Mostrar el registro sencillo del ítem
Chromatographic analysis of phytochemicals in the peel of Musa paradisiaca to synthesize silver nanoparticles
dc.contributor.author | Buendia-Otero, María José | |
dc.contributor.other | Jiménez-Corzo, Deisy Julieth | |
dc.contributor.other | Caamaño De Ávila, Zulia Isabel | |
dc.contributor.other | Restrepo, Juan B. | |
dc.date.accessioned | 2022-12-16T19:02:40Z | |
dc.date.available | 2022-12-16T19:02:40Z | |
dc.date.issued | 2021-05-21 | |
dc.date.submitted | 2020-12-09 | |
dc.identifier.citation | Buendia-Otero, M. J., Jiménez-Corzo, D. J., Caamaño De Ávila, Z. I., & Restrepo, J. B. (2021). Chromatographic analysis of phytochemicals in the peel of Musa paradisiaca to synthesize silver nanoparticles. Revista Facultad De Ingeniería Universidad De Antioquia, (103), 130–137. https://doi.org/10.17533/udea.redin.20210427 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1129 | |
dc.description.abstract | This research work usedMusa paradisiaca(banana) peels as a natural solvent,assorted with the precursorAgNO3(10 mM) to perform the green synthesis of silvernanoparticles. The phytochemical components present in theMusa paradisiacapeelextracts were determined by gas chromatography coupled to a mass spectrometer(GC-MS), and it was possible to identify the compounds: 1.2 Ethanediol (60.0261%) and 2.3 Butanediol (11.2 %); these -diols represent a highly reducing agent formetals, since they act as a solvent for the metal precursor behaving as a reducingagent, and facilitating the formation of nanoparticles. Likewise, the synthesized silvernanoparticles were subjected to a washing and drying treatment to be subsequentlycharacterized by means of UV-Vis and XRD techniques, resulting in a wavelength of411 nm, which is characteristic of these metallic nanoparticles, and achieving theidentification of the face-centered cubic structure (fcc) of the metallic silver, with anaverage particle size of 21.8 nm according to the Debye-Scherrer equation. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Revista Facultad de Ingeniería | spa |
dc.title | Chromatographic analysis of phytochemicals in the peel of Musa paradisiaca to synthesize silver nanoparticles | spa |
dcterms.bibliographicCitation | V. S. Kotakadi and et al., “Biofabrication of silver nanoparticles using andrographis paniculata,” European Journal of Medicinal Chemistry, vol. 73, Feb. 12, 2014. [Online]. Available: https://doi.org/10.1016/j.ejmech.2013.12.004 | spa |
dcterms.bibliographicCitation | H. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms,” Journal of Radiation Research and Applied Sciences, vol. 8, no. 3, 2015. [Online]. Available: https://doi.org/10.1016/j.jrras.2015.01.007 | spa |
dcterms.bibliographicCitation | (2020) Análisis del mercado del banano: resultados preliminares 2019, 2020. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). [Online]. Available: http://www.fao.org/3/ca7567es/CA7567ES.pdf | spa |
dcterms.bibliographicCitation | A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde, “Banana peel extract mediated synthesis of gold nanoparticles,” Colloids and Surfaces B: Biointerfaces, vol. 80, no. 1, Oct. 1, 2010. [Online]. Available: https://doi.org/10.1016/j.colsurfb.2010.05.029 | spa |
dcterms.bibliographicCitation | M. V. Vázquez and L. Blandón, “Antimicrobial performance of electrochemically synthesized silver nanoparticles,” Cuaderno Activa, vol. 6, 2014. [Online]. Available: https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/219 | spa |
dcterms.bibliographicCitation | G. Nam, S. Rangasamy, B. Purushothaman, and J. M. Song, “The application of bactericidal silver nanoparticles in wound treatment. nanomaterials and nanotechnology,” College of Pharmacy, Seoul National University, Seoul, South Korea, vol. 5, 2015. [Online]. Available: https://doi.org/10.5772%2F60918 | spa |
dcterms.bibliographicCitation | C. A. Pérez, “Synthesis of silver nanoparticles using plant extracts,” Undergraduated. Degree work, Escuela de ingeniería de Antioquia, Envigado, Antioquia, 2014. | spa |
dcterms.bibliographicCitation | H. G. Ganchozo and R. A. Luna, “Obtención de un nanocompuesto estructurado por nanocelulosa y dopado con nanopartículas de plata (agnps) con actividad antibacterial y cicatrizante, utilizando como materia prima los residuos de banano: raquis y cascara (musa acuminata),” Bachelor thesis, Universidad de Guayaquil, Facultad de Ingeniería Química, Guayaquil, Ecuador, 2018. [Online]. Available: http://repositorio.ug.edu.ec/handle/redug/35406 | spa |
dcterms.bibliographicCitation | J. C. Serge. (2016) Magnetic structures of 2d and 3d nanoparticles: properties and applications. Pan Stanford Publishing. [Online]. Available: https://n9.cl/3gry | spa |
dcterms.bibliographicCitation | M. Mokhtari, M. Saban, and R. E. Gaynor, “Carboxylic acid stabilized silver nanoparticles and process for producing same,” U.S. Patent US 8.460,584 B2, Jun. 11„ 2015. [Online]. Available: https://patents.google.com/patent/US8460584B2/en | spa |
dcterms.bibliographicCitation | J. R. Koduru, “Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review,” Advances in Colloid and Interface Science, vol. 256, Jun. 2018. [Online]. Available: https://doi.org/10.1016/j.cis.2018.03.001 | spa |
dcterms.bibliographicCitation | F. Soriano and G. Morales, “Incorporation of silver nanoparticles in high impact polystyrene: Effect on polymerization kinetics and morphological structure,” in Polymer Engineering & Science. Revista Iberoamericana de Polímeros, 2011, pp. 116–124. [Online]. Available: https://doi.org/10.1002/pen.21978 | spa |
dcterms.bibliographicCitation | M. P. Hernandez, “Síntesis de nanopartículas de plata biológicamente asistida con opuntia sp. y su incorporación en membranas poliméricas nanofibrosas,” M.S. thesis, Centro de investigación en química aplicada, Saltillo, Mexico, 2013. | spa |
dcterms.bibliographicCitation | S. A. Ovalle, C. Blanco, and M. Y. Combariza, “In situ synthesis of silver nanoparticles on fique fibres,” Revista Colombiana de Química, vol. 42, no. 1, 2013. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28042013000100004 | spa |
dcterms.bibliographicCitation | K. Ponsanti, B. Tangnorawich, N. Ngernyuang, and C. Pechyen, “A flower shape-green synthesis and characterization of silver nanoparticles (agnps) with different starch as a reducing agent,” Journal of materials Research and Technology, vol. 9, no. 5, 2020. [Online]. Available: https://doi.org/10.1016/j.jmrt.2020.07.077 | spa |
dcterms.bibliographicCitation | K. Jemal, B. V. Sandeep, and S. Pola, “Synthesis, characterization, and evaluation of the antibacterial activity of allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles,” Journal of Nanomaterials, 2017. [Online]. Available: https://doi.org/10.1155/2017/4213275 | spa |
dcterms.bibliographicCitation | M. Rabiei and et al., “Comparing methods for calculating nano crystal size of natural hydroxyapatite using x -ray diffraction,” Journal of Nanomaterials, vol. 10, no. 9, 2020. [Online]. Available: https://doi.org/10.3390/nano10091627 | spa |
dcterms.bibliographicCitation | J. Annamalai and T. Nallamuthu, “Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency,” Applied nanoscience, vol. 6, no. 2, Feb. 2016. [Online]. Available: https://doi.org/10.1007/s13204-015-0426-6 | spa |
dcterms.bibliographicCitation | A. Saxena, R. M. Tripathi, F. Zafar, and P. Singhc, “Green synthesis of silver nanoparticles using aqueous solution of ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, Jan. 15, 2012. [Online]. Available: https://doi.org/10.1016/j.matlet.2011.09.038 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.17533/udea.redin.20210427 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.identifier.url | https://www.scopus.com/record/display.uri?eid=2-s2.0-85120965653&doi=10.17533%2fudea.redin.20210427&origin=inward&txGid=f4d8548dd6aa6a06cb1d627b5d15d6e3 | |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | biosynthesis | spa |
dc.subject.keywords | nanoparticles | spa |
dc.subject.keywords | musa paradisiaca | spa |
dc.subject.keywords | chromatographic analysis | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |