Repositorio
Institucional

A NOTE ON PRESERVATION OF SPECTRA FOR TWO GIVEN OPERATORS

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.audiencePúblico generalspa
dc.contributor.authorCarpintero, Carlos
dc.contributor.otherGutierrez, Alexander
dc.contributor.otherRosas, Ennis
dc.contributor.otherSanabria, Jose
dc.date.accessioned2022-11-15T19:19:31Z
dc.date.available2022-11-15T19:19:31Z
dc.date.issued2019-03-06
dc.date.submitted2018-03-24
dc.description.abstractWe study the relationships between the spectra derived from Fredholm the- ory corresponding to two given bounded linear operators acting on the same space. The main goal of this paper is to obtain sufficient conditions for which the spectra derived from Fredholm theory and other parts of the spectra corresponding to two given operators are preserved. As an application of our results, we give conditions for which the above mentioned spectra corresponding to two multiplication operators acting on the space of functions of bounded p-variation in Wiener’s sense coincide. Additional illustrative results are given too.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.21136/MB.2019.0038-18
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/795
dc.language.isoengspa
dc.publisher.placeBarranquillaspa
dc.publisher.sedeSede Nortespa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMATHEMATICA BOHEMICAspa
dc.subject.keywordsrestriction of an operator; spectral property; semi-Fredholm spectra; multi- plication operatorspa
dc.titleA NOTE ON PRESERVATION OF SPECTRA FOR TWO GIVEN OPERATORSspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dcterms.bibliographicCitation[1] P.Aiena: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht, 2004.spa
dcterms.bibliographicCitation[2] P.Aiena: Quasi-Fredholm operators and localized SVEP. Acta Sci. Mat. 73 (2007), 251–263.spa
dcterms.bibliographicCitation[3] P. Aiena, M.T.Biondi, C.Carpintero: On Drazin invertibility. Proc. Am. Math. Soc. 136 (2008), 2839-2848.spa
dcterms.bibliographicCitation[4] F.R.Astudillo-Villaba, R. E.Castillo, J.C.Ramos-Fern´andez: Multiplication operators on the spaces of functions of bounded p-variation in Wiener’s sense. Real Anal. Exch. 42 (2017), 329–344.spa
dcterms.bibliographicCitation[5] B.A.Barnes: The spectral and Fredholm theory of extensions of bounded linear opera- tors. Proc. Am. Math. Soc. 105 (1989), 941–949.spa
dcterms.bibliographicCitation[6] B.A.Barnes: Restrictions of bounded linear operators: Closed range. Proc. Am. Math. Soc. 135 (2007), 1735–1740.spa
dcterms.bibliographicCitation[7] M.Berkani: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244–249.spa
dcterms.bibliographicCitation[8] M.Berkani, M. Sarih: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457–465.spa
dcterms.bibliographicCitation[9] C.Carpintero, D.Mu˜noz, E.Rosas, J. Sanabria, O.Garc´ıa: Weyl type theorems and restrictions. Mediterr. J. Math. 11 (2014), 1215–1228.spa
dcterms.bibliographicCitation[10] J.K. Finch: The single valued extension property on a Banach space. Pac. J. Math. 58 (1975), 61–69.spa
dcterms.bibliographicCitation[11] H.G.Heuser: Functional Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1982.spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
A note on preservation of spectra for two given operators.pdf
Tamaño:
165.55 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.28 KB
Formato:
Item-specific license agreed upon to submission
Descripción: