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ABSTRACT 
 

In this article, a facility location model was designed to support logistics operations, considering service distance 
limitations for demand fulfillment and a list of candidate locations within a supply chain. Consequently, an allocation 
model was designed using Mixed-Integer Linear Programming (MILP), in which a finite number of demand nodes 
could be satisfied by a set of supply nodes, considering not only the costs related to these locations, but also 
restrictions aimed at improving the level of service based on distance. Besides, an integrated solution scheme was 
proposed that includes a macro in VBA language that calculates the distance between nodes using the web mapping 
service developed by Google Maps and solving the model through a branch and cut algorithm. Subsequently, a case 
study was executed, where the supply operation of an important Colombian retail company is analyzed. The results 
reflected positive effects not only on costs, but also on the prioritization of average distance traveled and on the 
satisfaction of store demand by distribution centers. Thus, the conditions in which the implementation of this model 
provides strategic benefits were verified, functioning as a tool to support decision making. 

 
Keywords: Facility location; Logistics engineering; MILP; Supply chain management. 

 

INTRODUCTION 

The main objective of this research is to design a model of facility location with distance limitations, capable of 
providing real and effective solutions for the design of supply networks. This paper addresses three specific research 
questions: (1) How can the current facility location models be improved? (2) How can the tendency to look locations 
on a continuous surface without considering the reality and context of why a location has been selected be prevented? 
(3) Is minimizing total costs generally a primary goal in making facility location decisions?  

 
The reason this topic is important is because of its ability to manage complex logistics networks, and it is 

considered crucial to the success or failure of a business. Hence, the correct design of the network where tangible and 
intangible resources flow within a supply chain has become necessary to create added value and competitiveness. 
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Besides, it is imperative to mention that one of the main decisions faced by logistics management is in the 
optimization of the physical flow of goods, or more specifically, in the selection of facilities. The Council of Supply 
Chain Management Professionals (CSCMP) defines the term 'facilities' as an installation or contrivance that facilitates 
something; a place for doing something: Commercial or institutional buildings, including offices, plants, and 
warehouses (CSCMP, 2013). Also, facility location plays a vital role in supply chain design, as it impacts their long-
term logistics costs (Yang et al. 2019). A facility location problem consists of deciding where to locate one or several 
facilities in order to serve a set of demand points. Often, the goal is to minimize the total cost that includes establishing 
the facilities and supplying the demand (Kınay et al. 2019). Thus, facility location is one of the very first and 
prominent strategic decisions that profoundly affect operational decisions in any organization (Farahani et al. 2019).  

 
Based on the above, the research on facilities location evolved towards interdisciplinary where not only complex 

models based on mathematical programming are implemented, but also, on complex algorithms and heuristics, this 
is explored further in section 2, literature review. Moreover, the model background embraces methodologies such as 
the Weber method or the calculation of the center of gravity, which aims to find a location within a continuous 
surface. Methods that still lack the accuracy to meet the current needs of companies. Since one does not live in a 
Euclidean space and there is no certainty that a precise location thrown by such methods is the most indicated or 
desirable. Today, other aspects must be considered, such as the level of service, the road and rail network, or the 
possibility of acquisition that a company may have on a property, for example. These traditional methods ignore these 
aspects. So, in practice, there is a need to design more accurate models on a large scale, because these models should 
not only look at a location on a continuous surface, it should consider the reality and the context on why a location is 
selected. 

 
The possibility of adjusting the capacity of operating facilities over the planning horizon is relevant when sizing 

decisions are reversible in the medium term. In this context, it is important to understand the trade-off between the 
costs incurred by capacity expansion and contraction and the level of service provided to the customers. For example, 
it may be economically attractive to invest in increasing capacity temporarily to guarantee shorter delays in demand 
fulfillment (Correia et al. 2017). In the tactical level of logistic planning, level of service could be defined as a Cycle 
Service Level, it looks at the probability of stockout during a replenishment time, or as an item fill rate, the percent 
of the items ordered that come in. However, on strategic design, distance to the customer can be a proxy for archiving 
those goals. Furthermore, this is a good way that it can get at in measuring the opportunity that any firm can meet 
these tactical service objectives. 

 
Therefore, as the main contribution, a solution scheme is proposed that comprises a Mixed-Integer Linear 

Programming (MILP) model solved through a branching and cutting algorithm. In parallel, the model involves a list 
of candidate installations and works with distance values taken from the web mapping service developed by Google 
Maps. Finally, for its validation, a case study was carried out with a Colombian retail company to select distribution 
centers (DC) to supply a set of stores nationwide.  

These methods have been proposed considering that instead of having a continuous space where any type of 
location can be obtained, the model works with a set of candidate locations. This is based on the fact that it does not 
make much sense to obtain locations where a facility cannot be located or where a property can not be acquired. Just 
to mention an example, a traditional model could optimally result in one of the facilities being located on a lake, or 
it does not consider whether the company has the possibility of quickly acquiring a specific property in a specified 
location. Then, these candidate locations provide input to the model, so it is indicated that they should be the result 
of a previous feasibility study by the company that could involve a study of investment alternatives to explore the 
conditions, availability, and cost of such facilities. 

 
Besides, the results of the validation carried out presented positive benefits concerning the implementation of 

the proposed model to solve problems of selection of logistics facilities, proposing a methodology that considers 
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viable location options for the company and that is a product of its own needs. Similarly, not only was it possible to 
establish in this allocation model a prioritization of the costs associated with this activity, but also restrictions were 
considered aimed at improving the level of service using the distance between supply and demand nodes, together 
with percentages of this demand satisfied within certain distance limits. Also, synergic work was achieved with real 
data from Google's geographic information system (GIS) to collect distance information. 

 
This article is organized as follows: The related literature is reviewed in Section 2; Section 3 describes the 

methodology used in this model; Section 4 explains each of the stages of model design; Section 5 concludes this 
paper and gives some recommendations for future studies. 

 

RELATED WORK 

Facility location problems received attention from many perspectives in the scientific literature and remained 
relevant nowadays. Some researchers study these problems from different design methods. For example, Khosravi 
and Jokar (2017) model adheres to gravity rule for the domestic facility and hub location in a transportation network 
where the number of facilities is unknown, and the goal is to minimize the transportation cost, lost demand penalty 
and facility set up costs. From the robust optimization (RO), Jakubovskis (2017) presented a modeling approach to 
develop insights into strategic capacity planning and resource acquisition decisions, including the facility location 
problem. Other authors rely on the Weber facility location problem, this is the case of Drezner, Drezner, and Schöbel 
(2018) who propose the Weber obnoxious facility location problem whose, as in the classic Weber location problem, 
the objective is to minimize the weighted sum of distances between the facility and demand points. However, the 
facility location is required to be at least a given distance from demand points because it is “obnoxious” to them. 
Another example is the study of Du, Zhou, and Leus (2020), where a two-stage robust model is designed based on 
the p-center location model for reliable facility location when some facilities can be disrupted. Thus, a reliable 
network is constructed in a "proactive" planning phase, and when a facility is disrupted, its original clients can be 
reallocated to another available facility in a "reactive" phase. 

 
In that context, linear programming became widely used in the construction of this type of model. Boujelben, 

Gicquel and Minoux (2016) studied a multiperiod facility location problem, including some realistic constraints to 
take into account vehicle routing from distribution centers to customers while keeping a manageable size of the 
optimization problem which is formulated as a mixed-integer linear program and solved using a commercial solver. 
Also, Correia and Melo (2016) addressed an extension of the classical multiperiod facility location problem in which 
customers are sensitive to delivery lead times. They propose two mixed-integer linear programming formulations to 
re-design the network at minimum cost. Similarly, Orjuela-Castro, Sanabria-Coronado, and Peralta-Lozano (2017) 
propose a mixed linear programming model for the localization of collection centers and companies processing 
perishable foods in mountainous regions, based on a multiproduct and multiechelon transport system. Teye, Bell, and 
Bliemer (2017) analyze a problem that comprises a mode choice problem embedded within a facility location 
problem. They employ the method of entropy maximization to combine a logit mode choice model with a facility 
location model, leading to a nonlinear mixed-integer programming model. Another study worth mentioning is 
Emirhüseyinoğlu and Ekici (2019), who formulated a mixed-integer mathematical model a problem related to 
multiperiod facility location decisions of a retailer which procures the products from multiple suppliers under an 
incremental quantity discount scheme and in turn satisfies an exogenous demand. On the other hand, Golpîra (2020) 
proposes an original Mixed Integer Linear Programming to integrate Vendor Managed Inventory strategy into the 
general multiproject multiresource multisupplier Construction Supply Chain (CSC) network design and facility 
location problems at a minimum cost.  

 
Along the same lines, there are also contributions from nonlinear programming. In the work of Hajipour, Fattahi, 

Tavana, and Caprio (2016), a multiobjective multilayer facility location-allocation (MLFLA) model with congested 
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facilities using classical queuing systems is proposed to determine the optimal number of facilities and the service 
allocation at each layer. Similarly, Qi, Xia, Zhang, and Miao (2017) present a bilevel, nonlinear, integer programming 
model for the competitive facility location problem with foresight. The developed model’s objective is to maximize 
the leader’s market share while also taking into consideration the follower’s response. Coniglio, Fliege, and Walton 
(2017) consider a facility location problem to determine the optimal number and location of warehouses and which 
items are to be stored in each of them. They propose a nonlinear mixed-integer programming formulation for the 
problem. 

 
Additionally, Yu, Haskell, and Liu (2017) consider a reliable uncapacitated facility location problem (RUFL) 

with random facility disruptions. They develop risk-averse optimization formulations to compute resilient location 
and customer assignment solutions. Likewise, Karatas (2017) presents a multiobjective facility location problem, 
which includes facilities with gradual covering decay, cooperative demand coverage, and variable coverage 
performance. The location problem is modeled as a multiobjective integer nonlinear program (INLP). Also, Tadros, 
Galal, Ghazy, and ElSayed (2018) addressed the multiobjective two-echelon capacitated facility location problem 
under covering distance restrictions. It aims to minimize total cost and to maximize demand coverage for a 
hierarchical facility network while considering covering distance.   

 
Researches also focused on goal programming. Cedolin, Göker, Dogu, and Esra Albayrak (2018) solved a 

facility location selection problem in a manufacturing company. For this purpose, the facility location selection 
problem was solved by applying fuzzy data envelopment analysis (Fuzzy DEA) and fuzzy goal programming (Fuzzy 
GP) methods. Karatas and Yakıcı (2018) presented a novel methodology for solving multiobjective facility location 
problems. The proposed approach is mainly based on a combination of the branch and bound and iterative goal 
programming techniques. Besides, research using game theory was also conducted in the more recent literature, such 
as the study of Rohaninejad, Navidi, Nouri, and Kamranrad (2017) that deal with cooperative competition in facility 
location problems in which potential players (investors) compete in acquiring suitable sites and clients. 

 
Similarly, Nasiri, Mahmoodian, Rahbari, and Farahmand (2018) introduced the capacitated competitive facility 

location problem, which is a typical optimization problem that is also associated with the game theory. In essence, 
the problem is composed of two competitors who seek to attract customers by establishing new facilities and 
maximizing their profit. It should also be mentioned the investigation of Mei, Li, Ye, and Zhang (2019) who explore 
two types of facility location games: the facility location game where each agent wants to minimize their distance 
from the facility, and the obnoxious facility game where each agent prefers to be as far away from the facility as 
possible.  

 
Other researches focused on complex algorithms and heuristics. For example, Guo, Cheng, and Wang (2017) 

considered the two-stage capacitated facility location problem (TSCFLP) in which products manufactured in plants 
are delivered to customers via storage depots. They proposed a hybrid evolutionary algorithm framework with 
machine learning fitness approximation for delivering better solutions in a reasonable amount of computational time. 
Manthey and Tijink (2018) analyzed a simple local search heuristic for the facility location problem using the notion 
of perturbation resilience. Besides, Lin et al. (2018) considered a facility location-allocation problem of end-of-life 
vehicle recovery networks and established a mathematical model based on an artificial bee colony to solve the 
problem. The model achieved the minimization of cost for deciding optimal locations of end-of-life vehicles recovery 
network. In another study, Chalupa and Nielsen (2019) proposed a new Monte Carlo hybrid local search algorithm 
(Hyb-LS) for solving the uncapacitated facility location problem. Hyb-LS is based on repeated sampling using two 
local search strategies based on best improvement and randomized neighborhood search. Afify et al. (2019) propose 
an evolutionary learning technique to solve two research problems near-optimally: Reliable p-Median Problem and 
Reliable Uncapacitated Facility Location Problem considering heterogeneous facility failure probabilities, one layer 
of backup and limited facility fortification budget.  
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In turn, Biajoli, Chaves, and Lorena (2019) presented a new metaheuristic approach for the two-stage capacitated 
facility location problem (TSCFLP), in which the purpose is to minimize the operation costs of the underlying two-
stage transportation system, satisfying demand and capacity constraints. Finally, Sauvey, Melo, and Correia (2019) 
investigated a recently introduced extension of the multiperiod facility location problem that considers service-
differentiated customer segments: some customers require their demands to be met on time, whereas other customers 
accept delayed deliveries as long as lateness does not exceed a pre-specified threshold. They propose four heuristics 
that construct initial solutions to this problem and subsequently explore their neighborhoods via different local 
improvement mechanisms. 

In summary, the literature on facility location modeling has been growing, and the increasing interest in these 
problems is motivated by the recognition of the need to consider more criteria to achieve solutions that are closer to 
reality. Compared to the proposed model, the main advantages of these models mentioned are related to providing a 
quantitative basis for a systematic analysis of facility location problems and restricting the decision space. Also, these 
models divide the decision process into multiple steps, minimize subjectivity for the decision, and use the information 
provided in the best possible way. On the other hand, the most prominent disadvantages are associated with the need 
to require careful consideration of the problem and correctly lead to the elimination of unfeasible locations or the 
accentuation of desirable alternatives. In nowadays' world, thinking about objective functions other than economic 
functions is becoming a necessity, and the integration of location decisions with other network design decisions, such 
as routing, resource utilization, and customer responsiveness, can be of significant development. 

 

METHOD 

This section presents the main guidelines of the proposed model. The problem of designing a facility location 
model was analyzed by considering a list of candidate facilities for selection, in order to avoid falling into the 
unrealistic scenario of searching for locations within a continuous surface by traditional methods such as the center 
of gravity or the Weber method. A network can be defined as a set of nodes and arcs, where a node is a point within 
the network, and an arc is a junction between two nodes (Cadarso et al. 2017). Considering the above, this model was 
designed as a selection and assignment model, in which a finite number of demand nodes could be satisfied by several 
supply nodes, considering costs and service level. In other words, we sought to find the optimal number of facilities 
that would satisfy the demand for other facilities.  

 
Although these concepts may seem simple, solving an optimization problem of this type involving real data can 

be a complicated task. For example, if a company has 500 stores dispersed in a given area and has five candidate 
locations for its distribution centers, it would be necessary to analyze 2,500 possible supply combinations that may 
involve distance variables or demand flows, not to mention the difficulty of solving the problem analytically. 
Therefore, an integrated solution scheme was proposed, focusing on the design of a Mixed-Linear Programming 
Model to achieve the proposed objectives. Regarding managerial implications, strategic decisions are primarily 
concerned with the development of operational plans and the establishment of policies and management of resources 
to meet current and future operational needs and customer requirements, in a manner consistent with organizational 
goals. The proposed model allows management to define facility service levels and evaluate the trade-off with total 
cost. For example, facilities that are strategically located or have high capacity are expected to have higher service 
levels. In brief, facility location is a strategic problem that is part of the planning process for decision-making in 
supply chain design. 

 
Finally, since most of the real problems of this type are not susceptible to be solved by traditional methods or 

spreadsheets, the model was solved with SAS, a computer programming language created by SAS Studios. This 
software is recognized as one of the leaders in statistical analysis and as a powerful tool for database systems. The 
main reason why SAS was selected among other software packages was that it includes several optimization tools 
for a wide range of operations research problems (Semeida 2014; Catal et al. 2015; Ding et al. 2016; Pusponegoro et 
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al. 2017; Rachmawati et al. 2017; Wang et al. 2017). Besides, a macro was designed in VBA language to calculate 
the distance between nodes using the Google Maps web mapping system. This macro was based on the publicly 
available access to cartography and actual data of the road network for a specific study problem, then exporting these 
data remotely to Microsoft Excel. All this was done through the Internet, using a standard browser. 
 

Model Formulation 

First, in formulating the model, indices 𝑖𝑖 and 𝑗𝑗 were defined, denoting a specific supply node and a demand 
node, respectively. The notation 𝑥𝑥!" represents the flow from node 𝑖𝑖 to the node 𝑗𝑗. Also, there are a total of 𝑛𝑛 supply 
nodes and a total of 𝑚𝑚 demand nodes. The objective function (𝑧𝑧) is presented in Equation (1), in order to minimize 
the total costs. It was considered a fixed cost (𝐶𝐶!) that is incurred when an 𝑂𝑂! facility or supply node is used or 
'opened'. Similarly, a variable cost related to the transportation cost (𝑐𝑐!") from the node 𝑖𝑖 to the node 𝑗𝑗. This value is 
multiplied by the 𝑥𝑥!" flow.  

 
Note that 𝑂𝑂! is a binary variable. This means that it can only take two values, 0 or 1. Thus, this variable was 

added to the target function and is multiplied by the fixed cost of opening an 𝑖𝑖-node in a given time horizon, so 𝐶𝐶! is 
the cost of opening this facility for that period. Also, a capacity constraint defined in Equation (2) was formulated in 
order to ensure that the total available capacity within the whole set of those supply nodes (𝑁𝑁!) is not exceeded. 
Similarly, Equation (3) denotes the demand constraint. To guarantee that all flows entering a given node 𝑗𝑗 must 
exceed or equal the demand at each of them (𝐷𝐷"). In addition, two constraints limiting the number of open facilities 
were introduced into the model: Equation (4) sets a minimum value, 𝐹𝐹#!$, and Equation (5) sets a maximum value, 
𝐹𝐹#%&. These values are the number of installations that could be opened. 

 
In addition, a tying restriction was necessary, because it is not possible to supply from a supply node unless it is 

open. After all, the objective function will force its closure. In equation (6), 𝐵𝐵!" represents a large number, and the 
binary variable 𝑂𝑂! can take the values 0 or 1. It is important to mention that it is not recommended to assign a very 
large value to 𝐵𝐵!", because it could slow down the solution time. For this reason, it was proposed that it be equal to 
the sum of all the demand since the flow in each arc can never be higher than the total demand required. Beyond that, 
when deciding whether to open several facilities, it is necessary to consider the advantages and disadvantages of a 
location model. In any type of supply chain design, a balance must be struck between the interests of the competition, 
and this is mainly achieved with competitiveness in costs and services. There are several types of costs that a company 
may incur, and service is related to customer satisfaction. Companies want to make sure that their customers are 
satisfied, and when they order something, they get it. In turn, companies want to achieve growth in their sales, expand 
their market share, among other proposed challenges. 

  
Thus, the models of location of facilities are included within the strategic level of decision making that considers 

the uncertainty of the market conditions foreseen for the coming years (Chopra et al. 2016). Therefore, the aim is to 
find a scenario that improves profitability, which means being attentive to costs and increasing customer satisfaction 
and service. The term "service level" could mean different things to different people and companies. At the tactical 
level of logistics planning, the service level considers the probability of stock-outs during a replenishment time. 
However, because the research focused on strategic design, the model used distance to the customer to achieve these 
service objectives. A shorter distance between supply and demand facilities is related to the role of coordinating 
supply and demand imbalances, reducing transportation costs, and adding value to products through rapid service, 
among other benefits. The model includes two related constraints, Equation (7) and Equation (8). 

 
Equation (7) is a restriction for the maximum allowed mean distance. Each 𝑥𝑥!" 	is multiplied by the distance 𝑑𝑑!", 

which represents the distance to node 𝑗𝑗 from the node 𝑖𝑖 by determining a weighted distance, this value is divided by 
the total demand (𝐷𝐷") to calculate this percentage.  The constraint adds up these quantities for all 𝑥𝑥!" values and gets 
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supply nodes, considering costs and service level. In other words, we sought to find the optimal number of facilities 
that would satisfy the demand for other facilities.  

 
Although these concepts may seem simple, solving an optimization problem of this type involving real data can 

be a complicated task. For example, if a company has 500 stores dispersed in a given area and has five candidate 
locations for its distribution centers, it would be necessary to analyze 2,500 possible supply combinations that may 
involve distance variables or demand flows, not to mention the difficulty of solving the problem analytically. 
Therefore, an integrated solution scheme was proposed, focusing on the design of a Mixed-Linear Programming 
Model to achieve the proposed objectives. Regarding managerial implications, strategic decisions are primarily 
concerned with the development of operational plans and the establishment of policies and management of resources 
to meet current and future operational needs and customer requirements, in a manner consistent with organizational 
goals. The proposed model allows management to define facility service levels and evaluate the trade-off with total 
cost. For example, facilities that are strategically located or have high capacity are expected to have higher service 
levels. In brief, facility location is a strategic problem that is part of the planning process for decision-making in 
supply chain design. 

 
Finally, since most of the real problems of this type are not susceptible to be solved by traditional methods or 

spreadsheets, the model was solved with SAS, a computer programming language created by SAS Studios. This 
software is recognized as one of the leaders in statistical analysis and as a powerful tool for database systems. The 
main reason why SAS was selected among other software packages was that it includes several optimization tools 
for a wide range of operations research problems (Semeida 2014; Catal et al. 2015; Ding et al. 2016; Pusponegoro et 
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a weighted average distance that must be less than or equal to a value 𝜙𝜙. The value 𝜙𝜙 is the maximum average 
distance and was considered an input value. It is imperative to mention that this value 𝜙𝜙 is not determined for all 
nodes 𝑖𝑖 or for all nodes 𝑗𝑗. It is only a distance limitation in the model. Thus, the maximum average distance is 
established for all flows in the network, and customers or regions with higher demand are being favored. It should be 
stressed that the model needs a distance matrix as input data for this constraint. This is achieved by running the macro 
in VBA explained in section 3.2. 

 
The next constraint is the minimum allowable demand within some specified distance value, Equation (8). The 

value is above a certain amount 𝜑𝜑. So, the right-hand side of this constraint is an input value. The left-hand side of 
this constraint includes the flow through 𝑥𝑥!", and multiplying that by a new input data, which is a constant 𝑎𝑎!". This 
value is equal to 1 if a demand node	𝑗𝑗 served by a source node 𝑖𝑖 is within a minimum allowable demand value 𝜑𝜑. It 
is 0 otherwise. The values of 𝑎𝑎!" are included in a matrix with all possible combinations. For example, if a model is 
designed for a logistics network with distribution centers and stores, the distribution centers are the source nodes, and 
the stores are the demand nodes, and a value 𝜑𝜑 of 50 miles is considered. If a distribution center i serve a store j, then 
𝑎𝑎!" will have the value of 1 if it is within 50 miles; otherwise, it is 0. Then, if the model is serving that destination 
from the selected distribution center, it is either within 50 miles or not. The constraint only counts the ones that are 
within 50 miles, and it divides that value by the total demand. Then, it is taking the percentage of the total demand 
that is within 50 miles. Finally, Equation (9) presents a nonnegative restriction for flows between nodes. The complete 
model is presented as follows: 
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VBA Macro 

One of the necessary model inputs corresponds to the distances between the possible combinations of supply 
nodes and demand nodes. However, the availability and collection time of these data and the price of adequate 
mapping can be a problem for such a model. Besides, it requires a network structure defined in the maps and 
associated route optimization algorithms, a task that is not accessible by traditional methods. However, Google Maps 
services allow overcoming these limitations by providing Internet access to mapping, road networks, and actual data 
associated with traffic restrictions (Branson et al. 2018; Google LLC 2017b; Yang et al. 2016). Accordingly, a macro 
in VBA (Visual Basic for Applications) language was designed that integrates this geographic information system 
(GIS) based system with this web tool. Thus, it is possible to collect real distance data from the road network for any 
case study. The macro recorded this information in a Microsoft Excel spreadsheet. 

 
Maps and navigation systems have many complex algorithms and heuristics. In this case, the Distance Matrix 

API is a service that provides travel distance and time for a matrix of origins and destinations, based on the 
recommended route between start and endpoints. Anyone can access the Google Maps API through an HTTP 
interface, with requests built through a URL (Uniform Resource Locator) using sources and destinations, along with 
an API key. This key identifies an application for managing request quotas. The Google Maps APIs are free for a 
variety of use cases (Google LLC 2017a). 

 
By using the real-time information shared by users and incorporating the past data, Google servers derive traffic 

information such as traffic along roads, estimated travel times between origins and destinations, the popularity of 
places and identification of extreme traffic conditions, etc. The algorithm or methodology of estimating traffic 
parameters is not revealed by Google and kept black-boxed to the public. However, the traffic information is public 
via Google Maps APIs (Kumarage 2018). Figure 1 shows the process of collecting traffic information from the 
Google application programming interface. 

 

 
 

Figure 1. Collecting traffic data from Google Maps. 
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Therefore, the macro in VBA integrates this Google application to collect the distance information needed for 
the model and record this data in a spreadsheet. It is calculated through iterative API runs, providing actual travel 
distances between each pair of locations. By default, distances are calculated for the driving mode using the road 
network, but it should be noted that distances can be calculated that adhere to other modes of transport, with some 
modifications to the code. Similarly, Google allows to include restrictions on specific parameters to be avoided, for 
example, tolls, and motorways. Therefore, to design a model closer to reality, these types of restrictions were 
included. Likewise, one can specify the system of units to be used: metric or imperial units: the first returns distances 
in kilometers and meters, and the second, in miles and feet. In this case, the second option was chosen. The macro is 
detailed in Table 1. 

 
Table 1. Macro in Visual Basic for Applications. 

 
Linea  

1 Sub Algorithm_VBA() 

2 Dim a, b, Str As String 

3 Dim n As Integer 

4 n = InputBox("Enter the number of arcs to calculate") 

5 Dim lineS As Variant 

6 On Error Resume Next 

7 With CreateObject("WinHttp.WinHttpRequest.5.1") 

8  a = CStr(ThisWorkbook.Worksheets(1).Range("A2")) 

9   For j = 5 To (n+5) 

10          b = ThisWorkbook.Worksheets(1).Range("a" & j) 

11 
         .Open 
"GET","https://maps.googleapis.com/maps/api/distancematrix/json?units=metric&origin
s=" & a & "&destinations=" & b & "&key=YOUR_API_KEY_HERE", False 

12         .Send 

13         lineS = Split(.responsetext, vbLf) 

14         lineS(8)= Trim(Replace(lineS(8), "text", "")) 

15         lineS(8)= Trim(Replace(lineS(8), "mi", "")) 

16         lineS(8) = Replace(Replace(Replace(lineS(8), Chr(34), ""), Chr(58), ""), ",", "") 

17         lineS(8) = Trim(lineS(8)) 

18    ThisWorkbook.Worksheets(1).Range("b" & j)= lineS(8) 

19    Application.Wait (Now + TimeValue("0:00:01")) 

20   Next j 

21 End With 

22 End Sub 
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According to Table 1, the code lines are explained briefly. First, Line 1 corresponds to the instruction that 
executes the procedure in the active module. Line 2 declares two string variables that indicate the source and 
destination addresses or coordinates. Then, Line 3 declares the variable 'n' that will be the total number of arcs to be 
entered to calculate their distance. Line 4 is the instruction that allows the user to enter this number. Line 5 declares 
the variable 'LineS' used to store the distance data. The instruction on Line 6 causes the execution to continue in case 
any geographic coordinate is incorrect or missing. 'With', in Line 7, executes a series of instructions that repeatedly 
refer to a single object. In this case, it creates a connection to the HTTP web server to send and receive data. Microsoft 
Windows HTTP Services (WinHTTP) provides developers with an application programming interface for sending 
requests over the HTTP protocol to other web servers. 

 
In addition, Line 8 indicates that cell A2 contains the origin address (the user could change this cell for another 

one). This value is assigned to the variable 'a' by the function CStr, so that it is recognized as a string variable. String 
variables are used to store text. In Line 9, the repetitive cycle 'For' is used to cycle through the range of cells containing 
the destination addresses. Line 10 assigns the set of target addresses to a 'b' variable in each cycle. The 'Open' 
statement on Line 11 opens a connection to an HTTP resource. This statement has two parameters: 'GET' requests 
data from a specific resource, and the URL is the Google Maps web address or link. As for Line 12, the 'Send' 
statement sends a request to an HTTP server, connecting to the URL to calculate the distance between a source and 
a destination coordinate. Line 13 contains the 'response-text' property, which returns the Google Maps response code. 
The macro makes some adjustments to the code: it uses the 'Split' function to split the response code, separating it 
into many secondary lines as a one-dimensional matrix. It then uses the 'vblf' function, which generates a line break, 
thus separating the written text. These instructions are critical, as only the value of the distance is needed, and not the 
whole response code. 

 
Regarding lines 14 to 17, the instruction 'lineS(8)' is the line of the one-dimensional matrix created in the 

previous step that contains the value of the distance. The lines of code from 14 to 17 are in charge of perfecting the 
response generated, seeking to present only the value of the distance in the spreadsheet. The function 'TRIM' returns 
a text value with the initial and final spaces eliminated. In Line 18, the distance data is written to a set of cells in the 
spreadsheet (in this case in column B). The API can limit the requests in cases where one wants to get the distance 
between many addresses or coordinates. Therefore, the instruction in Line 19 serves to pause the execution until a 
specific time. Lines 20 and 21 end the execution of the 'For' cycle and the 'With' block. Finally, in Line 22, 'End Sub' 
ends the execution of the macro. 
 

Solution Method 

The mathematical formulation of the MILP model was written in SAS language to facilitate its solution (refer 
to Table A1 in the appendix). The executable model presented has no limitation in the number of nodes, since SAS 
has robust execution capabilities that allow handling large volumes of data efficiently and simultaneously. Similarly, 
this software includes a procedure called OPTMODEL that selects a solver subject to the type of problem to be solved 
(SAS Institute Inc. 2014). 

 
Specifically, the Mixed-Integer Linear Programming (MILP) troubleshooter available from SAS runs a branch 

and cut algorithm. This algorithm was proposed by Land and Doig (1960) and is an effective method for solving this 
type of problem. The OPTMILP procedure implements a linear-programming-based branch-and-cut algorithm. This 
divide-and-conquer approach attempts to solve the original problem by solving linear programming relaxations of a 
sequence of smaller subproblems. The OPTMILP procedure also implements advanced techniques such as 
presolving, generating cutting planes, and applying primal heuristics to improve the efficiency of the overall 
algorithm. The OPTMILP procedure requires a mixed-integer linear program to be specified using a SAS data set 

Therefore, the macro in VBA integrates this Google application to collect the distance information needed for 
the model and record this data in a spreadsheet. It is calculated through iterative API runs, providing actual travel 
distances between each pair of locations. By default, distances are calculated for the driving mode using the road 
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modifications to the code. Similarly, Google allows to include restrictions on specific parameters to be avoided, for 
example, tolls, and motorways. Therefore, to design a model closer to reality, these types of restrictions were 
included. Likewise, one can specify the system of units to be used: metric or imperial units: the first returns distances 
in kilometers and meters, and the second, in miles and feet. In this case, the second option was chosen. The macro is 
detailed in Table 1. 
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1 Sub Algorithm_VBA() 
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4 n = InputBox("Enter the number of arcs to calculate") 

5 Dim lineS As Variant 

6 On Error Resume Next 
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9   For j = 5 To (n+5) 

10          b = ThisWorkbook.Worksheets(1).Range("a" & j) 
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that adheres to the mathematical programming system (MPS) format, a widely accepted format in the optimization 
community (SAS Institute Inc. 2018).  

 
The basic idea of branch-and-cut is breaking a problem into subproblems (sequences of LPs) that are easier to 

solve. Consider MILP: 
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where X is the set of feasible solutions, 
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Let 𝑋𝑋 = 𝑋𝑋( ∪	𝑋𝑋1 ∪ …∪	𝑋𝑋2 be a decomposition of the feasible solution set 𝑋𝑋 into smaller sets 𝑋𝑋2, and let 𝐽𝐽2 =
𝑚𝑚𝑚𝑚𝑚𝑚{𝑐𝑐.𝑥𝑥 + 𝑑𝑑.𝑦𝑦: (𝑥𝑥, 𝑦𝑦)𝜖𝜖	𝑋𝑋2}  for 𝑘𝑘 = 1,… , 𝐾𝐾 . Then 𝐽𝐽∗ = max

2
	𝐽𝐽2 .  The mathematical procedure for solving a 

particular mode is well-known; hence, it can be entirely omitted. 
 
Thus, the OPTMODEL procedure provides a modeling environment adapted to build and solve optimization 

models. This makes the process of translating the symbolic formulation of an optimization model into OPTMODEL 
easy, as the modeling language imitates the symbolic algebra of the mathematical formulation as closely as possible. 
All this produces models that are more easily inspected for completeness and accuracy, more easily corrected, and 
more easily modified, either through structural changes or by replacing new data with old data (SAS Institute Inc. 
2014). 

 

 

CASE STUDY 

In this case study, the proposed model was implemented to find the optimal configuration of a distribution 
network to meet the demand for products in several stores located in a territory. We studied a retail company located 
in Colombia that sells its products in 306 stores throughout the country. Currently, this company has five distribution 
centers (DC) located in the cities of Barranquilla (DC 1), Cartagena (DC 2), Medellín (DC 3), Bogotá (DC 4), and 
Cali (DC 5). Thus, the locations of these facilities were established as candidates in this case studying. It was also 
important to analyze and compare how their current distribution model differs from the optimal distribution model 
designed, in order to find the optimal location and number of distribution centers that will minimize costs and improve 
the level of service. In this particular case, only the demand requirements of the products within the food category 
are analyzed, as they represent the largest percentage of sales. Therefore, to include the consolidated demand for all 
products that fall under the food category, the demand volume was quantified in cubic meters (𝑚𝑚3). The capacity of 
the distribution centers was also quantified in this volume unit. Fixed costs corresponded to the costs of opening a 
given distribution center, and variable costs corresponded to transportation costs, set at USD 0.5 per mile. 

 
Correspondingly, since the problem included 306 stores and five distribution centers, as shown in Figure 2, the 

macro designed to calculate the 1530 distance combinations was used. The macro was run with the exact coordinates 
of the stores to achieve a realistic solution. For the input data for the service level restrictions, the maximum allowable 
average distance was set at 150 miles, so the weighted average distance had to be less than or equal to that value. 
Similarly, the percentage of demand within 150 miles had to be a maximum of 85 percent. The case was settled at 
SAS. 
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Figure 2. Location of supply nodes (DCs) and demand nodes (Stores). 
 

Results and Sensitivity Analysis 

First, the problem was solved without the service level limitations to compare the results with or without 
equations 7 and 8. In Table 2, it can be seen that the number of distribution centers from one to five was forced, 
establishing 𝐹𝐹#!$ = 𝐹𝐹#%&. Table 2 shows the open facilities in each scenario. Likewise, Table 3 presents the total 
cost in dollars (objective function). It also presents the following set of metrics: the average distance, the weighted 
average distance, and the maximum distance to a store (the distance of the furthest store from any distribution center 
in the supply network). 

 
Table 2. Case study results without the service level restrictions (Equations 7 and 8) – DCs opens. 

 
Target Function: TotalCost 

Number of variables: 1535; Number of restrictions: 1843 

 DC 1 DC 2 DC 3 DC 4 DC 5 

𝐹𝐹#!$ = 𝐹𝐹#%& = 1   Open   

𝐹𝐹#!$ = 𝐹𝐹#%& = 2 Open    Open 

𝐹𝐹#!$ = 𝐹𝐹#%& = 3 Open   Open Open 

𝐹𝐹#!$ = 𝐹𝐹#%& = 4 Open Open  Open Open 

𝐹𝐹#!$ = 𝐹𝐹#%& = 5 Open Open Open Open Open 
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important to analyze and compare how their current distribution model differs from the optimal distribution model 
designed, in order to find the optimal location and number of distribution centers that will minimize costs and improve 
the level of service. In this particular case, only the demand requirements of the products within the food category 
are analyzed, as they represent the largest percentage of sales. Therefore, to include the consolidated demand for all 
products that fall under the food category, the demand volume was quantified in cubic meters (𝑚𝑚3). The capacity of 
the distribution centers was also quantified in this volume unit. Fixed costs corresponded to the costs of opening a 
given distribution center, and variable costs corresponded to transportation costs, set at USD 0.5 per mile. 

 
Correspondingly, since the problem included 306 stores and five distribution centers, as shown in Figure 2, the 

macro designed to calculate the 1530 distance combinations was used. The macro was run with the exact coordinates 
of the stores to achieve a realistic solution. For the input data for the service level restrictions, the maximum allowable 
average distance was set at 150 miles, so the weighted average distance had to be less than or equal to that value. 
Similarly, the percentage of demand within 150 miles had to be a maximum of 85 percent. The case was settled at 
SAS. 
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Table 3. Case study results without the service level restrictions (Equations 7 and 8). 
 

𝐹𝐹#!$ = 𝐹𝐹#%& 1 2 3 4 5 

Total Cost (USD) $62,339,6  $42,554,9 $46,464,1  $57,126,3  $69,143,7 

Average distance (miles) 332.81 130.55 64.13 53.21 51.54 

Weighted average distance (miles) 339.94 122.53 65.93 55.15 53.57 

Maximum distance to a store (miles) 585 507 349 295 259 

% of demand within the range of 
distance:      

Distance ≤ 10 miles 0.00% 23.75% 31.44% 40.20% 40.20% 

10 miles < distance ≤ 25 miles 0.00% 8.50% 18.41% 18.41% 18.41% 

25 miles < distance ≤ 50 miles 0.00% 2.85% 3.39% 3.39% 3.39% 

50 miles < distance ≤ 100 miles 0.00% 21.60% 22.90% 15.13% 15.13% 

100 miles < distance ≤ 150 miles 5.34% 7.14% 8.03% 8.61% 9.91% 

150 miles < distance 94.66% 36.16% 15.82% 14.26% 12.95% 

* Current company scenario: 5 distribution centers operating in Colombia 
 

Finally, this table presents the percentage of demand supplied within certain distance intervals. In other words, 
it presents what percentage of demand is within 10 miles, 10 miles to 25 miles, 25 to 50 miles, 50 to 100 miles, 100 
to 150 miles, and more than 150 miles. It is important to mention that the solution that includes five distribution 
centers corresponds to the current scheme managed by the company illustrated in Figure 3. The results show that, in 
terms of cost, the optimal solution includes two distribution centers (𝐹𝐹#!$ = 𝐹𝐹#%& = 2) with the lowest total cost 
(USD 42,554,903). However, it can be seen from Table 3 that 36.16% of the demand is distributed over 150 miles, 
which is a clear strategic disadvantage. 
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Figure 3. Location of supply nodes (CEDIS) and demand nodes (Shops). 

 
Importantly, the model indicated which facility to open and how much flows in each arc between a supply node 

and a demand node, and as the number of open facilities increased, the cost could be expected to rise. In turn, as more 
distribution centers are opened, they will be located closer to the stores, which realistically means that property value 
will be more expensive because facilities are being in denser areas. Figure 4 shows the number of open distribution 
centers on the horizontal axis, and the weighted average distance and cost are shown on the vertical axis. As the 
number of distribution centers increases, the distance to the stores decreases. The cost initially decreases but then 
begins to increase as facility costs begin to dominate. 

Table 3. Case study results without the service level restrictions (Equations 7 and 8). 
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* Current company scenario: 5 distribution centers operating in Colombia 
 

Finally, this table presents the percentage of demand supplied within certain distance intervals. In other words, 
it presents what percentage of demand is within 10 miles, 10 miles to 25 miles, 25 to 50 miles, 50 to 100 miles, 100 
to 150 miles, and more than 150 miles. It is important to mention that the solution that includes five distribution 
centers corresponds to the current scheme managed by the company illustrated in Figure 3. The results show that, in 
terms of cost, the optimal solution includes two distribution centers (𝐹𝐹#!$ = 𝐹𝐹#%& = 2) with the lowest total cost 
(USD 42,554,903). However, it can be seen from Table 3 that 36.16% of the demand is distributed over 150 miles, 
which is a clear strategic disadvantage. 
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Figure 4. Sensitivity analysis - Total Cost vs. Weighted Average Distance. 
 
Figure 5 shows a different metric. The total cost is presented on the left axis, and the right axis shows the 

percentage of demand supplied within 10 miles, which is between 0% and 40.20% (see Table 3). Again, as the number 
of distribution centers increases, the level of service increases, because these distribution centers are closer to the 
stores. However, considering the optimal solution where 𝐹𝐹#!$ = 𝐹𝐹#%& = 2, only 23.75% of all demand is within a 
10-mile radius, and most demand is over 150 miles away. Therefore, this raises specific questions related to what 
would happen if the company wants to make sure that its stores are satisfied and when they order something, they 
get it quickly or where they should locate other facilities to help them increase their level of service. 

 
However, by solving the same case study, but instead of just reporting the distance metrics, the case was solved 

by adding the service level restrictions (equations 7 and 8). It is important to mention that nothing changed except 
the inclusion of these restrictions, so the maximum allowable average distance was set at 150 miles. Similarly, the 
minimum allowable demand within 150 miles was set at less than 85%. Therefore, at least 85% of the demand had 
to be within 150 miles. 

 

Figure 5. Sensitivity analysis - Total cost vs. demand within 10 miles. 
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Again, the number of distribution centers was forced to analyze the behavior of the model in various scenarios, 
𝐹𝐹#!$ = 𝐹𝐹#%&. This is presented in Table 4. Scenarios with only 1, 2, or 3 distribution centers reflected an unfeasible 
solution in SAS, as they cannot meet service level restrictions. 

 
Table 4. Results of the case study with the service level restrictions in Equations 7 and 8 - DCs opens. 

 
Target Function: TotalCost 

Number of variables: 1535; Number of restrictions: 1845 

 DC 1 DC 2 DC 3 DC 4 DC 5 

𝐹𝐹#!$ = 𝐹𝐹#%& = 1 unfeasible solution. 

𝐹𝐹#!$ = 𝐹𝐹#%& = 2 unfeasible solution. 

𝐹𝐹#!$ = 𝐹𝐹#%& = 3 unfeasible solution. 

𝐹𝐹#!$ = 𝐹𝐹#%& = 4 Open Open  Open Open 

𝐹𝐹#!$ = 𝐹𝐹#%& = 5 Open Open Open Open Open 
 
When the problem was rerun in SAS setting 𝐹𝐹#!$ = 1  and 𝐹𝐹#%& = 5 , the optimal solution yielded four 

distribution centers. The results are presented in Table 5. 
 

Table 5. Results of the case study with the service level restrictions in Equations 7 and 8. 
 

𝐹𝐹#!$ = 𝐹𝐹#%& 4* 5 

Total Cost (USD) $ 57.126.309  $ 69.143.715  

Average distance (miles) 53,21 51,54 

Weighted average distance (miles) 55,15 53,57 

Maximum distance to a store (miles) 295 259 

% of demand within the range of distance:   

Distance ≤ 10 miles 40,20% 40,20% 

10 miles < distance ≤ 25 miles 18,41% 18,41% 

25 miles < distance ≤ 50 miles 3,39% 3,39% 

50 miles < distance ≤ 100 miles 15,13% 15,13% 

100 miles < distance ≤ 150 miles 8,61% 9,91% 

150 miles < distance 14,26% 12,95% 
*Optimal solution. 

 
Notably, the distance to the stores has decreased as the company opens more distribution centers. The same 

happens with the average distance to supply the demand, instead of the 23.75% obtained in Table 3, the new solution 
presents that 40.20% of the demand of the stores is satisfied at 10 miles. The other results are summarized in Table 
5. The scenario with five distribution centers presents similar values; however, it is more expensive. Thus, the optimal 
configuration is illustrated in Figure 6. 

 

Figure 4. Sensitivity analysis - Total Cost vs. Weighted Average Distance. 
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Similarly, when comparing the maximum distance to a store in the two runs, it is required to step value from 
507 to 295 miles away, which is a considerable improvement. Also, demand over 150 miles decreased from 36.16% 
to 14.26%. Therefore, it is remarkable to infer that as the number of distribution centers increases, the service level 
will tend to improve. On the other hand, costs do not always go in the same direction. Each new facility that the 
company opens adds more cost, accompanied by a decrease in transportation costs. 

 

 

Figure 6. Optimal configuration. 
 

CONCLUSIONS AND DISCUSSION 

It was possible to design a model based on mixed-integer linear programming to solve facility location problems, 
proposing a new methodology that considers the location alternatives that are viable for a company and result from 
a previous analysis. It is important to highlight that this model can be applicable to many real-life problems 
considering that as markets emerge in several regions of the world, it might be observed that economic, political, and 
sociocultural considerations lead to some key factors that managers have to balance in making locational decisions. 
One factor is the attractiveness of candidate locations as suggested by budget considerations and the size of the 
prospective market. Others are possible risks concerning political instability, insecurity, economic collapse in some 
regions, and loss of goodwill. Furthermore, the model was solved with a modern commercial optimizer rather simply. 
The use of Google Maps in conjunction with the optimization program (SAS) is enormously valuable. In addition, to 
simplifying the analysis of results, Google Maps is used for computing data for path assignment constraints, using 
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features such as finding shortest paths and create buffers, or areas of influence, around centers with distances 
measured on the road network. 

 
It should be underlined that the service constraints associated with distances are one of the most critical aspects 

of the problem of locating facilities in a logistics network. In an alternative scenario, if the model did not have to 
consider this aspect at all, it would only open a certain number of distribution centers at a lower cost. In this manner, 
the results showed that, for higher investment, a company could obtain a better level of service, in addition to certain 
associated strategic advantages. Just to mention an example related to the case study presented in this paper, the 
company could backtrack and say that it is not necessary to supply 85% of the demand within 150 miles. Perhaps 
they could set a lower percentage and, as the problem becomes more complex, it is possible to run different scenarios 
with these values and analyze what actually increases the cost or if the cost increases dramatically. In a similar way, 
with regard to the case study, the solution says that it is convenient to open four distribution centers, but perhaps the 
company does not want to implement that optimal least-cost solution, and actually wants to opt for another strategy. 
This is a clear advantage of this location model; it is possible to study many hypothetical scenarios. 

 
Besides, the model is useful for analyzing the fact that the cost of supply will decrease if a company has facilities 

in a distribution network closer to facilities in the retail network. As a company has more and more supply nodes, it 
will be closer and closer to achieving good results in productivity and service indicators. Retailers generally open 
more distribution centers near urban areas, to reduce transportation costs and also improve response time. At the same 
time, as a company has more of these distribution facilities, the cost of transportation from the plants or factories to 
these facilities increases. There could be two reasons for this: the first one logically relates to the fact that there are 
more facilities, but the second one is related to the fact that the company has fewer goods going to each of these 
facilities, in other words, there is a lower aggregation of goods. Then, a suggested solution could be to ship by full 
truckload, which is the lowest unit cost mode, or to use a transport mode such as LTL (Less Than Truck Load) or 
multistop truckload This is an aspect that should be investigated in future study cases. 

 
Finally, the model still possesses limitations. The model proposed is quite basic and can be improved in several 

directions. First, the model could be enhanced to include the production of multiple products in the facility location 
problem. This would also provide an analysis of the trade-offs between dedicated and flexible manufacturing 
technologies at the facility level. Second, differentiating characteristics of global manufacturing, such as exchange 
rates and uncertainties of prices, taxes and quotes, could also be incorporated into integrated facility design models. 
Third, the model could be extended to include the possible expansion of multiple echelons of facilities, such as 
manufacturing, processing or assembly and subassembly plants, distribution centers, and warehouses. Fourth, the 
model could be extended to capture uncertainty in demand and forecast error. Finally, the existence of scale 
economies in transportation could be included in the proposed model. 

 

APPENDIX A 

Table A1. SAS Code. 
 

Line   

1 proc optmodel; 

2 set SNodes = {/* Enter the supply nodes*/}; 

3 set Dnodes = {/* Enter the demand nodes*/}; 

4 Number distance{SNodes, Dnodes}=[ 
/* Enter the distance matrix*/]; 
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company opens adds more cost, accompanied by a decrease in transportation costs. 
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5 Number proximity{SNodes, Dnodes}=[ 
/* Enter the proximity matrix*/]; 

6 number varcost = /* Enter the variable cost*/; 

7 number fixcost{SNodes} = [/*Enter the fixed costs for each facility from the set of supply nodes*/]; 

8 number capacity{SNodes} = [/*Enter the capacity of each facility from the set of supply nodes*/]; 

9 number demand{Dnodes} = [/*Enter the quantity demanded in each of the facilities within the set of 
demand nodes*/]; 

10 number Fmin = /* Enter minimum number of facilities*/; 

11 number Fmax = /* Enter maximum number of facilities*/; 

12 number totaldemand = sum{j in Dnodes}demand[j]; 

13 var open{SNodes} binary; 

14 var flow{Snodes, Dnodes} >= 0; 

15 minimize TotalCost = sum{i in Snodes}fixcost[i]*open[i] + varcost*sum{i in Snodes, j in 
Dnodes}flow[i,j]*distance[i,j]; 

16 con capacitycon{i in Snodes}: sum{j in Dnodes}flow[i,j] <= capacity[i]; 

17 con demandcon{j in Dnodes}: sum{i in Snodes}flow[i,j] = demand[j]; 

18 con mincon: sum{i in Snodes}open[i] >= Fmin; 

19 con maxcon: sum{i in Snodes}open[i] <= Fmax; 

20 con linkingcon{i in Snodes, j in Dnodes}: flow[i,j]-totaldemand*open[i] <= 0; 

21 con maxavediscon: sum{i in Snodes, j in Dnodes}distance[i,j]*flow[i,j] <= /* Enter the maximum 
weighted average distance*/ *totaldemand; 

22 con minallowabledemandcon: sum{i in Snodes, j in Dnodes}proximity[i,j]*flow[i,j] >= /* enter the 
percentage of demand that must be met within a minimum distance value*/ *totaldemand; 

23 solve; 

24 print TotalCost open flow ; 

25 expand; 

26 quit; 
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