Repositorio
Institucional

Barrow holographic dark energy with Granda–Oliveros cutoff

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.audiencePúblico generalspa
dc.contributor.authorOliveros, A
dc.contributor.otherSabogal, M. A.
dc.contributor.otherAcero, Mario A.
dc.date.accessioned2022-11-15T19:14:23Z
dc.date.available2022-11-15T19:14:23Z
dc.date.issued2022-07-07
dc.date.submitted2022-03-26
dc.description.abstractA study on the effects of implementing the Granda-Oliveros infrared cutoff in the recently introduced Barrow Holographic Dark Energy model is presented, and its cosmological evolution is investigated. We find how the deformation parameter, Δ, affects the values of H(z), and find that from this model it is possible to obtain an accelerated expansion regime of the universe at late times. We also obtain that increasing Δ causes the EoS parameter to transition from quintessence to phantom. In addition, we show that the model can be used to describe the know eras of dominance. Finally, after studying the stability of the proposed model, a fit of the corresponding parameters is preformed, utilizing the measurements of the expansion rate of the universe, H(z). The best fit of the parameters is found to be (α,β,Δ)=(1.00+0.02−0.02,0.69+0.03−0.02,0.000+0.004−0.000) at 1σ C.L, for which the Bekenstein-Hawking relation is favored.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationOliveros, A., Sabogal, M.A. & Acero, M.A. Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus 137, 783 (2022). https://doi.org/10.1140/epjp/s13360-022-02994-zspa
dc.identifier.doi10.1140/epjp/s13360-022-02994-z
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/777
dc.language.isoengspa
dc.publisher.disciplineFísicaspa
dc.publisher.placeBarranquillaspa
dc.publisher.sedeSede Nortespa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceEur. Phys. J. Plusspa
dc.subject.keywordsHolographicspa
dc.subject.keywordsBarrowspa
dc.subject.keywordsDark Energyspa
dc.subject.keywordsGranda-Oliveros cutoffspa
dc.titleBarrow holographic dark energy with Granda–Oliveros cutoffspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dcterms.bibliographicCitationA.G. Riess et al., Supernova search team. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499 [arXiv:astro-ph/9805201 [astro-ph]]spa
dcterms.bibliographicCitationS. Perlmutter et al., Supernova cosmology project. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221 [arXiv:astro-ph/9812133 [astroph]]spa
dcterms.bibliographicCitationG.’t Hooft, Conf. Proc. C. 930308, 284–296 (1993). [arXiv:gr-qc/9310026 [gr-qc]]spa
dcterms.bibliographicCitationL. Susskind, J. Math. Phys. 36, 6377–6396 (1995). https://doi.org/10.1063/1.531249 [arXiv:hep-th/9409089 [hep-th]]spa
dcterms.bibliographicCitationR. Bousso, JHEP 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004 [arXiv:hep-th/9905177 [hep-th]]spa
dcterms.bibliographicCitationA.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971–4974 (1999). https://doi.org/10.1103/PhysRevLett.82.4971 [arXiv:hep-th/9803132 [hep-th]]spa
dcterms.bibliographicCitationS. Wang, Y. Wang, M. Li, Phys. Rept. 696, 1–57 (2017). https://doi.org/10.1016/j.physrep.2017.06.003 [arXiv:1612.00345 [astro-ph.CO]]spa
dcterms.bibliographicCitationS. Nojiri, S.D. Odintsov, Gen. Rel. Grav. 38, 1285–1304 (2006). https://doi.org/10.1007/s10714-006-0301-6 [arXiv:hep-th/0506212 [hep-th]]spa
dcterms.bibliographicCitationS. Nojiri, S.D. Odintsov, Eur. Phys. J. C 77(8), 528 (2017). https://doi.org/10.1140/epjc/s10052-017-5097-x [arXiv:1703.06372 [hep-th]]spa
dcterms.bibliographicCitationS. Nojiri, S.D. Odintsov, T. Paul, Symmetry 13(6), 928 (2021). https://doi.org/10.3390/sym13060928 [arXiv:2105.08438 [gr-qc]]spa
dcterms.bibliographicCitationS. Nojiri, S.D. Odintsov, V.K. Oikonomou, T. Paul, Phys. Rev. D 102(2), 023540 (2020). https://doi.org/10.1103/PhysRevD.102.023540 [arXiv:2007. 06829 [gr-qc]]spa
dcterms.bibliographicCitationE.N. Saridakis, Phys. Rev. D 102(12), 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525 [arXiv:2005.04115 [gr-qc]]spa
dcterms.bibliographicCitationJ.D. Barrow, Phys. Lett. B 808, 135643 (2020). https://doi.org/10.1016/j.physletb.2020.135643 [arXiv:2004.09444 [gr-qc]]spa
dcterms.bibliographicCitationJ.D. Bekenstein, Phys. Rev. D 7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333spa
dcterms.bibliographicCitationS. W. Hawking, Commun. Math. Phys. 43, 199-220 (1975) [erratum: Commun. Math. Phys. 46, 206 (1976)] https://doi.org/10.1007/BF02345020spa
dcterms.bibliographicCitationF.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, Eur. Phys. J. C 80(9), 826 (2020). https://doi.org/10.1140/epjc/s10052-020-8360-5 [arXiv:2005. 10302 [gr-qc]]spa
dcterms.bibliographicCitationA.A. Mamon, A. Paliathanasis, S. Saha, Eur. Phys. J. Plus 136(1), 134 (2021). https://doi.org/10.1140/epjp/s13360-021-01130-7 [arXiv:2007.16020 [gr-qc]]spa
dcterms.bibliographicCitationM.P. Dabrowski, V. Salzano, Phys. Rev. D 102(6), 064047 (2020). https://doi.org/10.1103/PhysRevD.102.064047 [arXiv:2009.08306 [astro-ph.CO]]spa
dcterms.bibliographicCitationS. Srivastava, U.K. Sharma, Int. J. Geom. Meth. Mod. Phys. 18(01), 2150014 (2021). https://doi.org/10.1142/S0219887821500146 [arXiv:2010.09439 [physics.gen-ph]]spa
dcterms.bibliographicCitationA. Pradhan, A. Dixit, V.K. Bhardwaj, Int. J. Mod. Phys. A 36(04), 2150030 (2021). https://doi.org/10.1142/S0217751X21500305 [arXiv:2101.00176 [gr-qc]]spa
dcterms.bibliographicCitationP. Adhikary, S. Das, S. Basilakos, E.N. Saridakis, Phys. Rev. D 104(12), 123519 (2021). https://doi.org/10.1103/PhysRevD.104.123519 [arXiv:2104. 13118 [gr-qc]]spa
dcterms.bibliographicCitationG. Leon, J. Magaña, A. Hernández-Almada,M.A. García-Aspeitia, T. Verdugo, V. Motta, JCAP 12(12), 032 (2021). https://doi.org/10.1088/1475-7516/ 2021/12/032 [arXiv:2108.10998 [astro-ph.CO]]spa
dcterms.bibliographicCitationM. Asghari, A. Sheykhi, Eur. Phys. J. C 82(5), 388 (2022). https://doi.org/10.1140/epjc/s10052-022-10262-8 [arXiv:2110.00059 [gr-qc]]spa
dcterms.bibliographicCitationK. Jusufi, M. Azreg-Aïnou, M. Jamil, E.N. Saridakis, Universe 8(2), 102 (2022). https://doi.org/10.3390/universe8020102 [arXiv:2110.07258 [gr-qc]]spa
dcterms.bibliographicCitationN. K. P and T. K. Mathew, [arXiv:2112.07310 [gr-qc]]spa
dcterms.bibliographicCitationS. Nojiri, S.D. Odintsov, T. Paul, Phys. Lett. B 825, 136844 (2022). https://doi.org/10.1016/j.physletb.2021.136844 [arXiv:2112.10159 [gr-qc]]spa
dcterms.bibliographicCitationS. Nojiri, S.D. Odintsov, V. Faraoni, Phys. Rev. D 105(4), 044042 (2022). https://doi.org/10.1103/PhysRevD.105.044042 [arXiv:2201.02424 [gr-qc]]spa
dcterms.bibliographicCitationQ. Huang, H. Huang, B. Xu, F. Tu, J. Chen, Eur. Phys. J. C 81(8), 686 (2021). https://doi.org/10.1140/epjc/s10052-021-09480-3 [arXiv:2201.11414 [gr-qc]]spa
dcterms.bibliographicCitationG.G. Luciano, E.N. Saridakis, Eur. Phys. J. C 82, 558 (2022). https://doi.org/10.1140/epjc/s10052-022-10530-7. [arXiv:2203.12010 [gr-qc]]spa
dcterms.bibliographicCitationL.-H. Wang, M.-S. Ma, Phys. Lett. B 831, 1 (2022). https://doi.org/10.1016/j.physletb.2022.137181 [arXiv:2205.13208 [gr-qc]]spa
dcterms.bibliographicCitationS. Di Gennaro, Y.Ch. Ong. [arxiv:2205.09311 [gr-qc]]spa
dcterms.bibliographicCitationS. Nojiri, S.D. Odintsov, T. Paul, Phys. Lett. B 831, 137189 (2022). https://doi.org/10.1016/j.physletb.2022.137189 [arXiv:2205.08876 [gr-qc]]spa
dcterms.bibliographicCitationB. Farsi, A. Sheykhi. [arXiv:2205.04138 [gr-qc]]spa
dcterms.bibliographicCitationM. Li, Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014 [arXiv:0403127 [hep-th]]spa
dcterms.bibliographicCitationL.N. Granda, A. Oliveros, Phys. Lett. B 669, 275–277 (2008). https://doi.org/10.1016/j.physletb.2008.10.017 [arXiv:0810.3149 [gr-qc]]spa
dcterms.bibliographicCitationL.N. Granda, A. Oliveros, Phys. Lett. B 671, 199–202 (2009). https://doi.org/10.1016/j.physletb.2008.12.025 [arXiv:0810.3663 [gr-qc]]spa
dcterms.bibliographicCitationN. Aghanim et al. [Planck], Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] https://doi.org/10.1051/0004-6361/ 201833910[arXiv:1807.06209[astro-ph.CO]]spa
dcterms.bibliographicCitationY. Wang, L. Xu, Phys. Rev. D 81, 083523 (2010). https://doi.org/10.1103/PhysRevD.81.083523 [arXiv:1004.3340 [astro-ph.CO]]spa
dcterms.bibliographicCitationS. Rani, N. Azhar, Universe 7(8), 268 (2021). https://doi.org/10.3390/universe7080268spa
dcterms.bibliographicCitationJ.F. Jesus, R. Valentim, A.A. Escobal, S.H. Pereira, JCAP 04, 053 (2020). https://doi.org/10.1088/1475-7516/2020/04/053 [arXiv:1909.00090 [astroph. CO]]spa
dcterms.bibliographicCitationB. Feng, M. Li, Y.S. Piao, X. Zhang, Phys. Lett. B 634, 101–105 (2006). https://doi.org/10.1016/j.physletb.2006.01.066 [arXiv:astro-ph/0407432 [astro-ph]]spa
dcterms.bibliographicCitationS. Maity, P. Rudra, J. Holography Appl. Phys. 2(1), 1–12 (2022). https://doi.org/10.22128/jhap.2022.464.1012 [arXiv:2202.08160[gr-qc]]spa
dcterms.bibliographicCitationS. Cao, T.J. Zhang, X. Wang, T. Zhang, Universe 7(3), 57 (2021). https://doi.org/10.3390/universe7030057 [arXiv:2103.03670 [astro-ph.CO]]spa
dcterms.bibliographicCitationA. Zyla et al. [Particle Data Group], PTEP 2020(8), 083C01 (2020) https://doi.org/10.1093/ptep/ptaa104spa
dcterms.bibliographicCitationA.A. Mamon, Mod. Phys. Lett. A 33(10 &11), 1850056 (2018). https://doi.org/10.1142/S0217732318500566 [arXiv:1702.04916 [gr-qc]]spa
dcterms.bibliographicCitationS. Capozziello, Ruchika, A.A. Sen, Mon. Not. Roy. Astron. Soc. 484, 4484 (2019). https://doi.org/10.1093/mnras/stz176 [arXiv:1806.03943 [astroph. CO]]spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s13360-022-02994-z.pdf
Tamaño:
3.44 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.28 KB
Formato:
Item-specific license agreed upon to submission
Descripción: