Mostrar el registro sencillo del ítem
Una extensión. Nueva familia de polinomios generalizados tipo Apostol Frobenius-Euler. Algunas aplicaciones
dc.contributor.author | Ortega, María José | |
dc.contributor.other | Urieles Guerrero, Alejandro | |
dc.contributor.other | Ramírez, William | |
dc.date.accessioned | 2022-11-16T22:34:46Z | |
dc.date.available | 2022-11-16T22:34:46Z | |
dc.date.issued | 2018-10-07 | |
dc.date.submitted | 2018-07-15 | |
dc.identifier.citation | Ortega, M. J. ., Urieles Guerrero, A. ., & Ramírez, W. . (2018, October 7). Una extensión. Nueva familia de polinomios generalizados tipo Apostol Frobenius-Euler. Algunas aplicaciones. . | spa |
dc.identifier.isbn | 978-958-5525-76-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1102 | |
dc.description.abstract | El objetivo principal de este libro es describir los resultados de investigación de los autores en el estudio de los polinomios generalizados tipo Apostol Frobenius-Euler de nivel m, buscando una exposición clara con todos los detalles posibles en las demostraciones de los teoremas propuestos como nuevos resultados. La familia clásica de polinomios Frobenius-Euler ha sido objeto de estudio desde su aparición; algunas generalizaciones han sido planteadas, pero son las extensiones tipo Apostol a las que se les ha mostrado más interés. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Editorial Universidad del Atlántico | spa |
dc.title | Una extensión. Nueva familia de polinomios generalizados tipo Apostol Frobenius-Euler. Algunas aplicaciones | spa |
dcterms.bibliographicCitation | Apostol, T.: On the Lerch Zeta function. Pacific J. Math. 1, 161-167. (1951). | spa |
dcterms.bibliographicCitation | Apostol, T.: Introduction to Analitic Number Theory. Springer- Verlag, New York. (1976). | spa |
dcterms.bibliographicCitation | Askey, R.: Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics. SIAM. J. W. Arrowsmith Ltd., Bristol 3, England. (1975). | spa |
dcterms.bibliographicCitation | Bayad, A., Kim, T.: Identities for Apostol-Type Frobenius-Euler Polynomias Resulting from the Study of a Nonlinear Operator. Russi. Jou. Mat. Phy. 23, 164-171. (2016). | spa |
dcterms.bibliographicCitation | Choi, J., Kim, D.S., Kim, T., Kim, Y.H.: A note on some identities of Frobenius-Euler numbers and polynomials. Int. J. Math. Math.Sci. 2012, 1-9. (2012). | spa |
dcterms.bibliographicCitation | Comtet, L.: The Art of Finite and Infinite Expansions. Reidel Dordrecht and Boston. (1974). | spa |
dcterms.bibliographicCitation | Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Trascendental Functions. Vol 1. (1953). | spa |
dcterms.bibliographicCitation | Cheon G.-S. and Kim J.-S. Stirling matrix via Pascal matrix, Linear Algebra Appl. Vol 329, 49-59. (2001). | spa |
dcterms.bibliographicCitation | Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, Addison-Wesley Publishing Company, Inc., New York. (1994). | spa |
dcterms.bibliographicCitation | Hernández-Llanos, P., Quintana, Y., Urieles, A.: About extensions of generalized Apostol-type polynomials. Results Math. 68, 203-225. (2015). | spa |
dcterms.bibliographicCitation | Kurt, B.: Some relationships between the generalized Apostol- Bernoulli and Apostol-Euler polynomials. Turk. J. Anal. Number Theory. 1, 54-58. (2013). | spa |
dcterms.bibliographicCitation | Kurt, B., Simsek, Y.: On the generalized Apostol-type Frobenius- Euler polynomials. Adv. Difference Equ. 1, 1-10. (2013). | spa |
dcterms.bibliographicCitation | Kurt, B.: On the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials. Int. Journal of Math. Analysis. 8, 373-387. (2013). | spa |
dcterms.bibliographicCitation | Comtet, L. Advanced Combinatorics. The art of finite and infinite expansions. Translated from French by J. W. Nienhuys. (1974). | spa |
dcterms.bibliographicCitation | Lee, G.-Y, Kim, J.-S. Lee. S.-G.: Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 1, 203-213. (2002). | spa |
dcterms.bibliographicCitation | Lu, D.-Q., Luo, Q.-M.: Some properties of the generalized Apostol-type polynomials. Bound. Value Probl. 64, 1-13. (2013). | spa |
dcterms.bibliographicCitation | Luck, Y.: The Special Functions and their Approximations. Acudemic Press (1969). | spa |
dcterms.bibliographicCitation | Luo, Q.-M.: Extensions of the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291-309. (2011). | spa |
dcterms.bibliographicCitation | Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 1, 290-302. (2005). | spa |
dcterms.bibliographicCitation | Luo, Q.-M., Srivastava, H.M.: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51, 631-642. (2006). | spa |
dcterms.bibliographicCitation | Gwang, L. and Seong, C. The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix. J. Korean Math. Soc. 45, 479-491. (2008). | spa |
dcterms.bibliographicCitation | Natalini, P., Bernardini, A.: A generalization of the Bernoulli polynomials. J. Appl. Math. 3, 155-163. (2003). | spa |
dcterms.bibliographicCitation | Oldham, K., Spanier, J.: The fractional Calculus. T. Appl. of Differentiation. El Sevier Science (1974). | spa |
dcterms.bibliographicCitation | Quintana, Y. Ramírez, W. and Urieles, A.: On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo. 55(3), 29 (2018). | spa |
dcterms.bibliographicCitation | Quintana, Y. Ramírez, W. and Urieles, A.: Generalized Apostol- Type polynomials matrix and its algebraic properties. Math. Repo. (2019). 21(2), 249-264. | spa |
dcterms.bibliographicCitation | Rainville, ED.: Special Functions. Macmillan Company, New York (1960). Reprinted by Chelsea publishing Company, Bronx. (1971). | spa |
dcterms.bibliographicCitation | Ramírez, W., Castilla, L., Urieles, G.: An Extended Generalized q-Extensions for the Apostol Type Polynomials, Abstract and Applied Analysis. Abstract and Applied Analisis (2018). | spa |
dcterms.bibliographicCitation | Riordan, J.: Combinatorial identities. Wiley, New York, London and Sydney. (1968). | spa |
dcterms.bibliographicCitation | Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application. arXiv:1111.3848v2. | spa |
dcterms.bibliographicCitation | Srivastava, H.M., Choi, J.: Series associated with the Zeta and related funtions. Kluwer Academic. Springor Netherlands (2001). | spa |
dcterms.bibliographicCitation | Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam. (2012). | spa |
dcterms.bibliographicCitation | Srivastava, H.M. Manocha, H.L.: A Treatise on Generating Functions. Ellis Horwood Ltd., West Sussex, England. (1984). | spa |
dcterms.bibliographicCitation | Szego, G.: Orthogonal Polynomials, American Math. Soc. Providence, Rhode Island. (1939). | spa |
dcterms.bibliographicCitation | Tremblay, R., Gaboury, S. and Fugère, B-J.: A new class of generalized Apostol-Bernoulli and some analogues of the Srivastava-Pintér addition theorem. Appl. Math. Lett. 24, 1888- 1893. (2011). | spa |
dcterms.bibliographicCitation | Yeon, G. and Seong, H.: The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix. J. Korean Math. 45, 479 -991. (2008). | spa |
dcterms.bibliographicCitation | Wang, W., Jia, C., Wang, T.: Some results on the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 55, 1322- 1332. (2008). | spa |
dcterms.bibliographicCitation | Whittaker, E., Watson, G.: A course of modern Analysis. (1915). | spa |
dcterms.bibliographicCitation | Zhang, Z. and Zhang, Y.: The Lucas matrix and some combinatorial identities. Indian J. Pure Appl. Math. (2007). | spa |
dcterms.bibliographicCitation | Zhang, Z. Liu, M. An extension of the generalized Pascal matrix and its algebraic properties. (1998). | spa |
dcterms.bibliographicCitation | Zhang, Z. Wang, J.: Bernoulli matrix and its algebraic properties. (2006). | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_3248 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | polinomios generalizados - Apostol Frobenius-Euler - aplicaciones | spa |
dc.type.driver | info:eu-repo/semantics/book | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Libro | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |