Mostrar el registro sencillo del ítem

dc.contributor.authorVega Monroy, Ricardo
dc.contributor.otherSalazar Cohen, Guillermo
dc.date.accessioned2022-11-15T21:41:40Z
dc.date.available2022-11-15T21:41:40Z
dc.date.issued2018-06-01
dc.date.submitted2018-06-01
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1047
dc.description.abstractEn años recientes, después que fue posible separar la capa de grafeno de una estructura grafítica, un gran número de trabajos ha sido dedicado a estudiar este sistema debido a las propiedades no peculiares encontradas en este material [28, 29, 27, 6, 9, 2, 19, 12, 10, 13, 11, 40, 39, 8, 18]. La estructura característica del grafeno, en la cual las bandas de valencia y de conducción se tocan en dos puntos no equivalentes en la esquina de la primera zona de Brillouin, como consecuencia de su red en forma de pánel de abejas, hace a este material ópticamente transparente al igual que altamente buen conductor [26, 4] (ver Figura 1.1). Por lo anterior, las excitaciones de baja energía en grafeno poseen un espectro de dispersión lineal similar a los fotones en la radiación electromagnética, lo cual afecta de manera radical las propiedades de transporte en este sistema. En particular, las propiedades ópticas y eléctricas en grafeno bajo la acción de campos alternos intensos hansido objeto de muchas investigaciones, encontrandose que la radiación ac cambia de manera sorpresiva la estructura energética y, consecuentemente, la densidad de estados de este sistema [7, 25]. En este sentido, una variedad de fenómenos han sido predichos para ser observados en grafeno, como por ejemplo el efecto Hall fotovoltáico [30], las corriente valle-polarizadas [33], etc..spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleEfectos oscilatorios de tipo óptico en la conductividad terahercios del grafenospa
dcterms.bibliographicCitationY. Aharonov and J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 58:1593, 1987.spa
dcterms.bibliographicCitationAntonio Di Bartolomeo, Giuseppe Luongo, Filippo Giubileo, Ni- cola Funicello, Gang Niu, Thomas Schroeder, Marco Lisker, and Grzegorz Lupina. Hybrid graphene/silicon schottky photodiode with intrinsic gating effect. 2D Mater., 4:025075, 2017.spa
dcterms.bibliographicCitationC. W. J. Beenakker. Colloquium: Andreev reflection and klein tunneling in graphene. Rev. Mod. Phys., 80:1337, 2008.spa
dcterms.bibliographicCitationK. Bolotin and et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 142:351, 2008.spa
dcterms.bibliographicCitationJ. Buron and et al. Graphene conductance uniformity mapping. Nano Lett., 12:5074, 2012.spa
dcterms.bibliographicCitationJ. Buron and et al. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe. Nano Lett., 14:6348, 2014. 7. Thierry Champel and Serge Florens. High magnetic field theory for the local density of states in graphene with smooth arbitrary potential landscapes. Phys. Rev. B, 82:045421, 2010.spa
dcterms.bibliographicCitationH.J. Choi and et al. Control of terahertz nonlinear transmission with electrically gated graphene metadevices. Sci. Rep., 7:42833, 2017.spa
dcterms.bibliographicCitationHamed Dalir, Yang Xia, Yuan Wang, and Xiang Zhang. Athermal broadband graphene optical modulator with 35 ghz speed. ACS Photonics, 3(9):1564, 2016.spa
dcterms.bibliographicCitationGuangsheng Deng, Tianyu Xia, Jun Yang, and Zhiping Yin. A graphene-based broadband terahertz metamaterial modulator. Journal of Electromagnetic Waves and Applications, 31:381–385, 2017.spa
dcterms.bibliographicCitationJ. Ding and et al. Tuneable complementary metamaterial struc- tures based on graphene for single and multiple transparency win- dows. Sci. Rep., 4:6128, 2014.spa
dcterms.bibliographicCitationMaixia Fu and et al. Efficient terahertz modulator based on pho- toexcited graphene. Optical Materials, 66:381–385, 2017.spa
dcterms.bibliographicCitationX.-J. He and et al. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene. J. Appl. Phys., 115:17B903, 2014.spa
dcterms.bibliographicCitationA. Iurov, G. Gumbs, O. Roslyak, and D. Huang. Anomalous photon-assisted tunneling in graphene. J. Phys.: Condens. Mat- ter, 24:015303, 2012.spa
dcterms.bibliographicCitationO. Kibis. Metal-insulator transition in graphene induced by cir- cularly polarized photons. Phys. Rev. B, 81:165433, 2010.spa
dcterms.bibliographicCitationO. Kibis. Dissipationless electron transport in photon-dressed nanostructures. Phys. Rev. Lett., 107:106802, 2011.spa
dcterms.bibliographicCitationL.D. Landau and E.M. Lifshits. Statistical Mechanics I. Perga- mon Press, U.K., 3 edition, 1980.spa
dcterms.bibliographicCitationQ. Li and et al. A graphene–silicon hybrid diode for terahertz waves. Nat. Commun, 6:7082, 2015.spa
dcterms.bibliographicCitationQuan Li and et al. Dual control of active graphene–silicon hybrid metamaterial devices. Carbon, 90:146, 2015.spa
dcterms.bibliographicCitationG. Mahan. Many-Particle Physics. Plenum Press, New York, 2 edition, 1990spa
dcterms.bibliographicCitationZ. Mics and et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Commun., 6:7655, 2015.spa
dcterms.bibliographicCitationE. G. Mishchenko. Effect of electron-electron interactions on the conductivity of clean graphene. Phys. Rev. Lett., 98:216801, 2007.spa
dcterms.bibliographicCitationR. Vega Monroy and G. Salazar Cohen. Photon-induced quantum oscillations of the terahertz conductivity in graphene. Nano Lett., 16:6797, 2016.spa
dcterms.bibliographicCitationR. Vega Monroy and K. Arrieta Carbon ó. Quantum optical osci- llations of the fermi level in a graphene-based schottky junction. The European Physical Journal B, 91:232, 2018.spa
dcterms.bibliographicCitationMarcin Mucha-Kruczzynski, Oleksiy Kushuba, and Vladimir Fal’ko. Spectral features due to inter-landau-level transitions in the raman spectrum of bilayer graphene. Phys. Rev. B, 82:045405, 2010.spa
dcterms.bibliographicCitationR. R. Nair and et al. Fine structure constant defines visual trans- parency of graphene. Science, 320:1308, 2008.spa
dcterms.bibliographicCitationA. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109, 2009.spa
dcterms.bibliographicCitationK.S. Novoselov and et al. Electric field effect in atomically thin carbon films. Science, 306:666, 2004.spa
dcterms.bibliographicCitationK.S. Novoselov and et al. Two-dimensional gas of massless dirac fermions in graphene. Nature, 438:197, 2005.spa
dcterms.bibliographicCitationT. Oka and H. Aoki. Photovoltaic hall effect in graphene. Phys. Rev. B, 79:081406(R), 2009.spa
dcterms.bibliographicCitationN.M.R. Peres and Eduardo V. Castro. Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields. J. Phys.: Condens. Matter, 19:406231, 2007.spa
dcterms.bibliographicCitationH. Razavipour and et al. High-field response of gated graphene at terahertz frequencies. Phys. Rev. B, 92:245421, 2015.spa
dcterms.bibliographicCitationO. Roslyak, G. Gumbs, and S. Mukamel. Trapping photon- dressed dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy. J. Chem. Phys., 136:194106, 2012.spa
dcterms.bibliographicCitationS. G. Sharapov, V. P. Gusynin, and H. Beck. Magnetic oscillations in planar systems with the dirac-like spectrum of quasiparticle excitations. Phys. Rev. B, 69:075104, 2004.spa
dcterms.bibliographicCitationR. Krishna Kumar et al. High-temperature quantum oscillations caused by recurring bloch states in graphene superlattices. Scien- ce, 14:181, 2017.spa
dcterms.bibliographicCitationR. Vega-Monroy. Bose-einstein condensation of paired photon- dressed electrons in graphene. Physica E, 63:134, 2014.spa
dcterms.bibliographicCitationR. Vega-Monroy, O. Martinez-Castro, and G. Salazar-Cohen. Frequency-driven quantum oscillations in a graphene layer under circularly polarized ac fields. Phys. Lett. A, 379:1169, 2015.spa
dcterms.bibliographicCitationR. Vega-Monroy and C. Mera-Acosta. Magneto-optical franz- keldysh effect in graphene. Phys. Rev. B, 85:235442, 2012.spa
dcterms.bibliographicCitationL. Wu and et al. A new ba(0.6)sr(0.4)tio(3) - silicon hybrid me- tamaterial device in terahertz regime. Small, 12:2616, 2016.spa
dcterms.bibliographicCitationR. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H.G. Xing. A new class of electrically tunable metamaterial terahertz modu- lators. Opt. Express, 20(27):28664, 2012.spa
dcterms.bibliographicCitationWeidong Zhang, Phi H. Q. Pham, Elliott R. Brown, , and Peter J. Burke. Ac conductivity parameters of graphene derived from thz etalon transmittance. Nanoscale, 6:13895, 2014spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_3248spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.15648/EUA.129
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsEspectro de energía, Oscilaciones ópticas, conductividad ópticaspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaLibrospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por