Mostrar el registro sencillo del ítem

dc.contributor.authorCardenas Gutierrez, Javier
dc.contributor.otherValencia Ochoa, Guillermo
dc.contributor.otherDuarte-Forero, Jorge
dc.date.accessioned2022-11-15T21:36:15Z
dc.date.available2022-11-15T21:36:15Z
dc.date.issued2020-06-27
dc.date.submitted2020-04-17
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1032
dc.description.abstractThis investigation shows a traditional and advanced exergetic assessment of a waste heat recovery system based on recuperative ORC (organic Rankine cycle) as bottoming cycle of a 2 MW natural gas internal combustion engine. The advanced exergetic evaluation divides the study into two groups, the avoidable and unavoidable group and the endogenous and exogenous group. The first group provides information on the e ciency improvement potential of the components, and the second group determines the interaction between the components. Asensitivity analysis was achieved to assess the e ect of condensing temperature, evaporator pinch, and pressure ratio with net power, thermal e ciencies, and exergetic e ciency for pentane, hexane, and octane as organic working fluids, where pentane obtained better energy and exergetic results. Furthermore, an advanced exergetic analysis showed that the components that had possibilities of improvement were the evaporator (19.14 kW) and the turbine (8.35 kW). Therefore, through the application of advanced exergetic analysis, strategies and opportunities for growth in the thermodynamic performance of the system can be identified through the avoidable percentage of destruction of exergy in components.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMDPI AGspa
dc.titleRegenerative Organic Rankine Cycle as Bottoming Cycle of an Industrial Gas Engine: Traditional and Advanced Exergetic Analysisspa
dcterms.bibliographicCitation1. Valencia, G.; Benavides, A.; Cardenas Escorcia, Y. Economic and Environmental Multiobjective Optimization of aWind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119.spa
dcterms.bibliographicCitation2. Lecompte, S.; Huisseune, H.; Van Den Broek, M.; Vanslambrouck, B.; De Paepe, M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 2015, 47, 448–461.spa
dcterms.bibliographicCitation3. Quoilin, S.; Van Den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of organic rankine cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186.spa
dcterms.bibliographicCitation4. Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N.; Mirhadizadeh, S.A. Review of organic Rankine cycle for small-scale applications. Energy Convers. Manag. 2017, 134, 135–155.spa
dcterms.bibliographicCitation5. Lecompte, S.; Oyewunmi, O.; Markides, C.; Lazova, M.; Kaya, A.; den Broek, M.; De Paepe, M. Case Study of an Organic Rankine Cycle (ORC) forWaste Heat Recovery from an Electric Arc Furnace (EAF). Energies 2017, 10, 649.spa
dcterms.bibliographicCitation6. Nazir, C.P. Solar Energy for Traction of High Speed Rail Transportation: A Techno-economic Analysis. Civ. Eng. J. 2019, 5, 1566–1576.spa
dcterms.bibliographicCitation7. Hysa, A. Modeling and Simulation of the Photovoltaic Cells for Di erentValues of Physical and Environmental Parameters. Emerg. Sci. J. 2019, 3, 395–406.spa
dcterms.bibliographicCitation8. Piero Rojas, J.; Valencia Ochoa, G.; Duarte Forero, J. Comparative Performance of a Hybrid Renewable Energy Generation System with Dynamic Load Demand. Appl. Sci. 2020, 10, 3093.spa
dcterms.bibliographicCitation9. Landelle, A.; Tauveron, N.; Haberschill, P.; Revellin, R.; Colasson, S. Organic Rankine cycle design and performance comparison based on experimental database. Appl. Energy 2017, 204, 1172–1187.spa
dcterms.bibliographicCitation10. Song, P.; Wei, M.; Shi, L.; Danish, S.N.; Ma, C. A review of scroll expanders for organic rankine cycle systems. Appl. Therm. Eng. 2015, 75, 54–64.spa
dcterms.bibliographicCitation11. Su, W.; Zhao, L.; Deng, S. Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model. Appl. Energy 2017, 202, 618–627.spa
dcterms.bibliographicCitation12. Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406–3418.spa
dcterms.bibliographicCitation13. Polytechnic, K. 98/01752 A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Fuel Energy Abstr. 1998, 39, 151.spa
dcterms.bibliographicCitation14. Hermann, W.A. Quantifying global exergy resources. Energy 2006, 31, 1685–1702.spa
dcterms.bibliographicCitation15. Hung, T.C.; Wang, S.K.; Kuo, C.H.; Pei, B.S.; Tsai, K.F. A study of organic working fluids on system e ciency of an ORC using low-grade energy sources. Energy 2010, 35, 1403–1411.spa
dcterms.bibliographicCitation16. Rayegan, R.; Tao, Y.X. A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs). Renew. Energy 2011, 36, 659–670.spa
dcterms.bibliographicCitation17. Colonna, P.; Casati, E.; Trapp, C.; Mathijssen, T.; Larjola, J.; Turunen-Saaresti, T.; Uusitalo, A. Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future. J. Eng. Gas. Turbines Power 2015, 137, 1–19.spa
dcterms.bibliographicCitation18. Hou, Z.; Wei, X.; Ma, X.; Meng, X. Exergoeconomic evaluation of waste heat power generation project employing organic Rankine cycle. J. Clean. Prod. 2020, 246, 119064spa
dcterms.bibliographicCitation19. Arabkoohsar, A. Combined steam based high-temperature heat and power storage with an Organic Rankine Cycle, an e cient mechanical electricity storage technology. J. Clean. Prod. 2020, 247, 119098.spa
dcterms.bibliographicCitation20. Kosuda, O.; Hikichi, T.; Kido, O.; Nishiyama, N. Development of air-cooled compact Organic Rankine Cycle power generation technology utilizing waste heat. Energy Procedia 2017, 129, 559–566.spa
dcterms.bibliographicCitation21. Ziviani, D.; Beyene, A.; Venturini, M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Appl. Energy 2014, 121, 79–95.spa
dcterms.bibliographicCitation22. Tchanche, B.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications. Renew. Sustain. Energy Rev. 2011, 15, 3963–3979.spa
dcterms.bibliographicCitation23. Liu, B.T.; Chien, K.H.; Wang, C.C. E ect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004, 29, 1207–1217.spa
dcterms.bibliographicCitation24. Quoilin, S.; Declaye, S.; Tchanche, B.F.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893.spa
dcterms.bibliographicCitation25. Badr, O.; O’Callaghan, P.W.; Probert, S.D. Rankine-cycle systems for harnessing power from low-grade energy sources. Appl. Energy 1990, 36, 263–292.spa
dcterms.bibliographicCitation26. Shu, G.; Li, X.; Tian, H.; Liang, X.; Wei, H.; Wang, X. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Appl. Energy 2014, 119, 204–217.spa
dcterms.bibliographicCitation27. UNEP (United Nations Environmental Programme). Montreal Protocol on Substances That Deplete the Ozone Layer: Technology and Economic Assessment Panel; UNEP: Nairobi, Kenya, 1997.spa
dcterms.bibliographicCitation28. United Nations Framework Convention on Climate Change. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1998. Available online: http://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed on 28 November 2019).spa
dcterms.bibliographicCitation29. Xu, R.J.; He, Y.L. A vapor injector-based novel regenerative organic Rankine cycle. Appl. Therm. Eng. 2011, 31, 1238–1243.spa
dcterms.bibliographicCitation30. Nguyen, T.; Johnson, P.; Akbarzadeh, A.; Gibson, K.; Mochizuki, M. Design, manufacture and testing of a closed cycle thermosyphon rankine engine. Heat Recover. Syst. CHP 1995, 15, 333–346.spa
dcterms.bibliographicCitation31. Sprouse, C.; Depcik, C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 2013, 51, 711–722.spa
dcterms.bibliographicCitation32. To olo, A.; Lazzaretto, A.; Manente, G.; Paci, M. A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems. Appl. Energy 2014, 121, 219–232.spa
dcterms.bibliographicCitation33. Desai, N.B.; Bandyopadhyay, S. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle. Appl. Therm. Eng. 2016, 95, 471–481.spa
dcterms.bibliographicCitation34. Imran, M.; Park, B.S.; Kim, H.J.; Lee, D.H.; Usman, M.; Heo, M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers. Manag. 2014, 87, 107–118.spa
dcterms.bibliographicCitation35. Mohammadi, Z.; Fallah, M.; Mahmoudi, S.M.S. Advanced exergy analysis of recompression supercritical CO2 cycle. Energy 2019, 178, 631–643.spa
dcterms.bibliographicCitation36. Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L. Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine. Energy Convers. Manag. 2016, 126, 217–227.spa
dcterms.bibliographicCitation37. Nami, H.; Nemati, A.; Jabbari Fard, F. Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC). Appl. Therm. Eng. 2017, 122, 59–70.spa
dcterms.bibliographicCitation38. El-Emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444.spa
dcterms.bibliographicCitation39. Khaljani, M.; Khoshbakhti Saray, R.; Bahlouli, K. Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Convers. Manag. 2015, 97, 154–165.spa
dcterms.bibliographicCitation40. Safarian, S.; Aramoun, F. Energy and exergy assessments of modified Organic Rankine Cycles (ORCs). Energy Reports 2015, 1, 1–7.spa
dcterms.bibliographicCitation41. Li, J.; Pei, G.; Li, Y.; Wang, D.; Ji, J. Energetic and exergetic investigation of an organic Rankine cycle at di erent heat source temperatures. Energy 2012, 38, 85–95.spa
dcterms.bibliographicCitation42. König-Haagen, A.; Höhlein, S.; Brüggemann, D. Detailed exergetic analysis of a packed bed thermal energy storage unit in combination with an Organic Rankine Cycle. Appl. Therm. Eng. 2019, 114583.spa
dcterms.bibliographicCitation43. Jannatkhah, J.; Najafi, B.; Ghaebi, H. Energy and exergy analysis of combined ORC—ERC system for biodiesel-fed diesel engine waste heat recovery. Energy Convers. Manag. 2020, 209, 112658.spa
dcterms.bibliographicCitation44. Song, J.; Gu, C. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery. Energy Convers. Manag. 2015, 105, 995–1005.spa
dcterms.bibliographicCitation45. Song, J.; Song, Y.; Gu, C. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy 2015, 82, 976–985.spa
dcterms.bibliographicCitation46. Neto, R.d.O.; Sotomonte, C.A.R.; Coronado, C.J.R.; Nascimento, M.A.R. Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Convers. Manag. 2016, 129, 168–179.spa
dcterms.bibliographicCitation47. Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L.; Haller, R.; Nicolas, B.; Glavatskaya, Y. Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander. Energy Convers. Manag. 2015, 103, 519–532.spa
dcterms.bibliographicCitation48. Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 665.spa
dcterms.bibliographicCitation49. Tchanche, B.F.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system. Appl. Energy 2010, 87, 1295–1306.spa
dcterms.bibliographicCitation50. Zare, V. A comparative exergoeconomic analysis of di erent ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138.spa
dcterms.bibliographicCitation51. Calise, F.; Capuozzo, C.; Carotenuto, A.; Vanoli, L. Thermoeconomic analysis and o -design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol. Energy 2014, 103, 595–609.spa
dcterms.bibliographicCitation52. Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization; JohnWiley & Sons Inc.: Hoboken, NJ, USA, 1995; ISBN 0471584673/9780471584674.spa
dcterms.bibliographicCitation53. Ochoa, G.V.; Isaza-Roldan, C.; Duarte Forero, J. Economic and Exergo-Advance Analysis of aWaste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317.spa
dcterms.bibliographicCitation54. Voros, N.G.; Kiranoudis, C.T.; Maroulis, Z.B. Solar energy exploitation for reverse osmosis desalination plants. Desalination 1998, 115, 83–101.spa
dcterms.bibliographicCitation55. Kotas, T.J. The Exergy Method of Thermal Plant. Analysis; Butterwort; Elsevier: Amsterdam, The Netherlands, 1985; ISBN 978-0-408-01350-5.spa
dcterms.bibliographicCitation56. Preißinger, M.; Brüggemann, D. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities. Energies 2017, 10, 269.spa
dcterms.bibliographicCitation57. Baral, S.; Kim, D.; Yun, E.; Kim, K. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System. Entropy 2015, 17, 2039–2061.spa
dcterms.bibliographicCitation58. Han, Z.; Li, P.; Han, X.; Mei, Z.; Wang, Z. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery. Energies 2017, 10, 1593.spa
dcterms.bibliographicCitation59. Nafey, A.S.; Sharaf, M.A. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations. Renew. Energy 2010, 35, 2571–2580.spa
dcterms.bibliographicCitation60. Schuster, A.; Karellas, S.; Kakaras, E.; Splietho , H. Energetic and economic investigation of Organic Rankine Cycle applications. Appl. Therm. Eng. 2009, 29, 1809–1817.spa
dcterms.bibliographicCitation61. Ochoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under di erentworking fluids. Appl. Sci. 2019, 9, 4526.spa
dcterms.bibliographicCitation62. Valencia, G.; Fontalvo, A.; Cardenas Escorcia, Y.; Duarte, J.; Isaza-Roldan, C. Energy and Exergy Analysis of Di erent Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC. Energies 2019, 12, 2378.spa
dcterms.bibliographicCitation63. Sinnott, R.K.; Towler, G. Chemical Engineering Design, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2013; ISBN 9780080966595.spa
dcterms.bibliographicCitation64. Peters, M.S.; Timmerhaus, K.D. Plant Design and Economics for Chemical Engineers, 4th ed.; Timmerhaus: New York, NY, USA, 1991; ISBN 0-07-049613-7.spa
dcterms.bibliographicCitation65. Boyaghchi, F.A.; Molaie, H. Investigating the e ect of duct burner fuel mass flow rate on exergy destruction of a real combined cycle power plant components based on advanced exergy analysis. Energy Convers. Manag. 2015, 103, 827–835.spa
dcterms.bibliographicCitation66. Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T.; Carassai, A. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 2012, 41, 146–152.spa
dcterms.bibliographicCitation67. Peris, B.; Navarro-Esbrí, J.; Molés, F. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Appl. Therm. Eng. 2013, 61, 364–371.spa
dcterms.bibliographicCitation68. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine. Energies 2019, 12, 4165.spa
dcterms.bibliographicCitation69. Valencia Ochoa, G.; Piero Rojas, J.; Duarte Forero, J. Advance Exergo-Economic Analysis of aWaste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267.spa
dcterms.bibliographicCitation70. Valencia Ochoa, G.; Cárdenas Gutierrez, J.; Duarte Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2.spa
dcterms.bibliographicCitation71. Ramírez, R.; Gutiérrez, A.S.; Cabello Eras, J.J.; Valencia, K.; Hernández, B.; Duarte Forero, J. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412.spa
dcterms.bibliographicCitation72. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, 02700.spa
dcterms.bibliographicCitation73. Ochoa, G.V.; Peñaloza, C.A.; Forero, J.D. Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under di erent compressor inlet air temperatures. Energies 2019, 12, 4643.spa
dcterms.bibliographicCitation74. Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Duarte Forero, J. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/app10134411
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsadvanced exergetic analysis; waste heat recovery; industrial gas engine; recuperative organic Rankine cycle; exergy e ciencyspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por