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Abstract: Simulations on mobility influence in optoelectronics parameters from an InGaN/GaN blue
LED using the Nextnano++ software arepresented in this paper. These simulations were performed by
changing the hole and electron mobility value for the material compounds according to experimental,
theoretical, and doping-concentration data already reported in the literature. The power law mobility
is used for the current calculation in the quantum drift-diffusion model. The results indicate the
lower hole and electron leakage currents correspond to the lowest mobility values for the InGaN
alloy, the greatest amount of recombination occurs in the extreme wells within the active layer of the
LED and the stable emission is at 3.6 V with peak wavelength λ̂LED = 456.7 nm and full width at
half maximum FWHM ∼ 11.1 nm for the three mobilities. Although experimental and theoretical
mobility values reach higher carrier density and recombination, the photon emission is broader
and unstable. Additionally, the doping-concentration mobility results in lower wavelength shifts
and narrows FWHM, making it more stable. The highest quantum efficiency achieved by doping-
concentration mobility is only in the breakdown voltage (ηdop−max = 60.43%), which is the IQE value
comparable to similar LEDs and is more useful for these kinds of semiconductor devices.

Keywords: InGaN/GaN; blue light emitting diodes; quantum efficiency; quantum drift-diffusion model

1. Introduction

The simulation of semiconductor devices using the Quantum Drift Diffusion (QDD)
model is one of the most widely used and useful mathematical methods for describing
electronic transport at the nano-scale [1–3]. Due to the enormous importance of Light-
Emitting Diodes (LEDs) today, it is necessary to employ computational techniques to predict
their optoelectronics performance prior to small- or large-scale manufacture. InGaN/GaN
Multiple-Quantum-Well (MQW) light-emitting diodes have many uses in, communications,
electronics, chemistry, and the lighting industry over the world [4–8]. Therefore, it is of
maximum importance. Numerical simulations of LEDs using the QDD model have been
performed to understand and predict the behavior of different physical variables, as well as
to optimize the multiple-quantum wells number, to design the band structures in the device
and explore new arrangements of heterostructures [9–11]. The important parameters set
out by previous studies are the Shockley-Read-Hall (SRH) recombination lifetime, Auger
recombination coefficient, and percentage of the polarization charge density, among others.
There are three studies [9–11] sharing the following simulation characteristics: temperature
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at 300 K, 1D simulation, but no mention is made of the mobility model used or the value
of the latter parameter. The mobility model (µ) is important because it can change the
output physical variables and the device performance, although some authors do not
attach importance to it [12]. To demonstrate the relevance of the mobility model and its
values for the holes and electron transport (µh, µe), in this paper we study the mobility
influence in optical and electrical parameters from a InGaN/GaN blue LED using the
QDD model on the Nextnano++ software. This software has been successfully used to
investigate different nanostructures [13–16]. In this work, three simulations varying the
mobility values were carried out: one using experimental values, another taking theoretical
values, and the last one taking mobility values depending on doping-concentration of the
semiconductor device. The simulation results using experimental value mobility were
taken as a reference to compare the theoretical and doping-concentration mobility modeling.
This study also compares the spatial current distribution, carrier density, recombination
processes, emission spectrum, and quantum efficiency to generate a comprehensive view
of the device parameters.

2. Device Structure and Material Parameters

The most common LED structure has between one and five quantum wells (QWs) [9,10],
but in this study, four QWs were chosen and a flat simple structure in c-plane direction of a
wurtzite crystal was selected. The active layer is a compound of 3 nm thick In0.15Ga0.85N
QWs interleaved by a 12 nm thick GaN barrier layer. The active layer is confined by
3.5 µm n-type and 150 nm p-type GaN, and at the ends, ohmic contacts complete the device,
as is shown in Figure 1. Electron and hole concentrations of the doped semiconductors
are n-GaN = 1 × 1017 cm−3 and p-GaN = 1 × 1019 cm−3, respectively. The purpose of
having a high p is to decrease the ionization energy of acceptors [17,18] and increase the
hole injection towards the farthest quantum wells of the p-GaN layer [9]. This is because
under typical growth conditions, hexagonal GaN has an intrinsic n-type nature [19,20]. An
Electron Blocking Layer (EBL) was not added to the structure to keep it simple and avoid
the potential barrier for holes that it generates [11]. Instead, a low electron concentration
was chosen to reduce electron leakage [21].
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In this research work, the optical and electrical properties of blue LED structure,
shown in Figure 1, are numerically investigated using the Nextnano++ software. This
self-consistently solves the Poisson equation, Schrödinger equation and the drift-diffusion
model for the carrier transport with suitable boundary conditions. Equations are dis-
cretized using a box integration finite difference approach to take material discontinu-
ities into account. Given the optoelectronic nature of the device, the electron-hole pair
generation-recombination processes within the active layer of the diode considered were:
(1) Schockley-Read-Hall, (2) Auger, and (3) radiative [11,22]. In addition, the hexagonal and
asymmetric crystalline base in the device generates a dipole in the unit cell [23–25]. There-
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fore, spontaneous (SP) and piezoelectric polarizations (PZ) appear in the material [26–28].
Additionally, the indium incorporation into the InGaN alloy increases the unit cell size
triggering strain between the GaN/InGaN interfaces [29].All these mismatches in the lat-
tice produce band structure shifts in the device. However, they can be included in the
equations as deformation potentials, so during the simulation a “strain” equation solution
was included.

To solve the continuity and carrier transport equations, a constant low-field mobility
model (also called the power law mobility model) [30–32] is used for the current calculation.
For the simulations, the difference between electron and hole transport is represented
by electron/hole mobility (µh, µe) for both binary precursor compounds, InN and GaN.
Table 1 lists the values of experimental, theoretical, and doping-concentration mobilities
taken from literature. Because the dopant concentration only changes in GaN material,
the electron and hole mobility for InN was fixed using the theoretical mobilityIn this case,
six mobility profiles corresponding to electron (three) and hole (three) calculations will be
produced. These profiles represent the abrupt changes of material along the device. These
profiles are labeled to depict the three simulations analyzed in this study as: µe/h−exp(x),
µe/h−theo(x), µe/h−dop(x) for the experimental, theoretical and doping-concentration mobil-
ities, respectively. The numerical results generated by the experimental mobility values
were taken as a reference for the analysis of the other simulations.

Table 1. Mobility values for binary precursor compounds of the InGaN/GaN blue LED.

Binary Compound

Mobility [cm2/V•s]

Experimental Theoretical Doping
Concentration

GaN
µe = 1265 [33] µe = 905 [34] µe = 1035 [35]

µh = 31 [36] µh = 44 [34] µh = 30 [19]

InN
µe = 2000 [37,38] µe = 3200 [39] 1 µe = 3200 [39]

µh = 39 [40] µh = 220 [41] 1 µh = 220 [41]
1 Electron and hole mobility for InN was fixed using theoretical mobility.

The conduction bands are assumed to be decoupled from valence sub-bands due to
the wide bandgap of GaN, so the single-band effective mass approximation is employed
for the Gamma conduction band. To avoid numerical constraints during simulations, the
single-band Schrödinger equation was solved for the heavy-hole (HH), light-hole (LH), and
spin-orbit (SO) valence bands. Other basic parameters for simulations are the following:
a variable spatial grid on 1D in the entire device was employed, as shown in Figure 2;
for the 150 nm n-GaN and p-GaN the spatial resolution was ∆x = 10 nm, and for the
active layer, ∆x = 0.1 nm; a voltage sweep was made from 0 to 4.1 Volts with a step
of ∆V = 0.05 V (The choice of the voltage end point corresponds to the point where
the simulation convergence starts to become hard, which corresponds to the forward
voltage point); the SRH lifetime (τSRH), the Auger recombination coefficient (CAuger) and
radiative recombination coefficient (Brad) for electrons and holes, werefixed at 1 ns [42],
1 × 10−30 cm6/s [43] and 2 × 10−10 cm3/s [44,45], respectively, for both binary precursors;
and the simulation temperature was 300 K.
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Figure 2. Simulation spatial diagram and parameters for the InGaN/GaN blue LED.

3. Results

Figure 3 shows the hole and electron mobility profile (µe/h−exp, µe/h−theo, µe/h−dop)
according to the different materials within the active layer of the LED. Compared withthe-
GaN material, both plots indicate a higher mobility for the InGaN. For holes, the theoretical
mobility (µh−theo) reaches the highest value and the experimental mobility (µh−exp) the
lowest within the wells. For electrons, the experimental mobility (µe−exp) is higher and the
theoretical mobility (µe−theo) lower.
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Figure 3. (a) Hole and (b) electron mobility profile according to Equation (1) using a constant low-field
mobility model for the simulated LED.

Figure 4a shows the J-V curves for the three mobility cases in forward bias between
(0–4.1) V. Figure 4b is an extension of the interest zone corresponding to (2.5–4.1) Volts
where the slope changes in lines indicate changes in the transport and the emergence of
recombination mechanisms within the device. The latter voltage range is where a more
meaningful comparison can be made of changes for different physical parameters in the
LED, such as spatial current distribution, carrier density, recombination processes, emission
spectrum and quantum efficiency. In Figure 4b, the total current density (Jtot) and photocur-
rent (Jphot) for the doping-concentration mobility simulation remains below the theoretical
and experimental mobility curves as the voltage increases. Compared to experimental
and doping-concentration results, Jtot for the theoretical simulation reaches the highest
values in the last volt from computation. In contrast, the experimental and theoretical
photocurrents are almost identical for most of the voltage points. Figure 4c shows the
breakdown voltage (Vb) for the three different mobilities (Vb−exp = 4.00 V, Vb−theo = 4.05 V,
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Vb−dop = 4.10 V). A similar structure of InGaN/GaN blue LED was reported exhibiting
a breakdown voltage of 3.65 V [46]; thus, these results are comparable. Although the
breakdown voltage of today’s commercial blue LEDs is generally about 3 V, or even lower
than 3 V [9,11,21], this is because the electron concentration of n-GaN is usually more than
1018 cm−3 [11,12,42,47,48], i.e., more than 10 times the electron concentration of this study.
Having a low electron concentration, the n-GaN semiconductor is more intrinsic, and the
Fermi level is further away from the conduction band edge, so a higher voltage is required
to turn it up and cause electronsto begin to pass into the conduction band. Consequently,
the breakdown voltage is shifted towards higher voltages.
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Figure 4. (J−V) curves in forward bias: (a) from [0–4] V in logarithmic scale, (b) the magnification
between [2.5–4.1] V in logarithmic scale, and (c) breakdown voltage of the simulated LED.

Analysis of the physical parameters of the LED was performed for four different
voltages points (2.5 V, 3.0 V, 3.5 V, 4.0 V) where the photocurrent rises. Figure 5 corre-
sponds to the spatial distribution current and density carrier results inside the active
layer from the device at 2.5 V. In Figure 5a, hole and electron density currents are not
reduced in quantum wells. Here, it can be seen that the hole current density for experimen-
tal, theoretical, and doping-concentration simulations have a magnitude of almost zero
(Jh = −(3.5− 5.3) × 10−4 A/cm2). However, the electron current density presents significant
differences. In ascending order the values are: Je−theo = −(1574.84± 0.07) × 10−4A/cm2,
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Je−dop = −(1797.01± 0.12) × 10−4A/cm2 and Je−exp = −(2186.56± 0.14) × 10−4A/cm2.
At this voltage point the electric field is too low to drag the electrons into the wells (n is the constant
black line at n = 0 in Figure 5b). In contrast, if the hole density has tunneled the active layer and
accumulates in the closest well to n-side, this is a consequence of the large difference between
the number of electrons and holes concentration and the diffusion process in the device.
The Relative Percentage Difference (RPD) parameter is the relative error used to quantify the
changes in physical variables for each simulated mobility with respect to the experimental,
as shown in Equation (1).

RPDexp−teo,dop =

∣∣∣(Y)exp − (Y)teo,dop

∣∣∣
(Y)exp

x100 (1)
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Figure 5. (a) Spatial distribution of current density and (b) carrier density in the active layer of the
LED at 2.5 Volts.

In Figure 5b, the hole density plot with experimental mobility is higher than the
theoretical and doping-concentration mobility curves in the last two wells and slightly
lower only for the first well. The RPD declined to 0.1% in the four wells; therefore, at this
voltage there are no significant changes in the carrier density between the three mobilities.
The negative sign in percentages indicate a reduction of carrier density with respect to the
experimental mobility simulation.

Figure 6 corresponds to V = 3 volts. As shown in (a), the hole and electron currents
are being consumed in each well because of the recombination between electrons and holes
crossing the GaN quantum barriers. In this graph “the leakage current” jleak can be observed,
and some electrons pass through the active layer without recombining, due to their low effective
mass; on the other hand, the holes are almost entirely recombined. Here, the theoretical simulation
reveals a lower electron leakage (jleak−theo = 64.93%, jleak−dop = 72.20% and jleak−exp = 74.33%)
and the experimental simulation a lower hole leakage (jleak−theo = 1.12.93%,
jleak−dop = 0.94% and jleak−exp = 0.83%). The theoretical and doping-concentration hole
densities rise with respect to the experimental, especially in QW2 (RPDexp−theo = 11.86%,
RPDexp−dop = 2.24%) and QW3 (RPDexp−theo = 9.64%, RPDexp−dop = 3.30%), as shown
Figure 5b. The above is in accordance with the values shown in Figure 3a, where theoretical
and doping-concentration mobility values for holes in the InGaN wells are higher than the
experimental values. The electron density (Figure 6c) indicates more electron accumulation
in the first three QWs for the theoretical mobility, the experimental mobility shifts the
electrons to the last three QWs, and the doping-concentration mobility is agglomerated
in the two intermediate QWs. This can be explained by referring to Figure 3b where the
theoretical mobility for electrons is lower than the other mobilities; therefore, most of
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them lag in the first wells. Instead, as the experimental mobility is the highest, a very
large number of electrons are injected into the wells closer to the p-side of the device, as
mentioned by Dong [21]. The three simulations agree that most of the electrons accumulate
in well QW3. The RPD parameter states that the theoretical electron concentration rises
with respect to the experimental, having its highest value in QW1 (RPDexp−theo = 60.37%).
The electron density by doping-concentration remains below the experimental simulation
in the four wells, reaching its largest difference in QW4 (RPDexp−dop = −23.33%), where it
acquires the same density value as the theoretical simulation.
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layer of the LED at 3.0 Volts.

Figure 7 refers to 3.5 V, displaying in (a) the spatial distribution of current, as well
as the hole (jleak−theo = 4.29%, jleak−dop = 3.40% and jleak−exp = 2.77%) and electron
(jleak−exp = 23.76%, jleak−dop = 22.91% y jleak−theo = 18.15%) leakage. The lowest leakage
currents correspond to the lowest values of hole and electron mobility inside the quantum
wells (See Figure 3). This indicates that a lower mobility for the InGaN alloy favors the
energy dispersion in the form of photons by electron/hole (e/h) recombination. That is, if



Crystals 2022, 12, 1108 8 of 17

µ1 < µ2 and using the semiclassical equation µi = q〈τi〉m̂−1, then 〈τ1〉< 〈τ2〉 ∴ 1
〈τ1〉

> 1
〈τ2〉

,

where 1
〈τi〉

is the “scattering rate”. In Figure 7b, again the hole density for the theoretical
and doping-concentration mobility increases with respect to the experimental, although
the concentration mobility simulation remains very close to the experimental curve. The
hole density for the theoretical simulation has a slight gain in the RPD values for QW2
(RPDexp−theo = 12.19%) and QW3 (RPDexp−theo = 10.47%) compared with the previous
voltage, but the higher gain is in QW4 (RPDexp−theo = 5.96%). The electron density
(Figure 7c) shows an increment in the RPDexp−theo for all wells, with QW1 having the
highest value (RPDexp−theo = 77.68%). In addition, it is evident that the distribution
profile has shifted to the p-side of the device with respect to the above voltage. This
is a consequence of the increase in the electric field driving most of the electrons into
the QW4 for the three simulations. The electron density for the experimental mobility
remains predominant in the latter well, which may be attributed to the high value of the
experimental electron mobility per se. The RPDexp−dop values decrease very little for the
first two wells but the differences increase in QW4 (RPDexp−dop = −27.48%). At this
voltage point, the differences in mobility values between simulations and theoretical and
experimental values, and doping-concentration are appreciable.

Figure 8 presents the last voltage point (4.0 V), at which the hole leakage currents were
jleak−theo = 12.38%, jleak−dop = 8.42%,and y jleak−exp = 7.29%. The electron leakage currents
were jleak−dop = 0.75%, jleak−exp = 0.65%, and y jleak−theo = 0.35%. This data reiterates
that lower mobility for the InGaN alloy favors the permanence of e/h pairs and their
recombination within the well. Figure 8b clearly shows a large difference in hole density
between simulations, which is evident in the high RPD values in each well. Here, the
highest hole density is reversed, from QW1 to QW4. An increase in the density magnitude is
seen for all wells, contrary to what was occurring previously where the hole density within
the LED active layer was decreased by the recombination processes as the voltage increased.
This indicates that the threshold injection has been reached, which means that continuing to
supply the electric field will break the device, as indicated by Figure 4c. The simulation with
doping-concentration mobility decreases greatly with respect to the experimental curve,
reaching its greatest difference in QW4 (RPDexp−dop = −17.50%). Hole density simulation
with theoretical mobility increases greatly and has the highest RPD in QW2. In Figure 8c,
electron density continues to increase in QW4, and also within the other wells, it reaches
higher magnitudes than previously, even higher than the electron concentration in n-GaN.
That the magnitude of electrons increases this much can be understood by considering that
the intense potential detaches electrons from deeper layers (bound states) of the material.
The RPD values for this graph are the highest obtained, which demonstrates that there is a
substantial difference between simulations when a simple and constant value such as the
mobility is changed.

As is seen from Figures 5–8, the large difference between hole and electron concen-
trations used in this study (p-GaN/n-GaN = 100) helps to obtain low leakage currents at
high voltage points, which is advantageous compared with several commercial LEDs, and
represents an electronic overflow or insufficient hole injection. It was demonstrated that
with an appropriate choice of n-type and p-type dopants, the optoelectronic properties of
LEDs can be improved, especially the distribution of electrons and holes in the MQWs.

Figure 9 shows the dynamics of carrier recombination. First, around 2.5 V, the increase
in recombination processes consumes holes in the first well, where most of them accu-
mulate. As the electric field increases, recombination continues mainly in QW1 and it is
extended into the other three wells, but noticeably more in the last one (~3.0 V). Then, the
presence of electrons in QW4 attracts a larger number of holes to the same well, increasing
recombination in it, since only one quantum barrier must be overcome there at 3.5 V. Finally,
at 4.0 Volts, almost all recombination takes place in QW4. Although the three recombination
processes (SRH, Auger, radiative) consume e/h pairs, radiative recombination is the main
source of photons. For this reason, only the radiative recombination rate is presented in
Figure 9. For reasons of clarity, the graph is not to scale. In agreement with the previous
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analysis, Table 2 shows the RPD for Rrad between simulations in all analyzed voltage
points. An important aspect of Figure 9 is that the recombination in the intermediate wells
is maintained below 17% of total recombination in the four wells, compared with QW1
and QW4, which together amount to more than 83% of the total recombination at any
voltage point. This shows that the recombination is distributed in the extreme wells of the
active layer; hence, many QWs do not represent an advantage when a LED is designed
as indicated by S. Lu [47]. This may also be caused by an incorrect choice of the Auger
recombination coefficient, which changes the spatial distribution of radiative recombination
in the LED as is shown by J. R. Cheng [48].
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Table 2. Relative Percentage Difference for radiative recombination from In0.15Ga0.85N/GaN at
different voltage points.

Rrad 2.5 V 3.0 V 3.5 V 4.0 V

Position RPDexp−theo
[%]

RPDexp−dop
[%]

RPDexp−theo
[%]

RPDexp−dop
[%]

RPDexp−theo
[%]

RPDexp−dop
[%]

RPDexp−theo
[%]

RPDexp−dop
[%]

QW1 −5.04 −4.12 62.51 −0.15 79.00 −0.43 152.93 −22.50

QW2 −4.79 −4.01 50.23 −3.85 72.83 −2.51 185.05 −31.14

QW3 — — 16.77 −10.21 32.62 −9.86 104.17 −31.93

QW4 — — −21.35 −22.40 −22.82 −27.19 26.27 −38.01
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The number of photons emitted in the recombination is counted and distributed accord-
ing to the wavelength recorded (Figure 10). For analysis of these spectra, the spontaneous
emission of each photon is assumed as a Lorentzian shape. Figure 10a corresponds to 2.5 V
and shows the emission spectrum is centered in the same wavelength for the three simula-
tions (λ̂exp = λ̂theo = λ̂dop = 458.4 nm) with an almost identical FWHM. At 3.0 V, the spec-
tra begin to be distinguishable (see Figure 10b). The theoretical and doping-concentration
curves have the emission peak in the same wavelength (λ̂theo = λ̂dop = 455.8 nm); however,
the experimental peak is minimally shifted to violet (higher photon energy). This is consis-
tent with the fact that the electron experimental mobility is higher, and therefore, their veloc-

ity and kinetic energy are also higher (for low field:
→
v dri f t = µ

→
E ,
→
v (
→
k ,
→
r ) = 1

}∇kε(
→
k ,
→
r )).

This implies that the electrons reach higher eigenvalues inside the well, and thus, the
energy difference released during the recombination will be higher. In Figure 10c at 3.5 V,
spectra are centered again on the same wavelength (λ̂exp = λ̂theo = λ̂dop = 456.7 nm).
There is even a reduction of FWHM in the three plots and they have very similar val-
ues to each other. The voltage point with the most symmetrical distribution around the
maximum peak and the most stable emission is 3.6 V. Since it presents the lowest FWHM
(FWHMexp = 11.1 nm, FWHMtheo = 11.2 nm, FWHMdop = 11.1 nm) and the same wave-
length (λ̂LED = 456.7 nm) for the three computations, it is the most likely energy transition
that governs the emission. In Figure 10c, it is observed that the photon emission is higher
for the experimental simulation even though Table 2 shows higher recombination in QW1,
QW2 and QW3 in the theoretical simulation, so these three contributions added together
do not exceed the experimental recombination value provided by the well QW4 (79.44%),
as mentioned before. At the last voltage point, the emission peaks are shifted to violet and
are not centered (λ̂exp = 446.8 nm, λ̂theo = 445.2 nm, λ̂dop = 449.2 nm); moreover, there is
an increase in FWHM, which indicates the presence of high energy emission peaks. The
maximum violet shift and the linewidth of the emission peak with respect to the stable
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wavelength for all simulations occurs at 4.0 V and its values are as follows: ∆λdop = 7.5 nm,
∆FWHMdop = 2.9nm; ∆λexp = 9.9 nm, ∆FWHMexp = 2.8 nm; and ∆λtheo = 11.5 nm,
∆FWHMtheo = 3.1 nm.
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For the three simulations, the emission spectra can be explained through the energetic
transitions between electron and hole states. Since the Schrödinger equation is solved for
each voltage point, one different set of eigenvalues and eigenfunctions is obtained at each
step. Therefore, photon emission depends on the energy difference between states and their
probability via Fermi’s golden rule. The most probable transitions govern the spectrum,
although the transitions whose speed is greater due to their instability are also notable.
Additionally, in MQWs exposed to an external electric field, the “quantum-confined Stark
effect” (QCSE) appears. It is manifested by bringing the eigenenergies of the conduction
and valence bands closer together, as well as by separating the electron and hole wave func-
tions; thus, the overlap becomes less effective. All the above leads to nonlinear behavior of
the emission peak, as shown in Figure 10. At this point, the emission spectrum is composed
of various Lorentzian peaks corresponding to different transition energies. This is because
of a higher position and less stable eigenstates of the e/h pair having a faster emission.
Taking the experimental emission curve as an example, due to the band decoupling used,
at low voltages (2.5 V), the main transition is between the lower states. In this case, the two
transitions are: e3 → hh3 ≈ 2.71 eV ≈ 457.5 nm and e3 → lh3 ≈ 2.717 eV ≈ 456 nm. At
3.0 V, the electrons occupy higher energy states, and by QCSE, the eigenenergies between
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en → hhn/lhn are reduced, allowing three transitions: e3 → lh3 ≈ 2.645 eV ≈ 468 nm,
e4 → hh4 ≈ 2.77 eV ≈ 448 nm and e4 → hh4 ≈ 2.776 eV ≈ 446 nm. More energetic tran-
sitions are less stable and faster, increasing the number of photons emitted in shorter
wavelengths (see the blue dotted line in Figure 11). In fact, at this voltage, the emission spec-
trum is wider, as illustrated by the FWHM broadening in Figure 10b. A red-shifted hump
can also be seen, indicating the combination of long and short transitions in the photon spec-
trum. At 3.5 V, the eigenenergies are again slightly displaced by the Stark effect, and the tran-
sitions are readjusted. Transitions occurring there are: e6 → hh6 ≈ 2.695 eV ≈ 460 nm and
e6 → lh6 ≈ 2.7 eV ≈ 459 nm. The closeness of these peak emissions causes lower FWHMs. At
4.0 V, the spectrum reveals the separation of two energy peaks; therefore, it is possible to infer four
possible transitions occurring: e9 → hh9 ≈ 2.7 eV ≈ 459 nm, e9 → lh9 ≈ 2.71 eV ≈ 457.5 nm,
e10 → hh10 ≈ 2.81 eV ≈ 441 nm, and e10 → lh10 ≈ 2.822 eV ≈ 439 nm. The deconvolution of
the experimental spectrum for 3.0 V is shown in Figure 11, where more than two emission
peaks are necessary to form them.
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Figure 12 shows the peak wavelength achieved for each mobility with respect to
the supplied voltage (2.5–4.0) V, where it is confirmed the stable point of the emission
corresponds to λ̂LED = 456.7 nm, since all simulations take the same wavelength value and
the lowest FWHMs. Therefore, in this voltage range, the SRH and Auger recombination
have very similar values, and the radiative recombination is maximized as it is explained
in [10,11]. Experimental computation leads to varied values of the emission peak, making
it less stable. Doping-concentration simulation has a lower violet shift of the emitted
wavelength at higher voltages, which makes it more stable.
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achieved by the three simulations occurs at the forward voltage points, being: ηexp−max = 57.09%,
ηtheo−max = 57.99%, ηdop−max = 60.43%. Therefore, the doping-concentration simulation re-
sulted in the highest ηIQE showing superiority. The typical IQE for blue LEDs in the range
λ = (450–460) nm in the last decades has been recorded at around 60% [49,50]. Even in
studies where it is attempted to improve the conventional structure, the IQE values even
are around 60%. For instance, Ryu et al. [12] reported an ηIQE ∼ 60% for five periods of
In0.16Ga0.84N MQWs with emission around λ~450 nm. The electron and hole concentra-
tions for claddings were n-GaN = 5 × 1018 cm−3 and p-GaN = 5 × 1017 cm−3. Although a
doped superlattice was added to the structure, the IQE increase was low. This device is
similar in composition and well number to the one studied in this work, but the electron
and hole concentrations are different (n-GaN = 1× 1017 cm−3 and p-GaN = 1 × 1019 cm−3).
When Ryu uses n-GaN 50 times higher and p-GaN20 times lower than here, its efficiency
does not improve. In this way, the electron and hole concentration combination pro-
posed in this paper seems to have more advantages, because without complicating the
structure, the same performance in the device is obtained. Dong et al. [21] compares a
conventional In0.2Ga0.8N (2.5 nm)/GaN(12.5) MQWs structure with this proposed design
In0.2Ga0.8N(3.5 nm)/GaN(5.5) MQWs. Both LEDs consist of eleven wells, whose emission
is in the range λ = (450− 440) nm. The IQEs for the conventional structure and proposed
design are around ηIQE ∼ 65% and ηIQE ∼ 70%, respectively. Again, electron and hole con-
centrations are different from those used in this study. Dong used n-GaN = 1 × 1019 cm−3

and p-GaN = 8 × 1017 cm−3. This corresponds to 100 times more ionized electrons and
12 times fewer ionized holes than in this study, which also does not seem to increase
efficiency substantially.Therefore, the IQE achieved by the doping-concentration mobility
is comparable to those recorded by “conventional” and “improved” structures. The main
difference lies in the choice of number of n-type and p-type dopants. Recent studies show
that more p-type than n-type dopants increase the internal quantum efficiency (~80%) of the
device [47]. Using this approach, we will study the combination of different concentrations
in future.

In summary, although the theoretical mobility generated lower electron leakage cur-
rent, higher hole density, recombination rate and photon emission, these characteristics
were not always the best for all voltage ranges. Therefore, it may be misleading to assume
that increasing the mobility value for semiconductor materials will lead to increased opto-
electronic parameters and device performance. Experimental mobility registered lower hole
leakage. Although the experimental mobility represents data taken in laboratory, it does not
consider other aspects influencing the dynamics transport; hence, assigning a fixed value
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to mobility can affect the reliability of results. Doping-concentration mobility maintained
intermediate leakage currents between the theoretical and experimental simulations. Its
hole and electron densities were similar to the experimental simulation, although always
below it. The recombination rate and, consequently, the photon emission remained below
the other simulations; however, it showed less wavelength variation, a narrow FWHM,
and the highest IQE before its breakdown voltage. Thus, doping-concentration mobility
seems to be a more realistic option for device simulation. Although the mobility model
used fixes the value along the simulation, this mobility includes in the calculations the
variation of the electron and hole concentrations for the semiconductors, thus enriching
the model without complicating it. It should be noted that the recombination coefficients
(τSRH , CAuger, Brad)were kept constant during the simulation, and these can be adjusted to
improve results and device design [10,11,51], so this area can be explored in future studies.

To conclude, care must be taken when choosing mobility values for materials since the
theoretical mobility value is calculated according to basic principles and may leave out more
complex physical phenomena or events generating energy dispersion. This mobility could
be used for highly pure materials and devices with low defect density; however, it may
not be recommended for the device’s design because it would overestimate the physical
parameters and their optoelectronic characteristics. On the other hand, experimental
mobility values are more accurate as they are obtained from real samples, although using
them deliberately without knowing what physical parameters are changing transport
dynamics in the device may produce erroneous results when predictions are made by
simulation. Finally, adjusting the mobility values according to the electron and hole
concentrations, as was done in this study, is the best option to strengthen the analysis
without complicating the computational calculations.

4. Conclusions

Simulations on mobility influence in optoelectronics parameters from an InGaN/GaN
blue LED using the Nextnano++ software were presented in this paper. These simulations
were performed by changing the hole and electron mobility value for the material com-
pounds according to experimental, theoretical, and doping-concentration data. The power
law mobility was used for the current calculation in the quantum drift-diffusion model. The
results exhibit significant changes in the energy transport and dispersion mechanisms in the
range of (2.5–4.1) volts, where an analysis of the physical parameters was carried out. The
lower hole and electron leakage currents correspond to the lowest mobility values for the
InGaN alloy, suggesting that a lower mobility for this material favors the permanence of the
e/h pairs in the well increasing the recombination probability and thereby the device emis-
sion. The greatest amount of recombination occurs in the extreme wells within the active
layer of the LED throughout the voltage sweep, regardless of the mobility value. The stable
emission is at 3.6 V, with peak wavelength λ̂LED = 456.7 nm and FWHM ∼ 11.1 nm for
the three mobilities. The maximum violet shift of the wavelength peak and the broadening
of the spectral line reveals that the doping-concentration mobility produces the most stable
emission. The highest quantum efficiency was achieved by doping-concentration mobility
(ηdop−max = 60.43%), making it superior to the others and achieving similar efficiencies to
other conventional devices.
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