Mostrar el registro sencillo del ítem
Do-it-yourself methodology for calorimeter construction based in Arduino data acquisition device for introductory chemical laboratories
dc.contributor.author | Vallejo, William | |
dc.contributor.other | Diaz-Uribe, Carlos | |
dc.contributor.other | Fajardo, Catalina | |
dc.date.accessioned | 2022-11-15T21:18:06Z | |
dc.date.available | 2022-11-15T21:18:06Z | |
dc.date.issued | 2020-03-10 | |
dc.date.submitted | 2019-10-03 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/969 | |
dc.description.abstract | Many experimental thermochemical laboratories require monitoring temperatures during a reaction or physical procedure. Nowadays, there are many alternatives to fulfill this requirement; however, they are expensive for basic scholars and first-year undergraduates. In this paper, we describe an inexpensive and useful data acquisition device developed with the open-source Arduino software. In this work, we presented a methodology for easy calorimeter construction based in Arduino data acquisition device for introductory chemical laboratories, we used an LM35 transistor as a temperature sensor connected to an Arduino UNO microcontroller for temperature sensing and an aquarium air pump for agitation of reaction system. Besides, the hardware required for implementation is explained in detail. The device was built using the (DIY) do-it -yourself method, and the complete system had a total cost under $40. We showed details of all components for data acquisition construction. Finally, we tested the device in order to determine the exothermic dissolution heat (ΔH) for NaOH in water. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Heliyon | spa |
dc.title | Do-it-yourself methodology for calorimeter construction based in Arduino data acquisition device for introductory chemical laboratories | spa |
dcterms.bibliographicCitation | Arduino Home Page, 2018a. Arduino - analogRead. Retrieved. https://www.arduino.cc/ reference/en/language/functions/analog-io/analogread/. (Accessed 18 December 2018). | spa |
dcterms.bibliographicCitation | Arduino Home Page, 2018b. Arduino - millis. Retrieved. https://www.arduino.cc/referen ce/en/language/functions/time/millis/. (Accessed 18 December 2018). | spa |
dcterms.bibliographicCitation | Arduino Home Page, 2018c. Arduino - Software 1.8.8. Retrieved. https://www.arduino. cc/en/Main/Software. (Accessed 18 December 2018). | spa |
dcterms.bibliographicCitation | Beran, A.,J., 2014. Laboratory Manual for Principles of General Chemistry, tenth ed. Retrieved from. https://www.wiley.com/en-us/LaboratoryþManualþforþPrinciples þofþGeneralþChemistry%2Cþ10thþEdition-p-9781118621516. | spa |
dcterms.bibliographicCitation | Bopegedera, A.M.R.P., Perera, K.N.R., 2017. “Greening” a familiar general chemistry experiment: coffee cup calorimetry to determine the enthalpy of neutralization of an acid–base reaction and the specific heat capacity of metals. J. Chem. Educ. 94 (4), 494–499. | spa |
dcterms.bibliographicCitation | Brown, T.E., Eugene LeMay, H., Bursten, Bruce E., Catherine Murphy, P.W., 2012. Chemistry: the Central Science, twelfth ed. Retrieved from. https://www.pearson.c om/us/higher-education/product/Brown-Chemistry-The-Central-Science-12th-Edit ion/9780321696724.html. | spa |
dcterms.bibliographicCitation | Caltech, 2015. National Instruments LabVIEW Site License. Retrieved. https://www.calt ech.edu/campus-life-events/campus-announcements/national-instruments-labview-s ite-license. (Accessed 18 February 2020). | spa |
dcterms.bibliographicCitation | Chen, H.-J., She, J.-L., Chou, C.-C., Tsai, Y.-M., Chiu, M.-H., 2013. Development and application of a scoring rubric for evaluating students’ experimental skills in organic chemistry: an instructional guide for teaching assistants. J. Chem. Educ. 90 (10), 1296–1302. | spa |
dcterms.bibliographicCitation | Famularo, N., Kholod, Y., Kosenkov, D., 2016. Integrating chemistry laboratory instrumentation into the industrial internet: building, programming, and experimenting with an automatic titrator. J. Chem. Educ. 93 (1), 175–181. | spa |
dcterms.bibliographicCitation | Fritzing, 2018. fritzing. Retrieved from. http://fritzing.org/home/. Grimaldi, D., Rapuano, S., 2009. Hardware and software to design virtual laboratory for education in instrumentation and measurement. Measurement 42 (4), 485–493. | spa |
dcterms.bibliographicCitation | Grinias, J.P., Whitfield, J.T., Guetschow, E.D., Kennedy, R.T., 2016. An inexpensive, open-source USB Arduino data acquisition device for chemical instrumentation. J. Chem. Educ. 93 (7), 1316–1319. | spa |
dcterms.bibliographicCitation | Herga, Nata sa, Dinevski, Dejan, 2012. Virtual laboratory in chemistry - experimental study of understanding, reproduction and application of acquired knowledge of subject’s chemical content. Organizacija 45 (3), 108–116. | spa |
dcterms.bibliographicCitation | Kavanagh, E., Mindel, S., Robertson, G., Hughes, D.E.P., 2008. An inexpensive solution calorimeter. J. Chem. Educ. 85 (8), 1129. | spa |
dcterms.bibliographicCitation | Kubínova, S..̌ , Šleǵr, J., 2015a. ChemDuinoLow Cost System for School Experiments in Chemistry. Retrieved from. https://lide.uhk.cz/prf/ucitel/slegrja1/chemduino/i ndex.htm. | spa |
dcterms.bibliographicCitation | Kubínov a, S., Sl egr, J., 2015b. ChemDuino: adapting Arduino for low-cost chemical measurements in lecture and laboratory. J. Chem. Educ. 92 (10), 1751–1753. | spa |
dcterms.bibliographicCitation | Mabbott, G.A., 2014. Teaching electronics and laboratory automation using microcontroller boards. J. Chem. Educ. 91 (9), 1458–1463. | spa |
dcterms.bibliographicCitation | Manafov, R.M., 2015. Development of a software application for solving of problems of chemical kinetics and its implementation in a C #. Int. J. Eng. Appl. Sci. 2 (10), 33–37. Retrieved from. www.jirka.org/genius. | spa |
dcterms.bibliographicCitation | McClain, R.L., 2014. Construction of a photometer as an instructional tool for electronics and instrumentation. J. Chem. Educ. 91 (5), 747–750. | spa |
dcterms.bibliographicCitation | Meloni, G.N., 2016. Building a microcontroller based potentiostat: a inexpensive and versatile platform for teaching electrochemistry and instrumentation. J. Chem. Educ. 93 (7), 1320–1322. | spa |
dcterms.bibliographicCitation | Microsoft, 2020. Education | DataStreamer. Retrieved. https://www.microsoft.com/e n-us/education/hackingstem/datastreamer. (Accessed 11 February 2020). | spa |
dcterms.bibliographicCitation | Molina, R., Orcajo, G., Martinez, F., 2018. KBR (Kinetics in Batch Reactors): a MATLABBased Application with a Friendly Graphical User Interface for Chemical Kinetic Model Simulation and Parameter Estimation. Education for Chemical Engineers. | spa |
dcterms.bibliographicCitation | Monk, S., 2012. Programming Arduino : Getting Started with Sketches. McGraw. | spa |
dcterms.bibliographicCitation | National Instruments, 2020a. Edition LabVIEW 2019 - NI. Retrieved. https://www.ni .com/es-co/shop/labview/select-edition.html. (Accessed 18 February 2020). | spa |
dcterms.bibliographicCitation | National Instruments, 2020b. USB-6002 - National Instruments. Retrieved. https:// www.ni.com/es-co/support/model.usb-6002.html. (Accessed 13 February 2020). | spa |
dcterms.bibliographicCitation | Nelson, J.H., Stoltzfus, M., Kemp, K.C., Lufaso, K., 2015. Laboratory Experiments for Chemistry, the Central Science, thirteenth ed. Pearson, New York. | spa |
dcterms.bibliographicCitation | Python, 2015. Python.org. Retrieved. https://www.python.org/. (Accessed 12 February 2020). | spa |
dcterms.bibliographicCitation | Raspberry Pi, 2019. Raspberry Pi. Retrieved. https://www.raspberrypi.org/. (Accessed 12 February 2020). | spa |
dcterms.bibliographicCitation | Resnick, Mitchel, Robbie Berg, M.E., 2000. Beyond black boxes: bringing transparency and aesthetics back to scientific investigation. J. Learn. Sci. 9 (1), 1–21. Retrieved from. https://web.media.mit.edu/~mres/papers/bbb.pdf. | spa |
dcterms.bibliographicCitation | Ruekberg, B., 1994. An economical, safe, and sturdy student calorimeter. J. Chem. Educ. 71 (4), 333. | spa |
dcterms.bibliographicCitation | Semiconductor Corp, D.. Programmable Resolution 1-Wire Digital Thermometer. Retrieved from. https://cdn.sparkfun.com/datasheets/Sensors/Temp/DS18B20.pdf. | spa |
dcterms.bibliographicCitation | Stankus, J.J., Caraway, J.D., 2011. Replacement of coffee cup calorimeters with fabricated beaker calorimeters. J. Chem. Educ. 88 (12), 1730–1731. | spa |
dcterms.bibliographicCitation | Tempsens, 2015. Type K thermocouple. Retrieved from. http://www.tempsens.com/pdf/ articles/Type_K.pdf. | spa |
dcterms.bibliographicCitation | Tenaw, Y.A., 2015. Effective strategies for teaching chemistry. Int. J. Edu. Res. Rev. 3 (3), 78–84. Retrieved from file: http://Users/macbook/Downloads/download (1).pdf. | spa |
dcterms.bibliographicCitation | Texas Instruments. Temperature Sensor - TMP236. Retrieved. http://www.ti.com/produ ct/TMP236. (Accessed 27 January 2020). | spa |
dcterms.bibliographicCitation | Texas Instruments, 1999. LM35 LM35 Precision Centigrade Temperature Sensors. Retrieved from. www.ti.com. | spa |
dcterms.bibliographicCitation | Tobajas, M., Molina, C.B., Quintanilla, A., Alonso-Morales, N., Casas, J.A., 2018. ARTICLE IN PRESS G Model Development and Application of Scoring Rubrics for Evaluating Students’ Competencies and Learning Outcomes in Chemical Engineering Experimental Courses. Education for Chemical Engineers. | spa |
dcterms.bibliographicCitation | Urban, P.L., 2014. Open-source electronics as a technological aid in chemical education. J. Chem. Educ. 91 (5), 751–752. | spa |
dcterms.bibliographicCitation | Vernier, 2018. Temperature Probes and LoggerPro Data Collection Software Vernier Software & Technology. Retrieved from. https://www.vernier.com /product-category/?category¼interfaces,sensors&page_num¼1. | spa |
dcterms.bibliographicCitation | Vernier, 2019. Vernier Software & Technology - Science Equipment. Retrieved. https ://www.vernier.com/. (Accessed 13 February 2020). | spa |
dcterms.bibliographicCitation | Wong, S.-S., Popovich, N.D., Coldiron, S.J., 2001. A simple computer-interfaced calorimeter: application to the determination of the heat of formation of magnesium oxide. J. Chem. Educ. 78 (6), 798. | spa |
dcterms.bibliographicCitation | Zumdahl, S.S., Zumdahl, S.A., DeCoste, D.J., 2017. Chemistry, tenth ed. Cengage, Boston. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.heliyon.2020.e03591 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Physical chemistry Education Experimental class Computer-based learning Laboratory computing Secondary education First -year undergraduate | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |