Mostrar el registro sencillo del ítem
Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp
dc.contributor.author | Calderón-Martínez, Vanessa | |
dc.contributor.other | Delgado-Ospina, Johannes | |
dc.contributor.other | Ramírez-Navas, Juan Sebastián | |
dc.contributor.other | Flórez-López, Edwin | |
dc.contributor.other | Valdés-Restrepo, Magda Piedad | |
dc.contributor.other | Grande-Tovar, Carlos David | |
dc.contributor.other | Chaves-López, Clemencia | |
dc.date.accessioned | 2022-12-17T18:39:48Z | |
dc.date.available | 2022-12-17T18:39:48Z | |
dc.date.issued | 2021-02-16 | |
dc.date.submitted | 2021-01-26 | |
dc.identifier.citation | Calderón-Martínez, V.; Delgado-Ospina, J.; Ramírez-Navas, J.S.; Flórez-López, E.; Valdés-Restrepo, M.P.; Grande-Tovar, C.D.; ChavesLópez, C. Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp. Appl. Sci. 2021, 11, 1734. https://doi.org/10.3390/app11041734 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1132 | |
dc.description.abstract | The Gulupa (Passiflora edulis f. edulis Sims) is an expression of South America’s tropics’ biodiversity, and a source of B vitamins and amino acids. It is a climacteric export fruit for which it is necessary to incorporate emerging technologies for its conservation and transport. This work investigated the effect of ultrasound on gulupa pulp and verified the stability of the characters of interest in the shelf life of 20 days. Six treatments and a control sample were used, evaluated in triplicate, and varied in frequency (30 and 40 kHz) with an exposure time of 10, 20, and 30 min. A statistical analysis of unidirectional variances and Dunnett’s test was used. It was found that the ultrasound treatments did not affect the pH or the titratable acidity. Soluble solid results presented a significant increase (p < 0.05) (from 13.4 to 14.8% w/v) in the antioxidant capacity (from 1.13 to 1.54 µmol Trolox Equivalent (TE)/g by the ABTS•+ (2,20 -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) Cationic Radical Assay and from 3.3 to 3.7 µmol TE/g by the DPPH· (2,2-diphenyl-1-picrilhydrazil) Radical Scavenging Assay). During the shelf life, ascorbic acid was the parameter that varied most (p < 0.05). It decreased from 42.7 to 21.6 mg ascorbic acid/100 g of pulp in the control sample. However, a smaller decrease was observed (23.8–24.5 mg ascorbic acid/100 g of pulp) in the 40 kHz treatments. The smallest global color difference (∆E) for the control was found in the 40 kHz treatment at 30 min through the entire shelf life (day 0 to 20). Ultrasound treatment offers a new strategy to improve and extend the shelf life of chilled gulupa pulp. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Appl. Sci | spa |
dc.title | Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp | spa |
dcterms.bibliographicCitation | Ocampo Pérez, J.; Wyckhuys, K. (Eds.) Tecnología Para El Cultivo de la Gulupa (Passiflora Edulis F Edulis Sims) en Colombia, 1st ed.; Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura-CIAT y Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2012; ISBN 978-958-725-092-3. | spa |
dcterms.bibliographicCitation | Pinzón, I.M.D.P.; Fischer, G.; Corredor, G. Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims). Agron. Colomb. 2007, 25, 83–95. | spa |
dcterms.bibliographicCitation | Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [CrossRef] | spa |
dcterms.bibliographicCitation | Jiménez, A.M.; Sierra, C.A.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J.; Osorio, C. Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Res. Int. 2011, 44, 1912–1918. [CrossRef] | spa |
dcterms.bibliographicCitation | Acevedo, M.F.; Harvey, D.R.; Palis, F.G. Food security and the environment: Interdisciplinary research to increase productivity while exercising environmental conservation. Glob. Food Secur. 2018, 16, 127–132. [CrossRef] | spa |
dcterms.bibliographicCitation | Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [CrossRef] | spa |
dcterms.bibliographicCitation | Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Piyasena, P.; Mohareb, E.; McKellar, R.C. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [CrossRef] | spa |
dcterms.bibliographicCitation | Bhavya, M.L.; Hebbar, H.U. Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrason. Sonochem. 2019, 57, 108–115. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | . Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Res. Int. 2012, 48, 41–48. [CrossRef] | spa |
dcterms.bibliographicCitation | Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2020, 105293. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Kowalski, S.J.; Mierzwa, D.; Stasiak, M. Ultrasound-assisted convective drying of apples at different process conditions. Dry. Technol. 2017, 35, 939–947. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhang, L.; Liao, L.; Qiao, Y.; Wang, C.; Shi, D.; An, K.; Hu, J. Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying. Food Chem. 2020, 303, 125386. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Dai, C.; Zhou, X.; Zhang, S.; Zhou, N. Influence of ultrasound-assisted nucleation on freeze-drying of carrots. Dry. Technol. 2016, 34, 1196–1203. [CrossRef] | spa |
dcterms.bibliographicCitation | Cheng, X.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. The principles of ultrasound and its application in freezing related processes of food materials: A review. Ultrason. Sonochem. 2015, 27, 576–585. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | . De la Fuente-Blanco, S.; De Sarabia, E.R.-F.; Acosta-Aparicio, V.M.; Blanco-Blanco, A.; Gallego-Juárez, J.A. Food drying process by power ultrasound. Ultrasonics 2006, 44, e523–e527. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Merone, D.; Colucci, D.; Fissore, D.; Sanjuan, N.; Carcel, J.A. Energy and environmental analysis of ultrasound-assisted atmospheric freeze-drying of food. J. Food Eng. 2020, 283, 110031. [CrossRef] | spa |
dcterms.bibliographicCitation | Yildiz, G.; Izli, G. The effect of ultrasound pretreatment on quality attributes of freeze-dried quince slices: Physical properties and bioactive compounds. J. Food Process Eng. 2019, 42, e13223. [CrossRef] | spa |
dcterms.bibliographicCitation | Rodríguez, Ó.; Eim, V.; Rosselló, C.; Femenia, A.; Cárcel, J.A.; Simal, S. Application of power ultrasound on the convective drying of fruits and vegetables: Effects on quality. J. Sci. Food Agric. 2018, 98, 1660–1673. [CrossRef] | spa |
dcterms.bibliographicCitation | Žlabur, J.Š.; Colnar, D.; Vo´ca, S.; Lorenzo, J.M.; Munekata, P.E.S.; Barba, F.J.; Dobriˇcevi´c, N.; Gali´c, A.; Dujmi´c, F.; Pliesti´c, S. Effect of ultrasound pretreatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrason. Sonochem. 2019, 56, 372–377. [CrossRef] | spa |
dcterms.bibliographicCitation | Colucci, D.; Fissore, D.; Rossello, C.; Carcel, J.A. On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. Food Res. Int. 2018, 106, 580–588. [CrossRef] | spa |
dcterms.bibliographicCitation | Ren, F.; Perussello, C.A.; Zhang, Z.; Kerry, J.P.; Tiwari, B.K. Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. LWT 2018, 87, 102–111. [CrossRef] | spa |
dcterms.bibliographicCitation | Soltani Firouz, M.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [CrossRef] | spa |
dcterms.bibliographicCitation | ICONTEC NTC 5468:2012. Jugo (Zumo), Pulpa, Néctar de Frutas y Sus Concentrados; Instituto Colombiano de Normas Técnicas y Certificación: Bogotá, Colombia, 2012; 21p. | spa |
dcterms.bibliographicCitation | . Wang, J.; Vanga, S.K.; Raghavan, V. High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity. LWT 2019, 107, 299–307. [CrossRef] | spa |
dcterms.bibliographicCitation | Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000; ISBN 0935584544. | spa |
dcterms.bibliographicCitation | Grande-Tovar, C.D.; Delgado-Ospina, J.; Puerta, L.F.; Rodríguez, G.C.; Sacchetti, G.; Paparella, A.; Chaves-López, C. Bioactive micro-constituents of ackee arilli (Blighia sapida K.D. Koenig). An. Acad. Bras. Cienc. 2019, 91, e20180140. [CrossRef] | spa |
dcterms.bibliographicCitation | . Villa-Rodríguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of “Hass” avocado. Food Res. Int. 2011, 44, 1231–1237. [CrossRef] | spa |
dcterms.bibliographicCitation | Pertuzatti, P.B.; Sganzerla, M.; Jacques, A.C.; Barcia, M.T.; Zambiazi, R.C. Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. LWT Food Sci. Technol. 2015, 64, 259–263. [CrossRef] | spa |
dcterms.bibliographicCitation | Bhat, R.; Kamaruddin, N.S.B.C.; Min-Tze, L.; Karim, A.A. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem. 2011, 18, 1295–1300. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem. 2013, 20, 1182–1187. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Franco, G.; Cartagena, J.; Correa, G.; Lobo, M. Physical characterization of gulupa fruits (Passiflora edulis SIMS) during ripening and posthaverst. Rev. Agron. 2013, 21, 48–62. | spa |
dcterms.bibliographicCitation | Menéndez Aguirre, O.; Evangelista Lozano, S.; Arenas Ocampo, M.; Bermúdez Torres, K.; Martínez, A.D.V.; Jimenez Aparicio, A. Cambios en la actividad de α-Amilasa, pectinmetilesterasa y poligalacturonasa durante la maduración del maracuyá amarillo (passiflora edulis Var. flavicarpa degener). Interciencia 2006, 31, 728–733. | spa |
dcterms.bibliographicCitation | Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Gani, A.; Baba, W.N.; Ahmad, M.; Shah, U.; Khan, A.A.; Wani, I.A.; Masoodi, F.A.; Gani, A. Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT Food Sci. Technol. 2016, 66, 496–502. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, J.; Wang, J.; Ye, J.; Vanga, S.K.; Raghavan, V. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 2019, 96, 128–136. [CrossRef] | spa |
dcterms.bibliographicCitation | Cruz-Cansino, N.D.S.; Reyes-Hernández, I.; Delgado-Olivares, L.; Jaramillo-Bustos, D.P.; Ariza-Ortega, J.A.; Ramírez-Moreno, E. Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. Braz. J. Microbiol. 2016, 47, 431–437. [CrossRef] | spa |
dcterms.bibliographicCitation | Ordóñez-Santos, L.E.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Adiamo, O.Q.; Ghafoor, K.; Al-Juhaimi, F.; Babiker, E.E.; Mohamed Ahmed, I.A. Thermosonication process for optimal functional properties in carrot juice containing orange peel and pulp extracts. Food Chem. 2018, 245, 79–88. [CrossRef] | spa |
dcterms.bibliographicCitation | . Tiwari, B.K.; O’Donnell, C.P.; Cullen, P.J. Effect of sonication on retention of anthocyanins in blackberry juice. J. Food Eng. 2009, 93, 166–171. [CrossRef] | spa |
dcterms.bibliographicCitation | . Saeeduddin, M.; Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Awad, F.N.; Hu, B.; Lei, S.; Zeng, X. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT Food Sci. Technol. 2015, 64, 452–458. [CrossRef] | spa |
dcterms.bibliographicCitation | Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food Bioprod. Process. 2009, 87, 102–107. [CrossRef] | spa |
dcterms.bibliographicCitation | . Franco, G.; Cartagena, V.J.R.; Correa, L.G.; Rojano, B.; Piedrahita, C.A. Antioxidant activity of Passiflora edulis Sims (purple passion fruit) juice in the postharvest period. Rev. Cuba. Plantas Med. 2014, 19, 154–166. | spa |
dcterms.bibliographicCitation | . Saravanan, S.; Parimelazhagan, T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci. Hum. Wellness 2014, 3, 56–64. [CrossRef] | spa |
dcterms.bibliographicCitation | Sasikala, V.; Saravana, S.; Parimelazhagan, T. Evaluation of antioxidant potential of different parts of wild edible plant Passiflora foetida L. J. Appl. Pharm. Sci. 2011, 1, 89–96. | spa |
dcterms.bibliographicCitation | . Tomadoni, B.; Cassani, L.; Viacava, G.; Moreira, M.D.R.; Ponce, A. Effect of ultrasound and storage time on quality attributes of strawberry juice. J. Food Process Eng. 2017, 40, e12533. [CrossRef] | spa |
dcterms.bibliographicCitation | Ramos dos Reis, L.C.; Pesamosca Facco, E.M.; Flôres, S.H.; de Oliveira Rios, A. Stability of functional compounds and antioxidant activity of fresh and pasteurized orange passion fruit (Passiflora caerulea) during cold storage. Food Res. Int. 2018, 106, 481–486. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Piljac-Žegarac, J.; Valek, L.; Martinez, S.; Belšˇcak, A. Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chem. 2009, 113, 394–400. [CrossRef] | spa |
dcterms.bibliographicCitation | Franco, M.N.; Galeano-Díaz, T.; López, Ó.; Fernández-Bolaños, J.G.; Sánchez, J.; De Miguel, C.; Gil, M.V.; Martín-Vertedor, D. Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem. 2014, 163, 289–298. [CrossRef] | spa |
dcterms.bibliographicCitation | Aguilar, K.; Garvín, A.; Ibarz, A.; Augusto, P.E.D. Ascorbic acid stability in fruit juices during thermosonication. Ultrason. Sonochem. 2017, 37, 375–381. [CrossRef] | spa |
dcterms.bibliographicCitation | Gómez-López, V.M.; Buitrago, M.E.; Tapia, M.S.; Martínez-Yépez, A. Effect of ultrasonication on microbial quality, colour, and ascorbic acid content of passion-fruit juice during storage. Acta Aliment. 2017, 46, 470–480. [CrossRef] | spa |
dcterms.bibliographicCitation | . Tanner, D. Impacts of Storage on Food Quality. Ref. Modul. Food Sci. 2016, 1–4. [CrossRef] | spa |
dcterms.bibliographicCitation | Valero, M.; Recrosio, N.; Saura, D.; Muñoz, N.; Martí, N.; Lizama, V. Effects of ultrasonic treatments in orange juice processing. J. Food Eng. 2007, 80, 509–516. [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, H.S.; Coates, G.A. Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT Food Sci. Technol. 2003, 36, 153–156. [CrossRef] | spa |
dcterms.bibliographicCitation | Cortés, C.; Esteve, M.J.; Frígola, A. Color of orange juice treated by High Intensity Pulsed Electric Fields during refrigerated storage and comparison with pasteurized juice. Food Control 2008, 19, 151–158. [CrossRef] | spa |
dcterms.bibliographicCitation | Sandi, D.; Paes Chaves, J.B.; Gomes de Sousa, A.C.; Parreiras, J.F.M.; Coelho da Silva, M.T.; Lessa Constant, P.B. Hunter color dimensions, sugar content and volatile compounds in pasteurized yellow passion fruit juice (Passiflora edulis var. flavicarpa) during storage. Braz. Arch. Biol. Technol. 2004, 47, 233–245. [CrossRef] | spa |
dcterms.bibliographicCitation | Choi, M.H.; Kim, G.H.; Lee, H.S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res. Int. 2002, 35, 753–759. [CrossRef] | spa |
dcterms.bibliographicCitation | Abdullah, N.; Chin, N.L. Application of Thermosonication Treatment in Processing and Production of High Quality and Safe-to-Drink Fruit Juices. Agric. Agric. Sci. Procedia 2014, 2, 320–327. [CrossRef] | spa |
dcterms.bibliographicCitation | Zinoviadou, K.G.; Galanakis, C.M.; Brnˇci´c, M.; Grimi, N.; Boussetta, N.; Mota, M.J.; Saraiva, J.A.; Patras, A.; Tiwari, B.; Barba, F.J. Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Res. Int. 2015, 77, 743–752. [CrossRef] | spa |
dcterms.bibliographicCitation | Režek Jambrak, A.; Šimunek, M.; Evaˇci´c, S.; Markov, K.; Smoljani´c, G.; Frece, J. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics 2018, 83, 3–17. [CrossRef | spa |
dcterms.bibliographicCitation | . Khandpur, P.; Gogate, P.R. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Fan, K.; Zhang, M.; Jiang, F. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: Influence on microbial inhibition and storage quality. Ultrason. Sonochem. 2019, 54, 162–170. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [CrossRef] | spa |
dcterms.bibliographicCitation | Bevilacqua, A.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Combination of ultrasound and antimicrobial compounds towards Pichia spp. and Wickerhamomyces anomalus in pineapple juice. LWT Food Sci. Technol. 2015, 64, 616–622. [CrossRef] | spa |
dcterms.bibliographicCitation | Jalilzadeh, A.; Hesari, J.; Peighambardoust, S.H.; Javidipour, I. The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese. J. Dairy Sci. 2018, 101, 5809–5820. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Desai, V.; Shenoy, M.A.; Gogate, P.R. Degradation of polypropylene using ultrasound-induced acoustic cavitation. Chem. Eng. J. 2008, 140, 483–487. [CrossRef] | spa |
dcterms.bibliographicCitation | . Li, Y.; Li, J.; Guo, S.; Li, H. Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation. Ultrason. Sonochem. 2005, 12, 183–189. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Jafari, S.M. Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends Food Sci. Technol. 2019, 91, 248–261. [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/app11041734 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | antioxidant capacity; biomolecules; conservation; postharvest; pulp; shelf life | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Química | spa |
dc.publisher.sede | Sede Norte | spa |