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Abstract. In this paper, we used the notion of triclosure spaces to introduce and study the concept of semi-open

set in triclosure spaces. Besides, we show some of their properties. Moreover, the notions of semi-continuous and

semi-irresolute functions in a triclosure spaces are studied. Furthermore, we prove some of their properties.
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1. INTRODUCTION

Levine in 1963 [9] introduced the notions of semi-open sets and semi-continuity in a topo-

logical space (X ,τ). On the other hand, the concept of a tritopological space was introduced

by Kovar in 2000 [8]. Moreover, the idea of closure space was introduced by Cech in 1968

[3] and then has been studied by many mathematicians, see [1] and [4]. Otherwise, a function

u : P(X)→ P(X) defined on the power set P(X) of a set X is called a closure oeprator on X

and the pair (X ,u) is called a closure space if the following axioms are satisfied: (1) u /0 = /0,(2)

A⊆ uA for every A⊆ X and (3) if A⊆ B, then uA⊆ uB for all A,B ∈ X . After that, the notion of

biclosure space was introduced by Boonkop and Khampakdee in 2008 [2] and then it has been
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studied by many authors in this field, see [1], [5] and [7]. On the other hand, taking into account

those notions, Granados in 2020 [6] introduced and studied new notions on triclosure spaces.

A triclosure space is a triplet (X ,u1,u2,u3) where u1,u2 and u3 are three closure operators on

X , besides a subset A of (X ,u1,u2,u3) is closed if u1u2u3A = A. The complement of a closed

set is called open set. In this paper, we took the idea of triclosure space and we introduce the

concept of semi-open set in a triclosure space. Furthermore, some of their properties are stud-

ied. Besides, the notions of semi-open, open, semi-continuous and semi-irresolute functions are

introduced, we also study some of their properties.

2. SEMI-OPEN SETS IN TRICLOSURE SPACES

In this section, we introduce the concept of semi-open set in triclosure space. Besides, we

study some of their properties. Throughout this section, the ◦ means the interior of any set.

Definition 2.1. Let (X ,u1,u2,u3) be a triclosure space and A ⊆ X . Then, A is said to be semi-

open if there exits an open set V in (X ,u1) such that V ⊆ A ⊆ u2u3V . The complement of a

semi-open set is called semi-closed.

Remark 2.1. By the Definition 2.1, we can find the semi-open sets, as well as, V ⊆ u2u3V ◦.

Remark 2.2. If A is open (respectively, closed) in (X ,u1), then A is semi-open (respectively,

semi-closed) in (X ,u1,u2,u3). The converse need not be true as can be seen in the following

example.

Example 2.1. Let X = {a,b,c,d} and define a closure operator u1 on X as u1 /0 = /0, u1X = X =

u1{a,b}, u1{a} = {a,c,d}, u1{b} = {b,c,d}, u1{c,d} = {c,d}. Define the closure operator

u2 on X as u2 /0 = /0, u2X = X = u2{a,c,d} = u2{c} and define the closure operator u3 on X

as u3 /0 = /0, u3{a,c,d} = {a,c,d}, u3{c} = {c} and u3 in the rest of sets from X is X . Then,

{a,b,c} is semi-open in (X ,u1,u2,u3) but {a,b,c} is not open in (X ,u1), (X ,u2) and (X ,u3).

Furthermore, {d} is semi-closed, but it is not closed in (X ,u1), (X ,u2) and (X ,u3).

Theorem 2.1. Let (X ,u1,u2,u3) be a triclosure space and A⊆ X. Then, A is semi-closed if and

only if there exits a closed subset B of (X ,u1) such that X−u2u3(X−B)⊆ A⊆ B.
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Proof. NECESSARY: Let A be a semi-closed set of X ,u1,u2). Then, there exits an open set V

in (X ,u1) such that V ⊆ X −A ⊆ u2u3V . Hence, there exits a closed set B of (X ,u1) such that

V = X−B an X−B⊆ X−A⊆ u2u3(X−B). Therefore, X−u2u3(X−B)⊆ A⊆ B.

SUFFICIENCY: By the assumption, there is a closed set B of (X ,u1) such that X−u2u3(X−

B)⊆ A⊆ B. Indeed, there exits an open set V of (X ,u1) such that B = X−V and X−u2u3V ⊆

A⊆ X−V . This implies that V ⊆ X−A⊆ u2u3V . Therefore, A is semi-closed in (X ,u1,u2,u3).

�

Theorem 2.2. Let {Aδ : δ ∈∆} be a collection of semi-open sets in a triclosure space (X ,u1,u2,u3).

Then,
⋃

δ∈∆

Aδ is a semi-open set in (X ,u1,u2,u3)

Proof. Let Aδ be a collection of semi-open sets of (X ,u1,u2,u3) for each α ∈ ∆. Thus, for

each α ∈ ∆, we have an open set Vδ in (X ,u1) such that Vδ ⊆ Aδ ⊆ u2u3Vδ . Indeed,
⋃

δ∈∆

Vδ ⊆⋃
δ∈∆

Aδ ⊆
⋃

δ∈∆

u2u3Vδ . Since, Vδ ⊆
⋃

δ∈∆

Vδ for each δ ∈ ∆, u2u3Vδ ⊆ u2u3
⋃

δ∈∆

Vδ for each δ ∈ ∆.

Hence,
⋃

δ∈∆

u2u3Vδ ⊆ u2u3
⋃

δ∈∆

Vδ . In consequence,
⋃

δ∈∆

Vδ ⊆
⋃

δ∈∆

Aδ ⊆ u2u3
⋃

δ∈∆

Vδ . It is well

know that Vδ is open in (X ,u1) for each δ ∈ ∆, then u1
⋂

δ∈∆

(X−Vδ )⊆ u1(X−Vδ ) = X−Vδ for

each δ ∈ ∆. Thus, u1
⋂

δ∈∆

(X −Vδ ) ⊆
⋂

δ∈∆

(X −Vδ ). This implies that,
⋂

δ∈∆

(X −Vδ ) is closed in

(X ,u1), i.e.
⋃

δ∈∆

Vδ is open in (X ,u1). Therefore,
⋃

δ∈∆

Aδ is semi-open in (X ,u1,u2,u3). �

The arbitrary intersection of semi-open sets in a triclosure space (X ,u1,u2,u3) need not be a

semi-open set as can be seen in the following example.

Example 2.2. By the Example 2.1, we can see that {a,d} and {b,d} are semi-open, but {a,d}∩

{b,d}= {d} is not semi-open.

Theorem 2.3. Let {Aδ∈∆ : δ ∈ ∆} be a collection of semi-closed set in a triclosure space

(X ,u1,u2,u3). Then,
⋂

δ∈∆

Aδ is semi-closed in (X ,u1,u2,u3).
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Proof. It is clear that the complement of
⋂

δ∈∆

Aδ is
⋃

δ∈∆

(X −Aδ ). Since Aδ is semi-closed in

(X ,u1,u2,u3) for each δ ∈ ∆, then X −Aδ is semi-open for each α ∈ ∆. But, by the Theo-

rem 2.2,
⋃

δ∈∆

(X −Aδ ) is a semi-open set in (X ,u1,u2,u3). Therefore,
⋂

δ∈∆

Aδ is semi-closed in

(X ,u1,u2,u3). �

The arbitrary union of semi-closed sets in a triclosure space (X ,u1,u2,u3) need not be a

semi-closed set as can be seen in the following example.

Example 2.3. By the Examples 2.1 and 2.2, we can see that {a,c} and {b,c} are semi-closed,

but {a,c}∪{b,c}= {a,b,c} is not semi-closed.

Theorem 2.4. Let (X ,u1,u2,u3) be a triclosure space and u2 be idempotent. If A is semi-open

in (X ,u1,u2,u3) and A⊆ B⊆ u2u3A, then B is semi-open.

Proof. Let A be a semi-open set of (X ,u1,u2,u3). Then, there exits an open set V in (X ,u1)

such that V ⊆ A⊆ u2u3V , hence u2u3A⊆ u2u2u3V . Since u2 is idempotent, u2u3A⊆ u2u3V , in

consequence V ⊆ A⊆ B⊆ u2u3A⊆ u2u3V . Therefore, B is semi-open. �

Theorem 2.5. Let (Y,v1,v2.v3) be a triclosure subspace of (X ,u1,u2,u3) and A ⊆ Y . If A is

semi-open in (X ,u1,u2,u3), then A is semi-open in (Y,v1,v2,v3).

Proof. Let A be a semi-open set of (X ,u1,u2,u3). Then, there exits an open set V in (X ,u1)

such that V ⊆ A⊆ u2u3V . This implies that A∩Y ⊆ u2u3V ∩Y . But, A = A∩Y , thus V ⊆ A =

A∩Y ⊆ u2u3V ∩Y = u2u3V . Since V is open in (X ,u1), then v1(Y −V ) = u1(Y −V )∩Y ⊆

u1(X −V )∩Y = (X −V )∩Y = Y −V . Indeed, Y −V is closed in (Y,v1), i.e. V is open in

(X ,u1). Therefore, A is semi-open in (Y,v1,v2,v3). �

In this part, we show some properties on semi-open functions. Throughout this part,

(X ,u1,u2,u3),(Y,v1,v2,v3) and (Z,w1,w2,w3) are triclosure spaces.

Definition 2.2. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) be a function, then f is called semi-open

(respectively, semi-closed) if f (A) is semi-open (respectively, semi-closed) in (Y,v1,v2,v3) for

every open (respectively, closed) subset A of (X ,u1,u2,u3).
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Remark 2.3. It is clear that if a function f is open (respectively, closed), then f is semi-open

(respectively, semi-closed). The converse need not be true as can be seen in the following

example.

Example 2.4. Let X = {a,b,c}=Y and define the closure operator u1 on X as u1 /0 = /0, u1X =

X , u1{b} = {b}. Define the closure operator u2 on X as u2 /0 = /0, u2X = X , u2{b} = {b},

u2{b,c} = {b,c}. Define the closure operator u3 on X as u2 /0 = /0, u2X = X , u2{b} = {b},

u2{b,d} = {b,d}. We can see that {a,c,d} is open in (X ,u1,u2,u3). Now, define the closure

operator v1 on Y as v1 /0 = /0, v1X = X , v1{b,c,d}= {b,c,d}. Define the closure operator v2 on

Y as v2 /0 = /0, v2X = X , v2{a,b,c} = {a,b,c}, v2{a,d} = {a,d}. Define the closure operator

v3 on Y as v3 /0 = /0, v3X = X , v2{a,b,d} = {a,b,d}, v3{b,c} = {b,d}. Then, we can see that

{a,c,d} is semi-open, but it is not open in (Y,v1,v2,v3).

Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) be the identify function. By the above condition, it is

easy to see that f is semi-open, but it is not open because f ({a,c,d}) is not open in (Y,v1,v2,v3)

while {a,c,d} is open in (X ,u1,u2,u3). Furthermore, f is semi-closed, but it is not closed

because f ({b}) is not closed in (Y,v1,v2,v3) while {b} is closed in (X ,u1,u2,u3).

Theorem 2.6. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) and g : (Y,v1,v2,v3)→ (Z,w1,w2,w3) be

two functions. Then, g◦ f is semi-open if f is open and g is semi-open.

Proof. Let V be an open set of (X ,u1,u2,u3) and let f be open, then f (V ) is open in (Y,v1,v2,v3).

Since g is semi-open, then g( f (V )) = g◦ f (V ) is semi-open in (Z,w1,w2,w3). Therefore, g◦ f

is semi-open. �

Theorem 2.7. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) and g : (Y,v1,v2,v3)→ (Z,w1,w2,w3) be

two functions. If g◦ f is semi-open and f is a continuous surjection, then g is semi-open.

Proof. Let V be an open set in (Y,v1,v2,v3) and let f be continuous. Then, f−1(V ) is open

in (X ,u1,u2,u3). Since g◦ f is semi-open, g◦ f ( f−1(V )) is semi-open in (Z,w1,w2,w3). But,

it is well known that f is surjection, this implies that g ◦ f ( f−1(V )) = g(V ). Indeed, g(V ) is

semi-open in (Z,w1,w2,w3). Therefore, g is semi-open. �
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3. SEMI-CONTINUOUS AND SEMI-IRRESOLUTE FUNCTIONS IN TRICLOSURE SPACES

In this section, we introduce and study the notions of semi-continuous and semi-irresolute

functions obtained by using semi-open sets in triclosure spaces. Throughout this section,

(X ,u1,u2,u3),(Y,v1,v2,v3) and (Z,w1,w2,w3) are triclosure spaces.

Definition 3.1. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) be a function. Then, f is said to be semi-

continuous if f−1(V ) is semi-open in (X ,u1,u2,u3) for every open set in (Y,v1,v2,v3).

Remark 3.1. It is clear that if a function f is continuous, then f is semi-continuous. But, the

converse need not be true as can be seen in the following example.

Example 3.1. Let X = {a,b}=Y and define a closure operator u1 on X as u1 /0= /0, u1{a}= {a},

u1{b}= u1X = X . Define the closure operator u2 on X as u2 /0 = /0, u2{a}= u2{b}= u2X = X .

Define the closure operator u3 on X as u3 /0 = /0, u3{a,b} = u3X = u3{b} = X . Now, define a

closure operator v1 on Y as v1 /0 = /0, v1{a} = {a}, v1{b} = {b}, v1X = X . Define the closure

operator v2 on Y as v2 /0 = /0, v2{a}= {a}, v2{b}= v2Y = Y and define the closure operator v3

on Y as v3 /0 = /0, v3{b}= {b}, v3X = X .

Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) be an identity function. We can see that f is semi-

continuous but it is not continuous because f−1({b}) is not open in (X ,u1,u2,u3) while {b} is

open in (Y,v1,v2,v3).

Proposition 3.1. A function f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) is semi-continuous if and only if

f−1(B) is a semi-closed set of (X ,u1,u2,u3) for every closed set of (Y,v1,v2,v3).

Proof. The proof is followed by the Definition 3.1. �

Theorem 3.1. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) and g : (Y,v1,v2,v3)→ (Z,w1,w2,w3) be

two functions. If g is continuous and f is semi-continuous, then g◦ f is semi-continuous.

Proof. Let V be an open set of (Z,w1,w2,w3) and since g is continuous, then g−1(V ) is open

in (Y,v1,v2,v3). Now, as f is semi-continuous, f−1(g−1(V )) = (g ◦ f )−1(V ) is semi-open in

(X ,u1,u2,u3). Therefore, g◦ f is semi-continuous. �
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Definition 3.2. A triclosure space (X ,u1,u2,u3) is said to be a Ts-space if every semi-open set

in (X ,u1,u2,u3) is open in (X ,u1,u2,u3).

Theorem 3.2. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) and g : (Y,v1,v2,v3)→ (Z,w1,w2,w3) be

two functions and (Y,v1,v2,v3) be a Ts-space. If f and g are semi-continuous, then g ◦ f is

semi-continuous.

Proof. Let V be an open set of (Z,w1,w2,w3). Since g is semi-continuous, g−1(V ) is semi-

open in (Y,v1,v2,v3). But, we know that (Y,v1,v2,v3) is a Ts-space, thus g−1(V ) is open

in (Y,v1,v2,v3). As f is semi-continuous, then f−1(g−1(V )) = (g ◦ f )−1(V ) is semi-open in

(X ,u1,u2,u3). Therefore, g◦ f is semi-continuous. �

Theorem 3.3. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) and g : (Y,v1,v2,v3)→ (Z,w1,w2,w3) be

two functions. Then, the following statements hold:

(1) If f is a semi-open surjection and g◦ f is continuous, then g is semi-continuous.

(2) If g is a semi-continuous injection and g◦ f is open, then f is semi-open.

(3) If g is an open injection and g◦ f is semi-continuous, then f is semi-continuous.

Proof. (1) Let V be an open set of (Z,w1,w2,w3) and g ◦ f be continuous. Then, (g ◦

f )−1(V ) is open in (X ,u1,u2,u3). Since f is a semi-open function, then f (g◦ f )−1(V ))=

f ( f−1(g−1(V ))) is semi-open in (Y,v1,v2,v3). But, we know that f is a surjection, in-

deed f ( f−1(g−1(V ))) = g−1(V ). Therefore, g is semi-continuous.

(2) Let V be an open set of (X ,u1,u2,u3) and g ◦ f be open. Then, g ◦ f (V ) is open

in (Z,w1,w2,w3). Since g is semi-continuous, then g−1(g ◦ f )(V )) is semi-open in

(Y,v1,v2,v3). But, we know that g is an injection, indeed g−1(g◦ f (V )) = f (V ). There-

fore, f is semi-open.

(3) Let V be an open set of (Y,v1,v2,v3) and g be open. Then, g(V ) is open in (Z,w1,w2,w3).

Since g◦ f is semi-continuous, then (g◦ f )−1(g(V )) is semi-open in (X ,u1,u2,u3). But,

we know that g is an injection, this implies that (g ◦ f )−1(g(V )) = f−1(g−1(g(V ))) =

f−1(V ). Therefore, f is semi-continuous.

�
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Definition 3.3. Let f : (X ,u1,u2,u3) → (Y,v1,v2,v3) be a function. Then, f is said to be

semi-irresolute if f−1(V ) is a semi-open set of (X ,u1,u2,u3) for every semi-open set V of

(Y,v1,v2,v3).

Theorem 3.4. If a function f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) is semi-irresolute, then f is semi-

continuous.

Proof. Let V an open set of (Y,v1,v2,v3), then it is well known that every open set is semi-

open, indeed V is semi-open in (Y,v1,v2,v3), since f is semi-irresolute, we have that f−1(V ) is

semi-open in (X ,u1,u2,u3). Therefore, f is semi-irresolute. �

The following example shows that the converse of the above Theorem need not be true.

Example 3.2. Let X = {a,b}= Y and define the closure operator u1 on X as u1 /0 = /0, u1{a}=

u1{b}= u1X = X . Define the closure operator u2 on X as u2 /0 = /0, u2{a}= u2{b}= u2X = X .

Define the closure operator u3 on X as u3 /0 = /0, u3X = X and u3A = A, where A ⊂ X . Now,

define the closure operator v1 on Y as v1 /0 = /0, v1{a} = {a}, v1{b} = v1Y = Y . Define the

closure operator v2 on Y as v2 /0 = /0, v2{a}= v2{b}= v2Y = Y and define the closure operator

v3 on Y as v3 /0 = /0, v3X = X and v3B = B, where B⊂ X .

Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) be an identity function. Then, we can see that there are

only two open sets in (Y,v1,v2,v3) which are /0 and Y and their inverse images are semi-open in

(X ,u1,u2,u3). Indeed, f is semi-continuous. But, f is not semi-irresolute because f−1({b}) is

not semi-open in (X ,u1,u2,u3) while {b} is semi-open in (Y,v1,v2,v3).

Theorem 3.5. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) be an open, semi-irresolute and surjective

function. Then, (Y,v1,v2,v3) is a Ts-space if (X ,u1,u2,u3) is a Ts-space.

Proof. Let (X ,u1,u2,u3) be a Ts-space and let V be a semi-open set of (Y,v1,v2,v3). Since f

is semi-irresolute, f−1(V ) is semi-open in (X ,u1,u2,u3). We know that (X ,u1,u2,u3) is a Ts-

space, then f−1(V ) is open in (X ,u1,u2,u3). Now, since f is open, then f ( f−1(V )) is open in

(Y,v1,v2,v3). But, we know that f is a surjection, hence f ( f−1(V )) =V . In consequence, V is

open in (Y,v1,v2,v3). Therefore, (Y,v1,v2,v3) is a Ts-space. �
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Theorem 3.6. Let f : (X ,u1,u2,u3)→ (Y,v1,v2,v3) and g : (Y,v1,v2,v3)→ (Z,w1,w2,w3) be

two functions. Then, the following statements hold:

(1) g◦ f is semi-continuous, if f is semi-irresolute and g is semi-continuous.

(2) g◦ f is semi-irresolute, if f is semi-irresolute and g is semi-irresolute.

(3) g◦ f is semi-continuous, if f is semi-continuous and g is continuous.

Proof. (1) Let V be an open set of (Z,w1,w2,w3) and since g is semi-continuous, then

g−1(V ) is semi-open in (Y,v1,v2,v3). Now, as f is semi-irresolute, f−1(g−1(V )) =

(g◦ f )−1(V ) is semi-open in (X ,u1,u2,u3). Therefore, g◦ f is semi-continuous.

(2) Let V be a semi-open set of (Z,w1,w2,w3) and since g is semi-irresolute, then g−1(V ) is

semi-open in (Y,v1,v2,v3). Now, as f is semi-irresolute, f−1(g−1(V )) = (g ◦ f )−1(V )

is semi-open in (X ,u1,u2,u3). Therefore, g◦ f is semi-irresolute.

(3) Let V be an open set of (Z,w1,w2,w3) and since g is continuous, then g−1(V ) is open

in (Y,v1,v2,v3). Now it is well known that every open set is semi-open, indeed g−1(V )

is semi-open in (Y,v1,v2,v3), as f is semi-irresolute, f−1(g−1(V )) = (g ◦ f )−1(V ) is

semi-open in (X ,u1,u2,u3). Therefore, g◦ f is semi-continuous.

�
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