Repositorio
Institucional

Chromatographic analysis of phytochemicals in the peel of Musa paradisiaca to synthesize silver nanoparticles

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.audiencePúblico generalspa
dc.contributor.authorBuendia-Otero, María José
dc.contributor.otherJiménez-Corzo, Deisy Julieth
dc.contributor.otherCaamaño De Ávila, Zulia Isabel
dc.contributor.otherRestrepo, Juan B.
dc.date.accessioned2022-12-16T19:02:40Z
dc.date.available2022-12-16T19:02:40Z
dc.date.issued2021-05-21
dc.date.submitted2020-12-09
dc.description.abstractThis research work usedMusa paradisiaca(banana) peels as a natural solvent,assorted with the precursorAgNO3(10 mM) to perform the green synthesis of silvernanoparticles. The phytochemical components present in theMusa paradisiacapeelextracts were determined by gas chromatography coupled to a mass spectrometer(GC-MS), and it was possible to identify the compounds: 1.2 Ethanediol (60.0261%) and 2.3 Butanediol (11.2 %); these -diols represent a highly reducing agent formetals, since they act as a solvent for the metal precursor behaving as a reducingagent, and facilitating the formation of nanoparticles. Likewise, the synthesized silvernanoparticles were subjected to a washing and drying treatment to be subsequentlycharacterized by means of UV-Vis and XRD techniques, resulting in a wavelength of411 nm, which is characteristic of these metallic nanoparticles, and achieving theidentification of the face-centered cubic structure (fcc) of the metallic silver, with anaverage particle size of 21.8 nm according to the Debye-Scherrer equation.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBuendia-Otero, M. J., Jiménez-Corzo, D. J., Caamaño De Ávila, Z. I., & Restrepo, J. B. (2021). Chromatographic analysis of phytochemicals in the peel of Musa paradisiaca to synthesize silver nanoparticles. Revista Facultad De Ingeniería Universidad De Antioquia, (103), 130–137. https://doi.org/10.17533/udea.redin.20210427spa
dc.identifier.doi10.17533/udea.redin.20210427
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1129
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85120965653&doi=10.17533%2fudea.redin.20210427&origin=inward&txGid=f4d8548dd6aa6a06cb1d627b5d15d6e3
dc.language.isoengspa
dc.publisher.placeBarranquillaspa
dc.publisher.sedeSede Nortespa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceRevista Facultad de Ingenieríaspa
dc.subject.keywordsbiosynthesisspa
dc.subject.keywordsnanoparticlesspa
dc.subject.keywordsmusa paradisiacaspa
dc.subject.keywordschromatographic analysisspa
dc.titleChromatographic analysis of phytochemicals in the peel of Musa paradisiaca to synthesize silver nanoparticlesspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dcterms.bibliographicCitationV. S. Kotakadi and et al., “Biofabrication of silver nanoparticles using andrographis paniculata,” European Journal of Medicinal Chemistry, vol. 73, Feb. 12, 2014. [Online]. Available: https://doi.org/10.1016/j.ejmech.2013.12.004spa
dcterms.bibliographicCitationH. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms,” Journal of Radiation Research and Applied Sciences, vol. 8, no. 3, 2015. [Online]. Available: https://doi.org/10.1016/j.jrras.2015.01.007spa
dcterms.bibliographicCitation(2020) Análisis del mercado del banano: resultados preliminares 2019, 2020. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). [Online]. Available: http://www.fao.org/3/ca7567es/CA7567ES.pdfspa
dcterms.bibliographicCitationA. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde, “Banana peel extract mediated synthesis of gold nanoparticles,” Colloids and Surfaces B: Biointerfaces, vol. 80, no. 1, Oct. 1, 2010. [Online]. Available: https://doi.org/10.1016/j.colsurfb.2010.05.029spa
dcterms.bibliographicCitationM. V. Vázquez and L. Blandón, “Antimicrobial performance of electrochemically synthesized silver nanoparticles,” Cuaderno Activa, vol. 6, 2014. [Online]. Available: https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/219spa
dcterms.bibliographicCitationG. Nam, S. Rangasamy, B. Purushothaman, and J. M. Song, “The application of bactericidal silver nanoparticles in wound treatment. nanomaterials and nanotechnology,” College of Pharmacy, Seoul National University, Seoul, South Korea, vol. 5, 2015. [Online]. Available: https://doi.org/10.5772%2F60918spa
dcterms.bibliographicCitationC. A. Pérez, “Synthesis of silver nanoparticles using plant extracts,” Undergraduated. Degree work, Escuela de ingeniería de Antioquia, Envigado, Antioquia, 2014.spa
dcterms.bibliographicCitationH. G. Ganchozo and R. A. Luna, “Obtención de un nanocompuesto estructurado por nanocelulosa y dopado con nanopartículas de plata (agnps) con actividad antibacterial y cicatrizante, utilizando como materia prima los residuos de banano: raquis y cascara (musa acuminata),” Bachelor thesis, Universidad de Guayaquil, Facultad de Ingeniería Química, Guayaquil, Ecuador, 2018. [Online]. Available: http://repositorio.ug.edu.ec/handle/redug/35406spa
dcterms.bibliographicCitationJ. C. Serge. (2016) Magnetic structures of 2d and 3d nanoparticles: properties and applications. Pan Stanford Publishing. [Online]. Available: https://n9.cl/3gryspa
dcterms.bibliographicCitationM. Mokhtari, M. Saban, and R. E. Gaynor, “Carboxylic acid stabilized silver nanoparticles and process for producing same,” U.S. Patent US 8.460,584 B2, Jun. 11„ 2015. [Online]. Available: https://patents.google.com/patent/US8460584B2/enspa
dcterms.bibliographicCitationJ. R. Koduru, “Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review,” Advances in Colloid and Interface Science, vol. 256, Jun. 2018. [Online]. Available: https://doi.org/10.1016/j.cis.2018.03.001spa
dcterms.bibliographicCitationF. Soriano and G. Morales, “Incorporation of silver nanoparticles in high impact polystyrene: Effect on polymerization kinetics and morphological structure,” in Polymer Engineering & Science. Revista Iberoamericana de Polímeros, 2011, pp. 116–124. [Online]. Available: https://doi.org/10.1002/pen.21978spa
dcterms.bibliographicCitationM. P. Hernandez, “Síntesis de nanopartículas de plata biológicamente asistida con opuntia sp. y su incorporación en membranas poliméricas nanofibrosas,” M.S. thesis, Centro de investigación en química aplicada, Saltillo, Mexico, 2013.spa
dcterms.bibliographicCitationS. A. Ovalle, C. Blanco, and M. Y. Combariza, “In situ synthesis of silver nanoparticles on fique fibres,” Revista Colombiana de Química, vol. 42, no. 1, 2013. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28042013000100004spa
dcterms.bibliographicCitationK. Ponsanti, B. Tangnorawich, N. Ngernyuang, and C. Pechyen, “A flower shape-green synthesis and characterization of silver nanoparticles (agnps) with different starch as a reducing agent,” Journal of materials Research and Technology, vol. 9, no. 5, 2020. [Online]. Available: https://doi.org/10.1016/j.jmrt.2020.07.077spa
dcterms.bibliographicCitationK. Jemal, B. V. Sandeep, and S. Pola, “Synthesis, characterization, and evaluation of the antibacterial activity of allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles,” Journal of Nanomaterials, 2017. [Online]. Available: https://doi.org/10.1155/2017/4213275spa
dcterms.bibliographicCitationM. Rabiei and et al., “Comparing methods for calculating nano crystal size of natural hydroxyapatite using x -ray diffraction,” Journal of Nanomaterials, vol. 10, no. 9, 2020. [Online]. Available: https://doi.org/10.3390/nano10091627spa
dcterms.bibliographicCitationJ. Annamalai and T. Nallamuthu, “Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency,” Applied nanoscience, vol. 6, no. 2, Feb. 2016. [Online]. Available: https://doi.org/10.1007/s13204-015-0426-6spa
dcterms.bibliographicCitationA. Saxena, R. M. Tripathi, F. Zafar, and P. Singhc, “Green synthesis of silver nanoparticles using aqueous solution of ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, Jan. 15, 2012. [Online]. Available: https://doi.org/10.1016/j.matlet.2011.09.038spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
344488-Article Text-221796-3-10-20211119.pdf
Tamaño:
257.64 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.28 KB
Formato:
Item-specific license agreed upon to submission
Descripción: