (2015). More for less: Sampling strategies of plant functional traits across local environmental gradients. Funct. Ecol., 29, 579–588.spa
dcterms.bibliographicCitationChacón, J.E. & Duong, T. (2018). Multivariate kernel smoothing and its applications, 1st edn. Chapman and Hall/CRC, New York.spa
dcterms.bibliographicCitationChave, J. , Coomes, D. , Jansen, S. , Lewis, S.L. , Swenson, N.G. & Zanne, A.E. (2009). Towards a worldwide wood economics spectrum. Ecol. Lett., 12, 351–366. - PubMedspa
dcterms.bibliographicCitationCondit, R. , Hubbell, S.P. & Foster, R.B. (1996). Changes in tree species abundance in a neotropical forest: Impact of climate change. J. Trop. Ecol., 12, 231–256.spa
dcterms.bibliographicCitationCunningham, S.A. , Summerhayes, B. & Westoby, M. (1999). Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr., 69, 569–588.spa
dcterms.bibliographicCitationDíaz, S. , Kattge, J. , Cornelissen, J.H.C. , Wright, I.J. , Lavorel, S. , Dray, S. et al. (2016). The global spectrum of plant form and function. Nature, 529, 167–171. - PubMedspa
dcterms.bibliographicCitationDodd, I.C. & Ryan, A.C. (2016). Whole‐Plant Physiological Responses to Water‐Deficit Stress. eLS Plant Science. John Wiley & Sons Ltd, Chichester, pp. 1–9.spa
dcterms.bibliographicCitationEsquivel‐Muelbert, A. , Baker, T.R. , Dexter, K.G. , Lewis, S.L. , Brienen, R.J.W. , Feldpausch, T.R. et al. (2019). Compositional response of Amazon forests to climate change. Glob. Chang. Biol., 25, 39–56. - PMC - PubMedspa
dcterms.bibliographicCitationEsquivel‐Muelbert, A. , Baker, T.R. , Dexter, K.G. , Lewis, S.L. , ter Steege, H. , Lopez‐Gonzalez, G. et al. (2017). Seasonal drought limits tree species across the Neotropics. Ecography (Cop.), 40, 618–629.spa
dcterms.bibliographicCitationFauset, S. , Baker, T.R. , Lewis, S.L. , Feldpausch, T.R. , Affum‐Baffoe, K. , Foli, E.G. et al. (2012). Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett., 15, 1120–1129. - PubMedspa
dcterms.bibliographicCitationGleason, S.M. , Westoby, M. , Jansen, S. , Choat, B. , Hacke, U.G. , Pratt, R.B. et al. (2016). Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world’s woody plant species. New Phytol., 209, 123–136. - PubMedspa
dcterms.bibliographicCitationGuevara, H.A. (2001). Propiedades fisicomecánicas de la madera. Universidad Distrital Francisco José de Caldas, Bogotá.spa
dcterms.bibliographicCitationHacke, U.G. , Sperry, J.S. , Pockman, W.T. , Davis, S.D. & McCulloh, K.A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457–461. - PubMedspa
dcterms.bibliographicCitationHelmling, S. , Olbrich, A. , Heinz, I. & Koch, G. (2018). Atlas of vessel elements. IAWA J., 39, 250–352.spa
dcterms.bibliographicCitationIAWA , Angyalossy‐Alfonso, V. , Baas, P. , Carlquist, S. , Peres Chimelo, J. & Rauber Coradin, V.T. et al. (2007). IAWA list of microscopic features for hardwood identification. IAWA Bull, 4th edn. National Herbarium of the Netherlands, Leiden.spa
dcterms.bibliographicCitationJacobsen, A.L. , Agenbag, L. , Esler, K.J. , Pratt, R.B. , Ewers, F.W. & Davis, S.D. (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean‐type climate region of South Africa. J. Ecol., 95, 171–183.spa
dcterms.bibliographicCitationJacobsen, A.L. , Ewers, F.W. , Pratt, R.B. , Paddock, W.A. & Davis, S.D. (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiol., 139, 546–556. - PMC - PubMedspa
dcterms.bibliographicCitationKogan, F. & Guo, W. (2017). Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens., 38, 161–178.spa
dcterms.bibliographicCitationL’Heureux, M.L. , Takahashi, K. , Watkins, A.B. , Barnston, A.G. , Becker, E.J. , Di Liberto, T.E. et al. (2017). Observing and predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc., 98, 1363–1382.spa
dcterms.bibliographicCitationvan Laar, A. & Akça, A. (2007). Forest mensuration. In: Managing Forest Ecosystems (eds von Gadow, K. , Pukkala, T. & Tomé, M. )., Springer, Netherlands, p. 283.spa
dcterms.bibliographicCitationLawlor, D.W. & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water‐deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot., 103, 561–579. - PMC - PubMedspa
dcterms.bibliographicCitationLi, S. , Lens, F. , Espino, S. , Karimi, Z. , Klepsch, M. , Schenk, H.J. et al. (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J., 37, 152–171.spa
dcterms.bibliographicCitationLinares‐Palomino, R. , Oliveira‐Filho, A.T. & Pennington, R.T. (2011). Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In Seasonally Dry Tropical Forests (eds Dirzo, R. , Young, H.S. , Mooney, H.A. , Ceballos, G. ). Island Press, Washington, DC, pp. 3–21.spa
dcterms.bibliographicCitationLopezaraiza‐Mikel, M. , Álvarez‐Añorve, M. , Ávila‐Cabadilla, L. , Martén‐Rodríguez, S. , Calvo‐Alvarado, J. , Marcos do Espírito‐Santo, M. et al. (2013). Phenological patterns of tropical dry forests along latitudinal and successional gradients in the Neotropics. In: Tropical Dry Forests in the Americas: Ecology, Conservation, and Management (eds Sanchez‐Azofeifa, A. , Powers, J.S. , Fernandes, G.W. & Quesada, M. ). CRC Press, pp. 101–128.spa
dcterms.bibliographicCitationMadsen, B. & Gamstedt, E.K. (2013). Wood versus plant fibers: Similarities and differences in composite applications. Advances in Materials Science and Engineering, 2013, 1–14.spa
dcterms.bibliographicCitationMarkesteijn, L. , Poorter, L. , Bongers, F. , Paz, H. & Sack, L. (2011a). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol., 191, 480–495. - PubMedspa
dcterms.bibliographicCitationMarkesteijn, L. , Poorter, L. , Paz, H. , Sack, L. & Bongers, F. (2011b). Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ., 34, 137–148. - PubMedspa
dcterms.bibliographicCitationMaza‐Villalobos, S. , Poorter, L. & Martínez‐Ramos, M. (2013). Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old‐field succession of a tropical dry forest. PLoS One, 8, e82040. - PMC - PubMedspa
dcterms.bibliographicCitationMcDowell, N. , Allen, C.D. , Anderson‐Teixeira, K. , Brando, P. , Brienen, R. , Chambers, J. et al. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol., 219, 851–869. - PubMedspa
dcterms.bibliographicCitationMéndez‐Alonzo, R. , Paz, H. , Zuluaga, R.C. , Rosell, J.A. & Olson, M.E. (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397–2406. - PubMedspa
dcterms.bibliographicCitationMendivelso, H.A. , Camarero, J.J. , Royo Obregón, O. , Gutiérrez, E. & Toledo, M. (2013). Differential growth responses to water balance of coexisting deciduous tree species arelinked to wood density in a Bolivian tropical dry forest. PLoS One, 8, e73855. - PMC - PubMedspa
dcterms.bibliographicCitationNiinemets, Ü. (2001). Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2, 453–469.spa
dcterms.bibliographicCitationNunes Garcia, B. , Libonati, R. & Nunes, A.M.B. (2018). Extreme drought events over the Amazon Basin: The perspective from the reconstruction of South American Hydroclimate. Water, 10, 1594.spa
dcterms.bibliographicCitationOlson, M.E. & Rosell, J.A. (2013). Vessel diameter‐stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol., 197, 1204–1213. - PubMedspa
dcterms.bibliographicCitationOnoda, Y. , Westoby, M. , Adler, P.B. , Choong, A.M.F. , Clissold, F.J. , Cornelissen, J.H.C. et al. (2011). Global patterns of leaf mechanical properties. Ecol. Lett., 14, 301–312. - PubMedspa
dcterms.bibliographicCitationOsnas, J.L.D. , Lichstein, J.W. , Reich, P.B. & Pacala, S.W. (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science, 340(6133), 741–744.. - PubMedspa
dcterms.bibliographicCitationPennington, R.T. , Lavin, M. & Oliveira‐Filho, A. (2009). Woody plant diversity, evolution, and ecology in the tropics: Perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst., 40, 437–457.spa
dcterms.bibliographicCitationPennington, R.T. , Lehmann, C.E.R. & Rowland, L.M. (2018). Tropical savannas and dry forests. Curr. Biol., 28, R541–R545. - PubMedspa
dcterms.bibliographicCitationPérez‐Harguindeguy, N. , Díaz, S. , Garnier, E. , Lavorel, S. , Poorter, H. , Jaureguiberry, P. et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot., 61, 167–234.spa
dcterms.bibliographicCitationPineda‐García, F. , Paz, H. , Meinzer, F.C. & Angeles, G. (2015). Exploiting water versus tolerating drought: Water‐use strategies of trees in a secondary successional tropical dry forest. Tree Physiol., 36, 208–217. - PubMedspa
dcterms.bibliographicCitationPistón, N. , de Bello, F. , Dias, A.T.C. , Götzenberger, L. , Rosado, B.H.P. , de Mattos, E.A. et al. (2019). Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol., 107, 2317–2328.spa
dcterms.bibliographicCitationPoorter, H. , Niinemets, Ü. , Poorter, L. , Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis. New Phytol., 182, 565–588. - PubMedspa
dcterms.bibliographicCitationPoorter, L. , McDonald, I. , Alarcón, A. , Fichtler, E. , Licona, J.C. , Peña‐Claros, M. et al. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol., 185, 481–492. - PubMedspa
dcterms.bibliographicCitationPoorter, L. , van der Sande, M.T. , Arets, E.J.M.M. , Ascarrunz, N. , Enquist, B. , Finegan, B. et al. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr., 26, 1423–1434.spa
dcterms.bibliographicCitationPoorter, L. , Wright, S.J. , Paz, H. , Ackerly, D.D. , Condit, R. , Ibarra‐Manríquez, G. et al. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908–1920. - PubMedspa
dcterms.bibliographicCitationPowers, J.S. & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches. Funct. Ecol., 24, 927–936.spa
dcterms.bibliographicCitationPowers, J.S. , Vargas, G.G , Brodribb, T.J. , Schwartz, N.B. , Pérez‐Aviles, D. & Smith‐Martin, C.M. et al. (2020). A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol., 26, 3122–3133. - PubMedt versus taxonomic approaches. Funct. Ecol., 24, 927–936.spa
dcterms.bibliographicCitationPrado‐Junior, J.A. , Schiavini, I. , Vale, V.S. , Arantes, C.S. , van der Sande, M.T. , Lohbeck, M. et al. (2016). Conservative species drive biomass productivity in tropical dry forests. J. Ecol., 104, 817–827.spa
dcterms.bibliographicCitationPratt, R.B. , Jacobsen, A.L. , Ewers, F.W. & Davis, S.D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol., 174, 787–798. - PubMedspa
dcterms.bibliographicCitationRosell, J.A. , Olson, M.E. & Anfodillo, T. (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. For. Reports, 3, 46–59.spa
dcterms.bibliographicCitationSalgado‐Negret, B. , Rodríguez, P. , Cabrera, E.N.M. , Ruíz Osorio, C. & Paz, H. (2015). Protocolo para la medicion de rasgos funcionales en plantas. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp. 37–79.spa
dcterms.bibliographicCitationSalleo, S. & Nakdini, A. (2000). Sclerophylly: Evolutionary advantage or mere epiphenomenon? Plant Biosyst., 134, 247–259.spa
dcterms.bibliographicCitationSantiago, L.S. , Goldstein, G. , Meinzer, F.C. , Fisher, J.B. , Machado, K. , Woodruff, D. et al. (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543–550. - PubMedspa
dcterms.bibliographicCitationScholz, A. , Klepsch, M. , Karimi, Z. & Jansen, S. (2013). How to quantify conduits in wood? Front. Plant Sci., 4, 1–11. - PMC - PubMedspa
dcterms.bibliographicCitationSilva, J.O. , Espírito‐Santo, M.M. & Morais, H.C. (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic Appl. Ecol., 16, 210–219.spa
dcterms.bibliographicCitationSlik, J.W.F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114–120. - PubMedspa
dcterms.bibliographicCitationSobrado, M.A. (1997). Embolism vulnerability in drought‐deciduous and evergreen species of a tropical dry forest. Acta Oecologica, 18, 383–391.spa
dcterms.bibliographicCitationSomavilla, N.S. , Kolb, R.M. & Rossatto, D.R. (2014). Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Rev. Bras. Bot., 37, 69–82.spa
dcterms.bibliographicCitationSorieul, M. , Dickson, A. , Hill, S.J. & Pearson, H. (2016). Plant fibre: Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials (Basel), 9, 1–36. - PMC - PubMedspa
dcterms.bibliographicCitationStekhoven, D.J. & Bühlmann, P. (2012). MissForest–Non‐parametric missing value imputation for mixed‐type data. Bioinformatics, 28, 112–118. - PubMedspa
dcterms.bibliographicCitationSterck, F. , Markesteijn, L. , Schieving, F. & Poorter, L. (2011). Functional traits determine trade‐offs and niches in a tropical forest community. Proc. Natl. Acad. Sci. U. S. A., 108, 20627–20632. - PMC - PubMedspa
dcterms.bibliographicCitationTalbot, J. , Lewis, S.L. , Lopez‐Gonzalez, G. , Brienen, R.J.W. , Monteagudo, A. , Baker, T.R. et al. (2014). Methods to estimate aboveground wood productivity from long‐term forest inventory plots. For. Ecol. Manage., 320, 30–38.spa
dcterms.bibliographicCitationTorres, A.M. , Adarve, J.B. , Cárdenas, M. , Vargas, J.A. , Londoño, V. , Rivera, K. et al. (2012). Dinámica sucesional de un fragmento de bosque seco tropical del Valle del Cauca. Colombia. Biota Colomb., 13, 66–84.spa
dcterms.bibliographicCitationTraba, J. , Iranzo, E.C. , Carmona, C.P. & Malo, J.E. (2019). Realised niche changes in a native herbivore assemblage associated with the presence of livestock. Oikos, 126, 1400–1409.spa
dcterms.bibliographicCitationTurner, I.M. (1994). Sclerophylly: Primarily protective? Funct. Ecol., 8, 669.spa
dcterms.bibliographicCitationVicente‐Serrano, S.M. , Zouber, A. , Lasanta, T. & Pueyo, Y. (2012). Dryness is accelerating degradation of vulnerable shrublands in semiarid mediterranean environments. Ecol. Monogr., 82, 407–428.spa
dcterms.bibliographicCitationWright, I.J. , Reich, P.B. , Westoby, M. , Ackerly, D.D. , Baruch, Z. , Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. - PubMedspa
dcterms.bibliographicCitationZiemińska, K. , Westoby, M. & Wright, I.J. (2015). Broad anatomical variation within a narrow wood density range ‐ A study of twig wood across 69 Australian angiosperms. PLoS One, 10, 1–25. - PMC - PubMedspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1111/ele.13659
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsBiomass, demographic rates, hydraulic safety-efficiency trade-off, investment in tissues, trait probability density.spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineMaestría en Ciencias Ambientalesspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por