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ABSTRACT: Soil fauna is an essential component of the soil ecosystem for maintaining nutrient 
cycling and biological soil fertility. This study assessed the soil biodiversity (macrofauna, 
mesofauna, and microfauna) to define strategies for the sustainable management of 
tropical agricultural soils. The study was carried out in 200 agricultural production units in 
the Department of Sucre, in northern Colombia. Physicochemical properties (organic matter, 
nitrogen, phosphorus, and pH) were determined for each soil sample. The Berlesse-Tullgren 
method was used to determine the composition of macrofauna and mesofauna, while the 
sown surface plate counting method was applied for microfauna. Community biodiversity 
was quantified with diversity indices, and Pearson correlation was carried out to determine 
the relationships between soil fauna and soil quality indicators. For the macrofauna, 1330 
individuals were found, distributed in 22 orders and 65 families; the families Tenebrionidae, 
Formicidae, Staphylinidae, Scarabaeidae and Julide presented the highest abundance and 
distribution. Mesofauna presented 1,171 individuals, distributed in the classes Arachnida 
with seven families and Collembola with four families; the Scheloribatidae, Isotomidae 
and Galumnidae families presented the highest abundance and distribution. The indices 
of richness, Shannon-Wiener diversity and Simpson dominance indicated that biodiversity 
was higher for macrofauna. Pearson’s correlation indicated significant correlations between 
soil mesofauna and soil organic matter (R2 = 0.87; p≤0.05) and phosphorous (R2 = 0.70; 
p≤0.05). The relationships between fauna and soil chemical properties indicate that soil 
biological diversity is sensitive to changes in the soil environment. This study revealed the 
importance of investigating the three components of soil fauna (macrofauna, mesofauna, 
and microfauna), since all three contribute to soil enrichment to grow nourished crops that 
allow plants to survive under climate change. Finally, this study may serve as a baseline to 
define strategies for sustainable management of tropical agricultural soils.
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INTRODUCTION
Soil is the most important natural resource to support agricultural production systems 
(De Alba et al., 2003; Martínez-Mera et al., 2019). Soil results from transformations by 
various physical, chemical, and biological processes (Lehman et al., 2015). Anthropogenic 
activities, such as mining, land-use change due to agricultural intensification, and the use 
of agrochemicals in conventional agriculture have altered soil physicochemical properties 
(Kiani et al., 2017). These changes can modify soil microorganisms’ distribution, diversity, 
and abundance (Gupta and Roper, 2010; Martínez-Mera et al., 2017). Soil quality and 
ecosystem development status can be objectively and directly reflected by quantitative 
evaluations of soil physical, chemical, and biological indicators (Valani et al., 2020; 
Vasu et al., 2021). 

Biological biodiversity has a critical role in supporting soil functionality because 
soil-dwelling organisms are responsible for biogeochemical transformations (Pino et al., 
2019). Macro and microorganisms are the main providers of nutritional substrates 
for the soil, and they are in constant interaction. They affect nutrient cycles, organic 
matter regulation, greenhouse gas emission, and carbon capture, and they can 
change soil physical structure (Guzmán et al., 2012). The ecological functions of 
soil microorganisms include benefits such as the nutrients mineralization, organic 
matter decomposition, degradation of toxic compounds, and regulation of pathogenic 
agents (Castellanos et al., 2015). Their abundance in the soil is associated with 
moisture and nutrient availability, which enables biomass production and biodiversity 
conservation, among other ecosystem services (Safaei et al., 2019). The role of soil 
biodiversity in regulating multiple ecosystem functions is poorly understood, limiting 
our ability to predict how soil biodiversity loss might affect ecosystem sustainability  
(Delgado-Baquerizo et al., 2020).

Previous research results indicated that macrofauna activity is influenced by soil properties, 
climate, and organic residues (Castro-Huerta et al., 2015; Asfaw and Zewude, 2021). These 
organisms are affected by complex interactions between abiotic and biotic factors and 
their spatiotemporal variations (Tibbett et al., 2019; Wang et al., 2019). Soil arthropods 
have been studied as biological indicators in natural ecosystems and agricultural 
production areas (Baretta et al., 2011; Morrison et al., 2018; Duran-Bautista et al., 
2020). Some studies have addressed the relationship between soil fauna diversity and 
soil physicochemical properties to determine the relationship between soil fertility and 
land-use (Murillo-Cuevas et al., 2019; Royero-Mesino, 2019; Zavaleta, 2019; Travez, 2020).

To establish sustainable agricultural systems, it is necessary to have a fundamental 
knowledge of the different components that comprise the system (Vasu et al., 2021). Few 
studies have been carried out on this subject in Colombia (e.g., Mantilla-Paredes et al., 
2009), particularly in agricultural areas (Martínez-Mera et al., 2017), where these soil 
services have been affected by the loss of vegetation cover, generated by climate 
change and human activities. Qualitative and quantitative information concerning soil 
biodiversity is scarce, and there are no reports on this aspect. Thus, it is necessary 
to generate information on the health of agricultural soils, and analyze its ecological 
implications. Therefore, the present study assessed soil biodiversity (macro, meso, and 
microfauna) in agricultural areas in northern Colombia.

MATERIALS AND METHODS

Study area

The study was carried out in the Department of Sucre, which is part of the Colombian 
Caribbean region in northern Colombia. Its surface covers 10,917 km², which represents 
0.95 % of the Colombian territory (PNUD, 2015). Five municipalities were prioritized 
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based on the subregions that exist in the Department, namely: San Onofre (Morrosquillo), 
Morroa (Montes de María), Corozal (Sabanas), San Marcos (San Jorge) and Majagual 
(Mojana) (Figure 1). Table 1 describes the relevant characteristics of the studied 
subregions and municipalities in the Department of Sucre. The soils in the sampled 
municipalities of Sucre are classified as Alfisols, Inseptisols, Mollisols, Ultisols, Vertisols, 
and Histosols (IUSS Working Group WRB, 2015; IGAC, 2016).
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Figure 1. Geographic location of the prioritized municipalities in the five subregions.

Table 1. Characteristics of the five sub-regions of the Department of Sucre, in northern Colombia 
(Ingeominas, 2002)

Sub-region Area Mun Av T/Av A AP Site coordinates Vegetation
km2 mm

Montes de 
María 6466 Morroa 26.8 °C

160 m a.s.l. 1000-1200 9° 20’ 42” N
75° 18’ 21” W

Tropical dry 
forest, mountain 

landscape

Sabana 2101 Corozal 27 °C
143 m a.s.l. 990-1275 9° 19’ 3” N

75° 17’ 29” W

Tropical dry 
forest, hills 
landscape, 
extensive 

grassland area

Golfo de 
Morrosquillo 1886 San 

Onofre
27.4 °C

17 m a.s.l. 900-1300 9° 43’ 59” N
75° 31’ 59” W

Tropical dry 
forest, anthropic 

grasslands, 
hills landscape, 
mangrove forest

San Jorge 2934 San 
Marcos

28 °C
25 m a.s.l. 1300-2300 8° 40’ 1” N

75° 7’ 59” W

Tropical humid 
forest, tropical 

dry forest, 
natural grassland

Mojana 2337 Majagual 28 °C
28 m a.s.l. 2320-3000 8° 32’ 9” N

74° 39’ 23” W
Tropical humid 
forest, wetland 

area
Mun: municipality; Av T: average temperature; Av A: average altitude; AP: annual precipitation.
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Sucre is the Department of Colombia with the highest percentage of area under land-use 
conflicts. It is known that 75.5 % of its soils present inappropriate use due to overuse 
and underutilization. Agricultural production in this Department is affected because 
small producers do not use traditional technology, practice poor soil management, 
and make inappropriate use of agrochemicals (DNP, 2003). The livelihoods of the small 
farm families consist primarily of diversified agricultural systems, which are more at 
the subsistence than the commercial farming level (Abera et al., 2020; Phondani et al., 
2020). The prevailing crops are mechanized and manual-cropping rice (Oryza sativa L., 
1753), mechanized and traditional corn (Zea mays L., 1753), Ñame (Dioscórea villosa L., 
1753), sweet and industrial yucca (Manihot esculenta Crantz, 1766), plantain (Musa sp. 
L., 1753), watermelon (Citrullus lanatus [Thunb] Matsum and Nakai, 1920), among others 
(República de Colombia Departamento de Sucre, 2020). 

Sample collection and laboratory analyses

We selected 200 AUs (agricultural units) throughout the Department of Sucre, distributed 
in 40 AUs for each prioritized municipality. The experiment was established in each 
AUs using a randomized complete block design. The samples, collected in triplicate to 
determine the precision of tests and sample handling, were stored in sterile polyethylene 
bags and kept at 4 °C for transport. 

Macrofauna and mesofauna individuals were counted and classified up to the family level 
(Oliveira et al., 2021). To this end, using the Berlesse-Tullgren method (Oliveira et al., 
2021), the sample was moistened during the first 72 h, and as the samples dried, the 
individuals began to concentrate in the lower part of the funnel and dropped into a 
collector located at the end of the funnel, which contained alcohol 70 % as fixing and 
conserving agent.  The seeded surface plate count method was used (Wehr and Frank, 
2004; AOAC, 2016) for microfauna (bacteria, actinomycetes, fungi, N-fixing bacteria, 
phosphate solubilizing bacteria and cellulolytic microorganisms),.

Physicochemical properties such as organic matter (OM), nitrogen (N), phosphorus (P), 
and pH were determined in the laboratory for each soil sample. Soil OM was determined 
by the Walkley – Black method; total nitrogen was measured by the Kjeldahl method; 
total P was determined by Bray II method; and pH was measured by the electrometric 
method (Icontec, 2018).

Data analysis

Community structure of macrofauna, mesofauna and microfauna was estimated using 
percentage stacked bar chart. The diversity of soil fauna communities was quantified using 
the Shannon–Wiener diversity index (H) (Shannon, 1948), Simpson dominance index (D) 
(Simpson, 1949), Pielou evenness index (J) (Pielou, 1969), taxonomic richness (S is the 
number of taxa in the sample) (Bobrowsky and Ball, 1989), and individual rarefaction is 
displayed on a graph (Bobrowsky and Ball, 1989). Diversity indexes were calculated with 
the software EstimateS, 9.1.0 (Colwell, 2019). Software R (R Development Core Team, 
2020) was used to perform the Pearson correlation and principal component analysis 
(PCA) to determine the relationship between soil fauna and soil chemical properties. 

RESULTS

Macrofauna, mesofauna and macrofauna community structure

A total of 1,330 macrofauna individuals were found, distributed in 7 classes, 22 orders 
and 65 families. The class Insecta was the most representative in terms of abundance 
and wealth. The families Tenebrionidae, Formicidae, Staphylinidae, Scarabaeidae and 
Julide displayed the greatest abundance and distribution in the municipalities (Figure 2a). 
The families Anapidae, Ascalaphidae, Blattellidae, Buthidae, Cantharidae, Chrysomelidae, 
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Coreidae, Cydnidae, Dermestidae, Elateridae, Elipsocidae, Endomychidae, Erotylidae, 
Gnaphosidae, Gryllidae, Ixodidae, Largidae, Lepismatidae, Lygaeidae, Meloidae, 
Neobisiidae, Nitidulidae, Palpimanidae, Paradoxosomatidae, Pentatomidae, Porcellionidae, 
Ptilodactylidae, Reduviidae, Salticidae, Scolopendridae, Scolytidae, Scytodidae, Silphidae, 
Stratiomyidae, Teratembiidae, Tetrablemmidae, Theraphosidae, Theridiidae, Thyreocoridae, 
Zalmoxidae and Zodariidae presented frequencies lower than 1 %.

A total of 1171 mesofauna individuals were found, distributed in the classes Arachnida 
with seven families and Collembola with four families. The families Scheloribatidae, 
Isotomidae and Galumnidae displayed the greatest abundance and distribution in the 
municipalities (Figure 2b). The Heterotrophic and Actinomycetes bacteria were the 
nitrogen-fixing organisms with the highest abundance (Figure 2c).

The taxonomic richness (S), Simpson dominance index (D), Shannon–Wiener diversity index 
(H), and Pielou evenness index (J) of the soil macrofauna were greater than for the soil 
mesofauna and microfauna (Table 2). Because the diversity results were similar between 
municipalities, in the subsequent analyses, the average was used. Individual-based 
rarefaction indicates the number of operational taxonomic units (OTU) expected in 
different sample sizes. Figure 3 shows that as the number of samples increases, the 
richness stabilizes.

Quality parameters of soil and correlation analysis

Nitrogen and P presented average values of 21.65 ± 10.65 and 40.35 ± 67.21 mg kg-1, 
respectively. Soil pH presented a maximum value of 7.68 and a minimum of 4.19, with an 
average of 6.05 ± 0.80. The OM presented an average value of 1.05 ± 0.51 % (Table 3). 

Pearson correlation indicated statistically significant correlations between some of 
the variables analyzed (p≤0.05). There was a high positive correlation between soil 
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Figure 2. Macrofauna, mesofauna and macrofauna community structure. (a) Families macrofauna 
(families excluded with percentages less than 1 %); (b) Families mesofauna; and (c) Groups microfauna.
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Table 2. Diversity indices of the soil macrofauna, mesofauna and microfauna

Index
Municipality

MEAN
San Onofre Morroa Corozal San Marcos Majagual

MACROFAUNA
Taxa_S (OTU) 35 35 48 33 29 36
Individuals 185 216 475 231 223 266
Simpson_1-D 0.87 0.89 0.84 0.82 0.89 0.86
Shannon_H 2.71 2.84 2.67 2.48 2.62 2.66
Equitability_J 0.76 0.80 0.69 0.71 0.78 0.74

MESOFAUNA
Taxa_S (OTU) 6 4 6 8 8 6
Individuals 38 65 464 312 292 234
Simpson_1-D 0.60 0.53 0.51 0.57 0.63 0.56
Shannon_H 1.20 0.83 1.09 1.28 1.39 1.15
Equitability_J 0.67 0.60 0.61 0.62 0.67 0.63

MICROFAUNA
Taxa_S (OTU) 6 6 6 6 6 6
Individuals 5.E+07 4.E+07 1.E+07 2.E+07 2.E+07 3.E+07
Simpson_1-D 0.20 0.38 0.37 0.40 0.35 0.32
Shannon_H 0.40 0.73 0.71 0.72 0.64 0.63
Equitability_J 0.23 0.41 0.40 0.40 0.36 0.35

Figure 3. Individual-based rarefaction curves, with their respective confidence intervals, for (a) macrofauna and (b) mesofauna.
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Table 3. Soils properties of the Department of Sucre, in northern Colombia

Soil property MIN MAX Mean SD
OM (%) 0.15 3.58 1.05 0.51
P (mg.kg-1) 2.60 401.49 40.35 67.21
N (mg.kg-1) 5.40 63.20 21.65 10.65
pH 4.19 7.68 6.05 0.80
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mesofauna and OM (R2 = 0.87; p≤0.05) and P (R2 = 0.70; p≤0.05) (Table 4). The PCA 
used soil chemical properties as independent variables and soil fauna as a dependent 
variable. The first two principal components explained 65 % of the total variance of the 
data set. A relationship was found between pH and the microfauna abundance (Figure 4).

DISCUSSION
Our study revealed the importance of investigating the three components of soil fauna 
(macrofauna, mesofauna and microfauna), since all three contribute to soil enrichment 
to grow nourished crops that survive climate change conditions. In this research, 1330 
individuals of macrofauna were found in the studied agricultural soils. The overall density 
of soil macrofauna tends to decrease to low levels on cultivated land (Rossi et al., 2005). 
The values found in our study coincide with those reported in the literature. Densities 

Figure 4. Principal component analysis (PCA) between soil biological diversity and soil chemical 
properties. Macro: macrofauna, Meso: mesofauna, Micro: microfauna.

1

0

-1

-2

-3

-2 -1 0 1 2 3 4

PC1 (41 %)

PC
2 

(2
4 

%
)

Meso
Macro

N

OM

pH Micro

P

Table 4. Pearson correlation matrix between soil fauna and quality parameters of agricultural 
soils of the Department of Sucre, in northern Colombia

Soil property OM P N pH Macro Meso Micro
p-value

OM

Co
rre

la
tio

n 
co

effi
ci

en
t 0.93 0.31 0.04 0.97 0.00 0.17

P 0.01 0.20 0.12 0.96 0.02 0.69
N 0.08 -0.12 0.00 0.82 0.75 0.24
pH 0.15 -0.14 0.29 0.49 0.70 0.23
Macro 0.00 0.01 -0.03 0.09 0.32 0.29
Meso 0.87 0.70 0.11 0.13 -0.33 0.54
Micro -0.65 -0.21 -0.57 -0.57 0.52 -0.32

OM: organic matter; P: phosphorus; N: nitrogen; Macro: macrofauna; Meso: mesofauna; Micro: microfauna.
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ranging from 429 to 592 individuals of macrofauna in crops analyzed in Colombia were 
reported by Decaëns et al. (1994). A recent study carried out in the Andes (Colombia) 
reported 1317 individuals in farming systems (Galindo et al., 2022). The order Coleoptera 
was the most representative in terms of abundance and biological richness, whereas 
Tenebrionidae, Formicidae and Staphylinidae were the most abundant families. 

Tenebrionidae family predominates throughout the five municipalities because they 
have similar environmental characteristics that enable their growth and development. 
They are considered bio-indicators of soil quality (Velasquez and Lavelle, 2019). These 
individuals have morphological, physiological, and etiological adaptations to live in 
these environments with temperatures ranging between 26 and 35 °C, or even higher 
(Duncan and Dickman, 2009). The Formicidae family also presented high abundance in 
the Department of Sucre. Individuals from this family are considered soil engineers and 
indicators of disturbance of the edaphic environment; they improve soil structure, thus 
allowing aeration, drainage, decomposition, and predation of insects (Cabrera, 2012; 
Machado-Cuellar et al., 2021). 

Staphylinidae family also stands out in the five prioritized municipalities, with very 
similar values among them. These individuals are general predators that are very 
common in agricultural soils, and they feed on ants, aphids, caterpillars, and insect 
eggs, among others. They also limit the growth of certain populations of crops pests 
(Martins et al., 2013). Galindo et al. (2022) reported in their study carried out in the 
Colombian Andes that the most representative group was Formicidae (47.4 % of the 
individuals collected), while Coleoptera was the third most abundant group with 5 % 
of the total individuals collected.

Oonopidae was the most abundant family of the order Araneae. The presence of this 
family has been reported in other studies carried out in tropical forests and cultivated 
areas (Rosa et al., 2018; Pereira et al., 2021). Dupérré and Tapia (2017) also found that 
the Oonopidae family was the most abundant and concluded that this family is a very 
important component in Neotropical forests. Li et al. (2018) proved the hypothesis that 
spiders are more diverse in semi-natural habitats, because of the greater diversity of 
plants than in plantation lands with lower vegetation and subject to poor agricultural 
practices. This behvaior may be related to the low number of individuals found in these 
municipalities. This family plays an important role in crops, acting as biological control 
of other predatory pests by feeding on them, and it has characteristics that are useful 
for detecting different environmental and anthropogenic changes (Simó et al., 2011; 
Ibarra-Núñez, 2014). The disturbances caused by inadequate agricultural practices, such 
as the use of insecticides, herbicides, fungicides, fertilizers, and pruning, among others, 
also reduce the population of these insects by altering the habitat, which puts constant 
pressure on spiders and reduces their population (Benamú et al., 2017). Dias et al. (2005) 
showed that oonopids constituted more than 20 % of the captured adult spiders and 
more than 9 % of the total species diversity, being the second group after Salticidae, 
both in abundance and diversity.

A total of 1171 individuals of mesofauna were found in this study, and the families 
Isotomidae and Scheloribatidae were the most representative. Fekkoun et al. (2021) found 
that the Scheloribatidae family was the most abundant, with 48 % of the total abundance. 
The family Isotomidae stands out in the Collembola class because of its frequency in 
the five municipalities. Like in this study, Gómez-Anaya et al. (2010) reported that the 
most dominant family was Isotomidae, with 29.3 % of the total abundance. Similarly, 
Villarreal-Rosas et al. (2014) reported that, among the Collembola, the most abundant 
family was Isotomidae. These organisms are recognized by their slim bodies covered with 
abundant fungi, and by their bodies covered with silk or scales (Daghighi et al., 2013; 
Palacios-Vargas, 2014). They adapt easily to different habitats, with different temperature 
and rainfall levels, such as forests and desertic shrubs (Villarreal-Rosas et al., 2011), 
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and live in soil, fallen leaves, tree bark, moss and under stones, among others (Montejo-
Cruz et al., 2018). Scheloribatidae species are the most frequently collected oribatid 
mites (Knee, 2017). 

Heterotrophic and Actinomycetes bacteria were the most abundant group of microfauna. 
Xia et al. (2022) found that the relative abundance of heterotrophic bacteria was 
significantly higher compared to other groups of microfauna. This group has a wide 
diversity of demands in carbonated substrates; the majority are saprophytes common 
in the soil and effective at transforming edaphic substrates into biomass (Terrado et al., 
2017). These bacteria feed on organic compounds and, thanks to their reproductive 
capacity, they generate large populations in a short time, rapidly colonizing degradable 
substrates. They are also responsible for increasing or reducing the supply of nutrients. 
Unfortunately, poor agricultural practices by farmers, such as continuous mechanization, 
monoculture planting, irrigation systems, application of synthetic agrochemicals and 
fertilizers, soil compaction, and residue burning decrease the microbial flora, which can 
drastically reduce soil fertility (Terrado et al., 2017). Slaughter (2021) indicated that 
bacteria, including actinomycetes, are the most numerous rhizosphere inhabitants, 
although they represent only a smaller portion of the total biomass due to their small size.

The diversity index indicated that macrofauna was the most diverse. This result is 
consistent with those obtained in other studies in Colombia (Stanturf et al., 2014; 
Tulande et al., 2018). Gongalsky (2021) stated that the macrofauna accounts for most 
of the total soil animal biomass in some ecosystems, and substantially contributes to 
soil food-web functioning. Additionally, the macrofauna can be among the most diverse 
groups in the soil environment. According to Shannon (1948), the diversity value of the 
macrofauna is high (H’>3) and, according to the rarefaction curve based on individuals of 
the macrofauna, it is estimated that the total richness is good compared to the expected 
total richness. Soil fauna diversity is related to increased available food resources of 
plant roots and litter inputs into soils (Heinze et al., 2010).

Soil physical and chemical properties determine the community structure of soil 
fauna (Nisa et al., 2021). Several studies have evaluated correlations between the 
physicochemical properties and the edaphic fauna (Martínez-Mera et al., 2017; Wang et al., 
2019; Galindo et al., 2022). Soil mesofauna was significantly and positively correlated 
with organic matter (OM) and P. Soil fauna influence soil physical and chemical properties 
related to soil fertility (Tantachasatid et al., 2017). These organisms are the main ones 
responsible for fragmentation and incorporation of OM in the soil, to promote favorable 
conditions for activity of soil microorganism and distribution, and their activities lead to 
the formation of biogenic structures (galleries, chambers, fecal pellets and casts), thus 
influencing soil aggregation, water properties and OM assimilation (Lavelle et al., 1997). 

Phosphorus is a limiting factor in the early stage of the litter decomposition process 
(Bargali et al., 2015). The dynamics of P during litter decomposition can be strongly 
affected by soil fauna, and such effects could be moderated by nutrient availability and 
environmental conditions (Peng et al., 2019). Wang et al. (2016) also found an association 
between soil fauna with organic matter and phosphorus, which suggests that soil diversity 
is associated with the availability of soil nutrients. 

According to the PCA, soil pH was related to soil microfauna. Xia et al. (2022) obtained 
this same relationship from the results of a correlation analysis, finding that soil pH was 
the most important factor related to the soil bacterial community. Generally, the results 
indicate that soil pH is more important than nutrients in shaping bacterial communities 
in agricultural soils, including their ecological functions and biogeographic distribution 
(Wang et al., 2019). Soil properties determine invertebrates’ functional characteristics 
and population dynamics. A previous study on the global topsoil microbiome also revealed 
that environmental factors, especially soil pH, had a greater impact on the soil bacterial 
community than geographic distance (Bahram et al., 2018). Low pH affects microfauna 
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community organization and other components of the soil food web (Matute et al., 2013). 
In some related studies, pH between 5 and 7 seems favorable for fauna soil (Warner, 2009). 

CONCLUSIONS
Soil physicochemical properties influenced the community structure of the edaphic fauna 
in tropical agricultural soils, with the relationship varying according to the edaphic fauna 
group. Macrofauna was influenced by organic matter, mesofauna by P, and microfauna 
by pH. The diversity index indicated that macrofauna was the most diverse group, and 
this group presented variations in the analyzed municipalities. Finally, this research 
can serve as a baseline to define strategies for the sustainable management of tropical 
agricultural soils.
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