Mostrar el registro sencillo del ítem

dc.contributor.authorOrtega, María José
dc.contributor.otherUrieles Guerrero, Alejandro
dc.contributor.otherRamírez, William
dc.date.accessioned2022-11-16T22:34:46Z
dc.date.available2022-11-16T22:34:46Z
dc.date.issued2018-10-07
dc.date.submitted2018-07-15
dc.identifier.citationOrtega, M. J. ., Urieles Guerrero, A. ., & Ramírez, W. . (2018, October 7). Una extensión. Nueva familia de polinomios generalizados tipo Apostol Frobenius-Euler. Algunas aplicaciones. .spa
dc.identifier.isbn978-958-5525-76-4
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1102
dc.description.abstractEl objetivo principal de este libro es describir los resultados de investigación de los autores en el estudio de los polinomios generalizados tipo Apostol Frobenius-Euler de nivel m, buscando una exposición clara con todos los detalles posibles en las demostraciones de los teoremas propuestos como nuevos resultados. La familia clásica de polinomios Frobenius-Euler ha sido objeto de estudio desde su aparición; algunas generalizaciones han sido planteadas, pero son las extensiones tipo Apostol a las que se les ha mostrado más interés.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceEditorial Universidad del Atlánticospa
dc.titleUna extensión. Nueva familia de polinomios generalizados tipo Apostol Frobenius-Euler. Algunas aplicacionesspa
dcterms.bibliographicCitationApostol, T.: On the Lerch Zeta function. Pacific J. Math. 1, 161-167. (1951).spa
dcterms.bibliographicCitationApostol, T.: Introduction to Analitic Number Theory. Springer- Verlag, New York. (1976).spa
dcterms.bibliographicCitationAskey, R.: Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics. SIAM. J. W. Arrowsmith Ltd., Bristol 3, England. (1975).spa
dcterms.bibliographicCitationBayad, A., Kim, T.: Identities for Apostol-Type Frobenius-Euler Polynomias Resulting from the Study of a Nonlinear Operator. Russi. Jou. Mat. Phy. 23, 164-171. (2016).spa
dcterms.bibliographicCitationChoi, J., Kim, D.S., Kim, T., Kim, Y.H.: A note on some identities of Frobenius-Euler numbers and polynomials. Int. J. Math. Math.Sci. 2012, 1-9. (2012).spa
dcterms.bibliographicCitationComtet, L.: The Art of Finite and Infinite Expansions. Reidel Dordrecht and Boston. (1974).spa
dcterms.bibliographicCitationErdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Trascendental Functions. Vol 1. (1953).spa
dcterms.bibliographicCitationCheon G.-S. and Kim J.-S. Stirling matrix via Pascal matrix, Linear Algebra Appl. Vol 329, 49-59. (2001).spa
dcterms.bibliographicCitationGraham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, Addison-Wesley Publishing Company, Inc., New York. (1994).spa
dcterms.bibliographicCitationHernández-Llanos, P., Quintana, Y., Urieles, A.: About extensions of generalized Apostol-type polynomials. Results Math. 68, 203-225. (2015).spa
dcterms.bibliographicCitationKurt, B.: Some relationships between the generalized Apostol- Bernoulli and Apostol-Euler polynomials. Turk. J. Anal. Number Theory. 1, 54-58. (2013).spa
dcterms.bibliographicCitationKurt, B., Simsek, Y.: On the generalized Apostol-type Frobenius- Euler polynomials. Adv. Difference Equ. 1, 1-10. (2013).spa
dcterms.bibliographicCitationKurt, B.: On the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials. Int. Journal of Math. Analysis. 8, 373-387. (2013).spa
dcterms.bibliographicCitationComtet, L. Advanced Combinatorics. The art of finite and infinite expansions. Translated from French by J. W. Nienhuys. (1974).spa
dcterms.bibliographicCitationLee, G.-Y, Kim, J.-S. Lee. S.-G.: Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 1, 203-213. (2002).spa
dcterms.bibliographicCitationLu, D.-Q., Luo, Q.-M.: Some properties of the generalized Apostol-type polynomials. Bound. Value Probl. 64, 1-13. (2013).spa
dcterms.bibliographicCitationLuck, Y.: The Special Functions and their Approximations. Acudemic Press (1969).spa
dcterms.bibliographicCitationLuo, Q.-M.: Extensions of the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291-309. (2011).spa
dcterms.bibliographicCitationLuo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 1, 290-302. (2005).spa
dcterms.bibliographicCitationLuo, Q.-M., Srivastava, H.M.: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51, 631-642. (2006).spa
dcterms.bibliographicCitationGwang, L. and Seong, C. The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix. J. Korean Math. Soc. 45, 479-491. (2008).spa
dcterms.bibliographicCitationNatalini, P., Bernardini, A.: A generalization of the Bernoulli polynomials. J. Appl. Math. 3, 155-163. (2003).spa
dcterms.bibliographicCitationOldham, K., Spanier, J.: The fractional Calculus. T. Appl. of Differentiation. El Sevier Science (1974).spa
dcterms.bibliographicCitationQuintana, Y. Ramírez, W. and Urieles, A.: On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo. 55(3), 29 (2018).spa
dcterms.bibliographicCitationQuintana, Y. Ramírez, W. and Urieles, A.: Generalized Apostol- Type polynomials matrix and its algebraic properties. Math. Repo. (2019). 21(2), 249-264.spa
dcterms.bibliographicCitationRainville, ED.: Special Functions. Macmillan Company, New York (1960). Reprinted by Chelsea publishing Company, Bronx. (1971).spa
dcterms.bibliographicCitationRamírez, W., Castilla, L., Urieles, G.: An Extended Generalized q-Extensions for the Apostol Type Polynomials, Abstract and Applied Analysis. Abstract and Applied Analisis (2018).spa
dcterms.bibliographicCitationRiordan, J.: Combinatorial identities. Wiley, New York, London and Sydney. (1968).spa
dcterms.bibliographicCitationSimsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application. arXiv:1111.3848v2.spa
dcterms.bibliographicCitationSrivastava, H.M., Choi, J.: Series associated with the Zeta and related funtions. Kluwer Academic. Springor Netherlands (2001).spa
dcterms.bibliographicCitationSrivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam. (2012).spa
dcterms.bibliographicCitationSrivastava, H.M. Manocha, H.L.: A Treatise on Generating Functions. Ellis Horwood Ltd., West Sussex, England. (1984).spa
dcterms.bibliographicCitationSzego, G.: Orthogonal Polynomials, American Math. Soc. Providence, Rhode Island. (1939).spa
dcterms.bibliographicCitationTremblay, R., Gaboury, S. and Fugère, B-J.: A new class of generalized Apostol-Bernoulli and some analogues of the Srivastava-Pintér addition theorem. Appl. Math. Lett. 24, 1888- 1893. (2011).spa
dcterms.bibliographicCitationYeon, G. and Seong, H.: The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix. J. Korean Math. 45, 479 -991. (2008).spa
dcterms.bibliographicCitationWang, W., Jia, C., Wang, T.: Some results on the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 55, 1322- 1332. (2008).spa
dcterms.bibliographicCitationWhittaker, E., Watson, G.: A course of modern Analysis. (1915).spa
dcterms.bibliographicCitationZhang, Z. and Zhang, Y.: The Lucas matrix and some combinatorial identities. Indian J. Pure Appl. Math. (2007).spa
dcterms.bibliographicCitationZhang, Z. Liu, M. An extension of the generalized Pascal matrix and its algebraic properties. (1998).spa
dcterms.bibliographicCitationZhang, Z. Wang, J.: Bernoulli matrix and its algebraic properties. (2006).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_3248spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordspolinomios generalizados - Apostol Frobenius-Euler - aplicacionesspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaLibrospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por