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Abstract: The addition of polymers in construction is a new tendency and an important step toward
the production of structures with better functional properties. This work investigates the addition
of polyurea (PU) as a polymeric material in mortars. Polymer mortars were manufactured with
the addition of polyurea retained in different sieves (T50 and T100) and different concentrations
(2% and 5%). The characterization of the, polyurea (PU)control mortar (PU0%) and manufactured
polyurea mortars (PU2%T50, PU5%T50, PU2%T100, and PU5%T100) was conducted by means of
morphological analysis, SEM, XRF, TGA, and a compressive strength test of hydraulic mortars. The
results show that mortars with polyurea retained in sieve 100 with a particle size of 150 µm exhibit
better thermal behavior and a greater resistance to compression with a concentration of 5% polyurea
with respect to the other samples. The present work reveals that polyurea retained in sieve 100 can be
considered as a polymeric additive for mortars, indicating that it could be a candidate for applications
such as construction.

Keywords: mortar; polyurea; characterization; construction

1. Introduction

Currently, the construction industry presents a substantial challenge for material
engineers considering the concept of sustainable development, which is a widely discussed
issue. The use of polymers represents a new perspective, especially in the construction
industry, as materials that provide functional properties.

Masonry consists of joining single units together with mortar. This type of construction
is very popular and is widely used for small and medium residences, particularly in
the construction of interior and external structural walls, the facades of buildings, and
nonstructural divisions, which must withstand different loads and stresses making them
prone to collapse [1,2].

In mountainous regions, for the opening of highway construction projects or highway
expansion, the use of explosives is necessary. In this sense, some explosions indirectly
affect the houses of local inhabitants, causing cracks and fractures in walls and, in some
cases, in the structural systems. For this reason, in masonry, the materials selected for
construction are important, especially the mortar, which is considered as the material
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joining two masonry units together. Furthermore, to improve the resistance of masonry
walls, it is common to use mortar as a coating, confining the concrete elements of the wall.
This system, however, has only a modest ability to dissipate energy in the inelastic range.
In this sense, mortar must meet various requirements depending on its use, i.e., for joining
masonry (glue mortar), as a filling mortar (grouting), or for coating structures (mortar or
plaster for interior walls). However, the NSR 10 standard [3,4] establishes that the function
of mortar is to adhere masonry units, with a dosage of 7.5 MPa (75kgf/cm2) considered
appropriate to guarantee quality [3].

The minimum value of compression at 28 days varies depending on the materials
added to potentiate the properties of mortars, including the addition of polymers to the
traditional mixture of cement, sand, and water [4]. This addition improves the durability,
workability, and mechanical properties [5].

Mortars have been studied with different additions of polymers, such as polyurethane,
fiberglass, styrene–acrylate copolymers, and vinyl copolymers [6–12], obtaining results
such as a reduction in compressive strength, as well as an improvement in performance
with respect to adhesion, flexibility, permeability, etc. Therefore, these mortars can meet
the present and future requirements in terms of construction and can face different stresses
and loads.

There are several polymers suitable for addition to mortars that have not been studied.
One example is polyurea (PU), which is a material that has been widely used in construction
as a waterproof material to withstand different mechanical stresses and deformations [13].
PU is a synthetic polymer that is generated by the reaction of diisocyanate with diamine.
The polymerization reaction is similar to that of polyurethane, with both undergoing
condensation polymerization. However, the difference lies in the bond, with that of
polyurea formed with an amine and that of polyurethane formed with a hydroxyl group [14].
Its properties include high flexibility, tensile strength, chemical resistance, high toughness
when tearing, high chemical resistance, high durability, low flammability in elastomeric
copolymers, high shear resistance, and generally improved thermal properties.

The addition of a granular material in the formation of the mortar must consider the
size of the particles because previous studies have shown that failures that occur in mortars
can occur more frequently at the weakest interaction in the zone interface between the
cement and aggregate [15]. The concentration of tensile stress around the aggregate grains
(the transit zone) between materials with different properties can cause concrete failure.
For this reason, the bond between the cement mix and the aggregate is important. Thus,
the surface of an aggregate that affects the transit zone is an important factor [15,16].

In the addition of a polymeric material to the mortar mixture, the size and surface area
of the component will affect the compressive strength of the mortar; therefore, in this study,
two particle sizes of PU and different concentrations were used to determine the optimum
parameters for addition to mortars.

In this research, the addition of PU as a polymeric material in mortars is proposed. To
determine the influence of PU on the mortars, the compressive strength of hydraulic mortars
is investigated. Furthermore, the PU and the polyurea mortars fabricated are analyzed
using granulometric analysis, thermogravimetric analysis (TGA), X-ray fluorescence (XRF),
and SEM analysis.

2. Materials and Methods

A description of the materials and methods used in this research is presented below.

2.1. Materials
2.1.1. Polyurea (PU)

The polymeric material used was EUCO QWIKJOINT 200 [17,18], which is a semirigid,
fast-setting polyurea, mostly used in construction in concrete-type industrial floors and for
the filling of control joints. The PU used is composed of two parts: part A is a transparent
amber color and is composed of a mixture of two dissociations, and part B is a pigmented
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gray color and is composed of three components, as shown in Table 1. When mixed in a
proportion of 1:1, a gray color similar to that of concrete is obtained (see Figure 1a,b).

Table 1. Chemical composition of the PU used [18].

Chemical Identity CAS
Concentration in Percentage (%w/w)

Part A Part B

4,4′-Methylene bis(phenylisocyanate) 101-68-8 15–40% -
Diphenylmethane diisocyanate 26447-40-5 10–30% -

Diethyltoluenediamine 68479-98-1 - 15–40%
Propoxylated Amine 102-60-3 - 3–7%

Amorphous silica 7631-86-9 - 1–5%
Titanium dioxide 13463-67-7 - 0.5–1.5%
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Figure 1. Preparation of PU: (a) EUCO QWIKJOINT 200 polyurea; (b) gray color of PU; (c) PU
retained in sieve 50 and sieve 100.

The PU was prepared by mixing the two components, and it was allowed to dry for
a period of 24 h. Later, it was stripped and sieved, thus obtaining various PU particle
sizes, from which those retained in sieve 50 and sieve 100 (particle sizes of 300 and 150 µm,
respectively) were extracted to be used for manufacturing the mortar (see Figure 1c).

2.1.2. Sand, Cement, and Water

A well-graded clay sand (SW-SC) was used. The SW-SC was characterized under the
ASTM D422-63 standard [19], and its granulometric profile is shown in Table 2. The sand
presented a natural humidity of 5.4% and a fineness module of 2.1.

Table 2. Granulometry of clay sand.

Sieves Opening (mm) Retained Mass (g) % Retained Cumulative
Retained % % PASS

No.
1” 25.000

3/4” 19.000
1/2” 12.500
3/8” 9.500 0.0 0.0 0.0 100.0

4 4.750 1.9 0.0 0.0 100.0
8 2.360 13.8 0.3 0.3 99.7
16 1.180 121.5 2.5 2.9 97.1
30 0.600 1.2058 25.1 28.0 72.0
50 0.300 2.4758 51.6 79.5 20.5

100 0.150 839.2 17.5 97.0 3.0
200 0.075 31.1 0.65 97.67 2.33

P 200 0.000 111.7 2.33 100.00 0.00
Starting Weight (g): 4800.8 Final Weight (g): 4689.1



Polymers 2022, 14, 1753 4 of 15

Ordinary Portland cement was used according to NTC 121 and ASTM C1157 regu-
lations [20,21]. This cement is used for the construction of mortars in general, as well as
concrete structures, such as beams, columns, slabs, walls, and foundations [22]. Tap water
was used according to the Colombian regulations for drinking water.

2.1.3. Mix Design and Polymer Mortar Manufacture

The combinations obtained with various quantities of sand, cement, water, and PU are
shown in Table 3. The preparation of mortars was carried out according to the standard
ASTM C109/C109M-21 [23]. Mortar cubes with different curing ages of 7, 14, and 28 days
were prepared.

Table 3. Mix design used for polymer mortar preparation.

Polymer
Mortar

Number
of Mortars

PU
Addition (%)

PU
Particle Size
(µm) (Sieve)

Mix Design

Cement (g) Sand (g) Water (g) PU (g)

PU0% 9 0 - 750 1736.4 390 -
PU2%T50 9 2 300 (50) 750 1736.4 390 14.25
PU5%T50 9 5 300 (50) 750 1736.4 390 37.5

PU2%T100 9 2 150 (100) 750 1736.4 390 14.25
PU5%T100 9 5 150 (100) 750 1736.4 390 37.5

After curing, the mortar was removed from the lime water mixture and allowed to
dry for different periods of time depending on curing age. Mortars cured for 7 days were
left to dry for a period of ~3 h, those cured for 14 days were left to dry for a period of ~6 h,
and those cured for 28 days were left to dry for a period of ~12 h.

2.2. Characterization
2.2.1. X-ray Fluorescence

To determine the effect of PU on the formation of the main oxides in cement, a
quantitative compositional analysis employing X-ray fluorescence (XRF) was performed
using Thermo ARL Optim’X WDXRF equipment. The analysis was conducted on samples
cured for 28 days. Minerals are responsible for the characteristics and properties of cement,
such as the initial strength provided by tricalcium silicate (3CaO·SiO2 or alite) or the
strength granted by concrete over time provided by dicalcium silicate (2CaO·SiO2 or
belite). Tricalcium aluminate (Al2O3·3CaO or celite) is essential for the chemical reactions
of concrete to occur, whereas tetracalcium aluminoferrite (Al2O3·4CaO·Fe2O3 or ferrite) is
necessary for slow hardening [24,25].

2.2.2. Particle Size

A particle size analysis was conducted to determine the characteristic size profile of
the different polyurea mortar samples, thereby enabling the relationship between particle
behavior and polyurea mortar properties to be established. For this, 5 mg of polyurea
mortar was taken and analyzed using Microtrac equipment, which quantified the number
of particles present in the sample and characterized its morphological parameters, such as
size, area surface, volume, and diameter.

2.2.3. Scanning Electron Microscopy (SEM)

Microstructural analysis of the PU and polyurea mortars was performed using scan-
ning electron microscopy (SEM), employing a Thermoionic SEM JEOL JSM-6490LV. A
2 × 2 cm sample of polyurea mortars was used. The sample was pretreated with dehy-
dration followed by metallization. This analysis was performed to observe the interfacial
adhesions among the added polymer, cement, and aggregates, as well as the hydration
products formed. Furthermore, a semiquantitative analysis of the elemental composition
was performed using energy-dispersive spectroscopy (EDS) coupled to SEM.
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2.2.4. Thermogravimetric Analysis (TGA)

TGA was performed to determine the thermal stability of pure PU with different parti-
cle sizes and of polyurea mortars formed with the addition of PU at different concentrations.
The instrument used for this test was a Perkin Elmer TGA7. In a typical experiment, a
sample weighing between 10 and 20 mg is uniformly placed in an alumina crucible and
pyrolyzed under a flow of N2, heating the samples from 50 to 850 ◦C [9,26,27].

2.2.5. Compressive Strength Test

A compressive strength test was performed using equipment in 30000100 mode,
applying a relative load ratio in the range of 900–1800 N/s according to the standard ASTM
C109/C109M-21 [23]. First, cubes of 50 mm were fabricated and then dried for 1 day in a
mold, before being immersed in a mixture of lime water until the tests were carried out
after 7, 14, and 28 days of curing [14].

3. Results and Discussion
3.1. Microstructural Characterization of Polymer Mortars
3.1.1. X-ray Fluorescence

Table 4 shows the results of the XRF analysis. The percentages of oxides found in the
polyurea mortars (PU2%T100, PU5%T100, PU2%T50, and PU5%T50) and in the control
mortar (PU0%) are presented.

Table 4. Quantification of oxides present in the samples determined by X-ray fluorescence.

Oxides
PU0% PU2%T100 PU5%T100 PU2%T50 PU5%T50

% p/p

Al2O3 8.16 9.61 9.71 5.24 8.46
CaO 40.35 36.23 37.7 51.9 38.92

Cr2O3 0.022 0.009 0.008 0.023 0.01
Fe2O3 2.34 2.95 3.202 2.87 1.98
K2O 1.98 1.75 1.62 2.25 2.11
MgO 2.73 1.08 1.16 1.08 2.2
MnO 0.054 0.055 0.059 0.071 0.053
Na2O 0.675 1.49 1.55 0.16 0.829
P2O5 0.126 0.154 0.163 0.094 0.143
SiO2 31.17 32.48 30.49 24.05 32.21
SO3 2.81 1.84 2.04 2.83 2.52
TiO2 0.274 0.331 0.397 0.381 0.217

1 LOI 550 ◦C 3.11 4.686 4.95 3.225 4.012
LOI 950 ◦C 9.046 11.763 11.643 8.73 10.149

1 LOI: loss on ignition at the reference temperature.

Figure 2 shows the percentages of different minerals in the cement of the polyurea
mortars with 2% addition of PU and the use of different sieves (T50 and T100). It can
be observed that the PU2%T100 mortar presented different percentages of oxides with
respect to the control mortar (PU0%), especially in terms of calcium oxide (CaO), with
values 2.65%–4% lower than those of PU0%. Furthermore, it can be observed that the
PU2%T50 polyurea mortar presented marked variations compared to PU0%, with an 11.5%
increase in the concentration of CaO, a 2.9% decrease in the concentration of aluminum
oxide (Al2O3), and a 7.1% decrease in the concentration of silicon oxide (SiO2) compared to
PU0%. According to the results, the formation of calcium, aluminates, and silicates in the
mortars was influenced by the addition of polyurea, especially for PU2%T50.
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Figure 2. Percentages of different minerals in the cement of polyurea mortars with 2% addition of PU
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Figure 3 shows the percentages of different minerals in the cement of the polyurea
mortars with 5% addition of PU and the use of different sieves (T50 and T100). In general,
PU5%T50 and PU5%T100 polyurea mortars maintained similar values to those of PU0%,
with small variations in CaO, Al2O3, and SiO2. The formation of calcium, aluminates, and
silicates in the mortars was not influenced by the addition of polyurea.
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It is known that the presence of these oxides affects the production of dicalcium silicate
(2CaO·SiO2 or belite) and tricalcium silicate (3CaO·SiO2 or alite), both responsible for the
strength of the concrete. The former is related to the acquisition of strength over time, while
the latter is related to the initial strength. Therefore, it was expected that the resistance of
the PU2%T50 mortar would differ significantly with respect to the other mortars. However,
all mortars generally had normal values within the ranges referenced in the literature for
aluminum, calcium, and silicon oxide [7,28–30].
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The variation in the percentages of oxides present in the samples can be affected by
the components of the aggregate used for the manufacture of the mortars. When using
well-graded sand, the particle size distribution of the aggregate is guaranteed. Although
not all samples presented the same amounts of metal compounds in the aggregate, the
values obtained were within acceptable ranges [31–33].

3.1.2. Particle Size

Figure 4 shows the granulometric profile of the polyurea mortars analyzed. Varying
behaviors were observed among the mortars. PU2%T50 can be highlighted as having a
granulometric profile below that of PU0%. Likewise, it can be observed that the samples
PU2%T100 and PU5%T100 had similar profiles to that of PU0%. Figure 4 also shows
the granulometric profile of pure polyurea with different sieve sizes (PU100%T50 and
PU100%T100).
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The samples with a similar profile to that of PU0% were those using polyurea retained
in sieve 100. This is because the smaller particles were conducive to the granulometry
not being affected. In contrast, the samples using polyurea retained in sieve 50 presented
different behaviors according to the concentration, obtaining curves above and below that
of the control mortar when the concentrations were higher and lower, respectively.

It is well known that the surface area of particles allows interactions between
components. Figure 5 reveals that the samples presenting a greater dispersion of the
particles presented a lower resistance with a certain linearity. In the case of samples
retained in sieve 50, a greater dispersion can be observed in the PU2%T50 sample with
respect to the PU5%T50 sample, a behavior that was not replicated in the PU2%T100 and
PU5%T100 samples.
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3.1.3. SEM Analysis

Figures 6 and 7 show the microstructure of the polyurea mortars manufactured with
different additions of polyurea. It can be observed from the microphotographs that PU
was present in all mortars, in addition to cement hydrates, such as thin needles of hy-
drated calcium sulfoaluminate (E; ettringite), hydrated calcium silicate crystals (CSHs),
and portlandite (P) forming boards or chips within a gap-free space.
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The SEM analysis revealed an interaction between the different components of the
mortar and the presence of spaces or small interstices between the PU and the mortar
mixture. Thus, the adhesion between the two components was incomplete. These spaces
were more evident in the samples of PU retained in sieve 50 due to the larger particles
not promoting adhesion between the PU and the mortar mixture. The presence of these
interstices makes the material more susceptible to ruptures, thus leading to lower resis-
tance. This has also been observed by other authors [34,35], who used various polymeric
materials in mortars, determining that the tensile stress around aggregate grains between
materials with different properties can generate concrete failure. However, regardless of
the percentage of PU addition, it was possible to locate cement hydrates attached to PU.
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In general, the hydration products formed were similar for all mortar samples, including
the control PU0% (see Figure 8). Fine needles of ettringite (E), portlandite plates (P), and
hydrated calcium silicate amorphous phase (C-S-H) were observed.
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Figure 8. SEM analysis of mortar control PU0%.

Figure 9 shows the EDS compositional analysis of the polymer mortars PU5%T100
and PU2%T100. The regions of the spectra allowing the identification of components are
highlighted. This allowed the structures to be differentiated according to the components
present in the hydrated products of the cement, suggesting that the addition of PU did not
affect the normal formation of the mortar.
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3.1.4. TGA

Figure 10 shows the thermogravimetric analysis of pure polyurea (PU100%T50 and
PU100%T100), polyurea mortars (PU2%T50, PU5%T50, PU2%T100, and PU5%T100), and
the control mortar (PU0%). The TGA of the polyurea mortar samples and the pure polyurea
showed that the typical behavior of polyurea was not replicated by the mortar samples;
however, it could be determined that the addition of PU decreased the percentage weight
loss with temperature as a function of particle size and concentration. The sample with a
smaller particle size and a higher concentration (sample PU5%T100) presented superior
behavior in terms of weight maintenance compared to the sample with a larger particle
size and a lower concentration (sample PU2%T50).

The decomposition stages of mortars can be differentiated according to the temperature
range. The first window of weight loss between 20 and 110 ◦C corresponded to the
evaporation of free water. The second window of weight loss between 120 and 400 ◦C
corresponded to the loss of water from the hydrated calcium silicate (CSH) gel and the
minority phases of aluminates and sulfoaluminates. The third window of weight loss
between 410 and 530 ◦C corresponded to the decomposition of calcium hydroxide, whereby
water was released and calcium oxide remained. The final window of weight loss between
550 and 950 ◦C corresponded to the decomposition of the calcium carbonate present in the
cementitious material [36]. In the case of pure polyurea, the degradation of urea bonds was
identified. However, when analyzing the mixture of mortars with polyurea, the effect of
polyurea on mortar decomposition was mediated by two factors, the concentration and
the size of the polyurea, with the particle size being more influential due to it improving
the interaction between components. The variations between different mortars may have
been due to the number of degraded urea-type bonds, the dispersion of particles in the
mortar, and their interaction with the components of the mortar. As fewer interstices were
identified by SEM analysis in the mortar with polyurea retained in sieve 100, the effect
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of the concentration was more noticeable than for the mortar with polyurea retained in
sieve 50. Overall, it can be observed that adding PU in different concentrations and sizes
affected the thermal stability of the mortar, which translated into variations in the amount
of material lost at each stage.
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However, Figure 10 shows an increase in weight in the TGA thermograms for all
samples. It is probable that the formation and breaking of bubbles inside the material
caused changes in pressure, which can cause alterations in the test, and generated a
positive oscillation in the thermobalance. This means that the increase is due to the positive
oscillation of the thermobalance, which is a result of the gases generated or due to the
bursting of bubbles. This might be called positive instrumental noise.

The initial decomposition temperature (Tinitial), the 50 wt.% loss temperature (T50%),
and the final decomposition temperature (Tend) are shown in Table 5. Significant variations
can be observed in T50% for the PU5%T50 and PU2%T100 samples, where the temperature
dropped by about 20% with respect to the control sample.

Table 5. Decomposition temperatures of samples.

Samples
Decomposition Temperature ◦C

Tinicial T50% Tend

PU0% 50.8 722.55 842.63
PU100%T50 51.2 391.28 843.05
PU100%T100 51.2 386.17 843.15

PU2%T50 51.3 715.47 833.7
PU5%T50 51.1 573.43 841.59
PU2%T100 51.1 579.33 841.11
PU5%T100 51.1 740.82 839.38

In some cases, the outermost layer of a polymer does not allow gases to migrate to
the outside because, during melting or relaunching, it becomes more impermeable. This
results in the formation of bubbles inside the material, which increases the pressure until
the sample is ruptured, reflected as a sudden loss of mass. It is important to note that this
can occur at different temperatures [37,38].
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TGA allows the thermal behavior of mortars to be determined so that the influence of
the polymer composition on the thermal degradation can also be determined. In the case of
PU, its applicability depends on its particle size and concentration due to their influence on
the thermal stability and resistance of the mortars.

3.1.5. Resistance

Table 6 shows the results of the compression test of PU0% and the mortar samples
retained in sieves 50 and 100 with different concentrations of PU (PU2%T50, PU5%T50,
PU2%T100, and PU5%T100) after 7, 14, and 28 days of curing. The resistance specified was
20.68 MPa for all tests. In general, a lower resistance was presented with respect to the
control sample after 28 days of curing. In the case of mortars with PU retained in sieve
100, a greater resistance with respect to the control sample was observed after 28 days of
curing for both concentrations, with better results recorded for the sample with 2% PU, as
shown in Table 6. From the data obtained, we can deduce that the mortars with different
concentrations of PU retained in sieve 50 had a lower resistance than PU0%, whereas the
mortars with PU retained in sieve 100 exhibited increased resistance after 28 days of curing.

Table 6. Resistance test for control sample (PU0%) and resistance of mortars with polyurea retained
in sieves 50 and 100.

Age
(Days)

Maximum
Load (kN)

Average
Stress (Mpa)

Standard
Deviation (σ)

Average
Resistance (%)

PU0%
7 36.03 14.41 0.18 70

14 44.53 17.81 0.08 86
28 55.37 22.14 0.23 107

PU2%T50
7 24.03 9.61 0.13 46.70

14 49.43 19.77 0.10 95.30
28 38.00 15.20 0.11 73.30

PU5%T50
7 28.93 11.57 0.05 56.00

14 38.36 15.34 0.08 74.30
28 33.33 13.33 0.19 64.30

PU2%T10
7 29,30 11.72 0.31 57

14 37.43 14.97 0.26 72.3
28 62.20 24.88 0.06 120.3

PU5%T100
7 24.13 9.65 0.18 47

14 38.57 15.43 0.15 74.7
28 60.73 24.29 0.15 117.3

It can be highlighted that the mortars with PU retained in sieve 100 (PU2%T100 and
PU5%T100) were inferior to the remaining samples after 7 and 14 days of curing. This
could be due to the presence of water in the pores of the samples, which hindered the
development of bonds between the mortar components and the polyurea, thus affecting
the resistance of the material.

In general, it can be established that adding PU with a particle size of 150 µm (sieve
100) promoted an increase in compressive strength after 28 days of curing for both con-
centrations (PU2%T100 and PU5%T100). The smaller dimension of PU particles enables
better penetration of the pores produced in the mortar, allowing interactions between the
PU and the hydrated mortar. This is due to the influence of the aggregate surface area on
the formation of ruptures in the mortars. A smaller particle size and surface area result in
better compression of mortars [39,40].

4. Conclusions

According to the results of this experimental study, the following conclusions can
be drawn:

- The addition of polyurea affected the sample profile when the particle size was large.
- SEM analysis revealed the presence of hydrates typical of cement.
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- The thermal stability of the mortars was influenced by the addition of polyurea, as
determined by TGA. The sample with a smaller particle size and higher concentration
of polyurea (PU5%T100) presented better results with respect to conventional mortar
in terms of weight maintenance.

- After 28 days of curing, polyurea with a small particle size improved the compressive
strength of the sample.

- Taken together, these findings suggest that polyurea retained in sieve 100 can be
considered as a polymeric additive for mortars, indicating that it could be a candidate
for applications such as the construction of interior and external structural walls,
building facades, and nonstructural divisions, where durability, workability, and
mechanical properties are required.
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